
RC25412 (WAT1309-091) September 30, 2013
Computer Science

IBM Research Report

A Functional Data Model for Analytics

Doug Kimelman
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 208

Yorktown Heights, NY 10598
USA

Manny Perez
IBM

Research Division
Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

A Functional Data Model for Analytics

Doug Kimelman
Manny Perez

IBM

ABSTRACT
This paper presents a functional data model – a model that is
fundamental to supporting management analytics applications.
This functional data model, henceforth referred to simply as “the
functional model”, is different from, but complementary to, the
relational model. The functional model is also distinct from other
similarly named concepts, including the DAPLEX functional
database model, and functional language databases.
The functional model comprises multidimensional hierarchical
consolidation, as is commonly found in OLAP technologies,
relational-based and otherwise. But it goes beyond OLAP by
requiring a spreadsheet-like cell orientation, and definition of
cells calculated as functions of other cells. Because a functional
definition of calculation according to formulas and consolidation
is incorporated into the data model, databases implementing the
model will inherently always return calculated cell values that are
up to date and consistent with respect to the latest input cell
values in interactive database update scenarios. These concepts
are lacking in the relational model but are essential for support of
flexible and interactive business performance management
analytics.
The validity and effectiveness of the functional model is evident
in the long-standing success of commercial product technology
that embodies the model to deliver practical analytics solutions
across a broad range of management analytics domains.
We present a formal definition of the functional model, a brief
discussion of database technology that implements the model
efficiently, and a comparison that shows how the relational model
is inadequate in terms of expressiveness for scenarios
fundamental to management analytics.

Categories and Subject Descriptors
H.2.1 [Database Management]: Logical Design

Keywords
Database, OLAP, Functional, Relational, Analytics, Spreadsheets,
Multidimensional, Planning, What-if

1. Introduction
Analytics, especially forward looking or prospective analytics
requires interactive modeling, “what if”, and experimentation of
the kind that most business analysts do with spreadsheets. This
interaction with the data is enabled by the spreadsheet’s cell
orientation and its ability to let users define cells calculated as a
function of other cells.
The relational database model has no such concepts and is thus
very limited in the business performance modeling and
interactivity it can support. Accordingly, relational-based
analytics is almost exclusively restricted to historical data, which
is static. This misses most of the strategic benefits of analytics,
which come from interactively constructing views of the future.

This paper introduces the functional data model. The functional
model is based on multidimensional arrays, or “cubes”, of cells
that, as in a spreadsheet, can be either externally input, or
calculated in terms of other cells. Such cubes are constructed
using dimensions which correspond to hierarchically organized
sets of real entities such as products, geographies, time, etc. A
cube can be seen as a function over the cartesian product of the
dimensions, mapping coordinate n-tuples to cell values; thus the
name “functional”. The model retains the flexibility and potential
for interactivity of spreadsheets, as well as the multidimensional
hierarchical consolidations of relational-based OLAP tools. At the
same time, the functional model overcomes the limitations of both
the relational database model and classical spreadsheets.
Products that implement the principles of the functional model to
varying degrees have been in existence for some time, including
products such as Oracle® Hyperion® Essbase®, IBM® Cognos®
TM1®, Alea, Microsoft® Analysis Services®, etc. [16, 19, 20,
21, 22, 23]. But other than publications such as the OLAP Report
[17,18], and a paper by E. F. Codd [10], very little has been
written on its mathematical foundation. Other than in
Spreadsheets in RDBMS for OLAP [26], very little has been
published on the technology used to implement functional
databases. Much of it is considered proprietary and only some
early patents [24, 25] give a glimpse of the technical challenges
that had to be overcome for proper implementation.
This paper is intended to familiarize others with the concepts and
significance of the functional model, to encourage the broader
application of the technology, and to set its mathematical
foundation as a base for future work to improve the functionality,
scalability and performance of databases based on the model. Its
ultimate goal is to improve the efficiency and effectiveness with
which enterprises and other organizations are run, to the benefit
us all.
This paper first covers business performance management
analytics and how the functional model facilitates it, specifically:
 The nature of analytics, particularly management analytics

and its importance to the more effective functioning of an
enterprise.

 How the functional model fits in the context of analytics.
 The relationship between spreadsheets and the functional

model.
 The key ideas behind the functional model and how it

benefits analytics.
 How the functional model compares to the relational model.

We then present a formal definition of the functional model, along
with a discussion of related work and future research directions.

2. Context
Enterprises, like all living organisms, must be aware of and adapt
to their environment in order to survive and thrive. Their behavior

starts with a planning process that assesses the current business
climate and attempts to predict its future evolution. This involves
an understanding of its markets and customers, the competition,
government regulations, technology, the economy, etc.
Once the plan – the enterprise’s intended course of action – is
established, the enterprise proceeds to execute the plan. As it does
so, it periodically compares and analyzes its actual performance
vis-à-vis the plan, and adjusts its behavior or the plan accordingly.
The process is effectively a feedback control loop – plan the
work, work the plan, measure the results. Information Technology
(IT) plays now a central role in making management control loops
more efficient and effective. One could say this is a major benefit
of IT.
The importance of automation to the success of an enterprise is
now generally considered vital: The management control loop is
its nervous system, and clearly its speed, accuracy and
effectiveness can make the difference between success and
failure. Improving the management control loop makes for a
smarter and more successful enterprise.

2.1 Prospective and Retrospective Analytics
The management loop can be thought of as having two layers as
shown in Figure 1.

Figure 1. Management Cotrol Loop

The three components of the control loop have different time
perspectives. Operations looks at the here and now, whereas
analytics looks at the past and the future. The information needs
of each component are different. Operations is concerned with
recording transactions and keeping track of the current state of the
business – inventory, work in progress etc. Analytics has two
parts, prospective: develop plans, and retrospective: measure
results.
In retrospective analytics, transactions resulting from operations
are boiled down and accumulated into arrays of cells. These cells
are identified by as many dimensions as are relevant to the
business: time, product, customer, account, region, etc. The cells
are typically arrayed in cubes that form the basis for retrospective
analyses such as comparing actual performance to plan.
Prospective analytics develops similar cubes of data but for future
time periods. The development of prospective data is typically the
result of human input or mathematical models that are driven and
controlled through user interaction.

2.2 Historical Perspective
It is instructive to consider the emergence of automated support
for analytics, and the failings that constituted barriers to
widespread adoption. Table 1 summarizes the history of the tools
and technologies used in the three elements of the management
control loop.
Table 1. History Control Loop Elements

Period Operations Retrospective
Analytics

Prospective
Analytics

Pre
Automation

Ledger books Profit & Loss,
Balance Sheet
reports

Paper
spreadsheets

Early
Automation

80-column card
Sequential files
Random Access
DBMS

Reporting
languages.
4GL

APL
Math
Programming
Statistical
Analytics

Late
Automation

RDBMS
SQL

Star Schema
BI, DW
OLAP, MDX

Electronic
Spreadsheet
Functional
Database

Back in the days of quill pen and paper, operational transactions
were recorded in a ledger books, and retrospective analytics
amounted to financial reports (balance sheet, P&L, etc.) that were
derived from the ledger. Prospective analytics at best was done on
paper spreadsheets.
In the early days of automation, recording of operational
transactions was the main priority. The first step was to put those
records on 80 column punch cards. As electronics progressed, the
records were moved, first to magnetic tape, then to disk. Software
technology progressed as well and gave rise to database
management systems that centralized the access and control of the
data.
Databases made it then possible to develop languages that made it
easy to produce reports for retrospective analytics. At about the
same time, languages and systems were developed to handle
multidimensional data and to automate mathematical techniques
for forecasting and optimization as part of prospective analytics.
Unfortunately, this technology required a high level of expertise
and was not comprehensible to most end users. As a result, its
user acceptance was limited, and consequently so were the
benefits derived from it.
As information management software matured, record-based
databases were formalized in the relational model and SQL [14],
which became pervasive in support of operations. Subsequently,
in support of analytics, a multidimensional construct based on the
relational model – the star schema – was invented [15]. It
provided much better functionality and flexibility for deriving
value from historical data. Data warehousing and business
intelligence were mostly based on this notion, and the OLAP
query language MDX [16] further facilitated the presentation of
multidimensional data.
However, the most important contribution to improving the
management loop was the introduction of the electronic
spreadsheet in support of both retrospective and prospective

Execute
Plans

Measure
Results

Develop
Plans

Analytics

Operations

analytics. For the first time end users had a tool that they could
understand and control, and use it to model their business as they
understood it. They could interact, experiment, adapt to changing
situations, and derive insights and value very quickly. As a result,
spreadsheets were adopted broadly, came to be regarded widely
as a “killer app”, and ultimately became pervasive. To this day,
spreadsheets remain an indispensible tool of any enterprise.
The functional data model, as was discussed above, affords end
users key capabilities and benefits similar to those of the
spreadsheet, but goes beyond those by incorporating multiple
dimensions and consolidation, overcoming the scalability
limitations of the spreadsheet. Functional databases – those based
on the functional model – additionally offer benefits typically
associated with conventional database technology: data
independence, concurrent multiuser access, integrity, scalability,
security, audit trail, backup/recovery, and data integration.
Functional database technology is being adopted in support of
analytics by ever-growing numbers of enterprises.

3. Spreadsheets for Analytics
Business analysts get most of the information they use to make
decisions about the future of their enterprises from what are in
today’s parlance business intelligence (BI) systems. Such systems
consist primarily of report generation software acting on a data
warehouse that stores historical transaction data.
Before analysts will base decisions and take action on the
information provided by the BI systems, they will go through a
process of interactive exploration and reflection. They will have
what amounts to an intimate conversation with their data. It is
through this interaction process that analysts arrive at insights and
conclusions. They also develop confidence in the conclusions to
the point of basing decisions on them. The tool they use for this
conversation is almost exclusively an electronic spreadsheet.
Even if their spreadsheets are not fed automatically from the BI
systems, users will go through the pain of feeding them manually
by typing in the data from the reports.
In order to extract insights and gain confidence, users will
calculate other derived values. For example they may calculate
the percent growth of a group of products from the prior period
and compare the result with that of other product groups by
various geographies. Or they may look at the historic costs of the
components of a product, project what the cost will be in future
periods and the effect on the cost of the product. In building those
models, they will use their experience and intuition, focusing on
those areas where they can see opportunities.
Spreadsheets have a key set of characteristics that facilitate
modeling and analysis:
 Data from multiple sources can be brought together in one

worksheet.
 Cells can be defined by means of calculation formulas in

terms of other cells. So facts from different sources can be
logically interlinked to calculate derived values.

 Calculated cells are updated automatically whenever any of
the input cells on which they depend changes. When users
have a “what if” question, they simply change some data
cells, and automatically all dependent cells are brought up to
date

 Cells are organized in rectangular grids and juxtaposed so
that significant differences can be spotted at a glance or
through associated graphic displays.

 Spreadsheet grids normally also contain consolidation
calculations along rows and or columns. This permits
discovering trends in the aggregate that may not be evident
at a detailed level.

3.1 Limitations of Spreadsheets
While spreadsheets are fundamental to extracting insights and
decisions from data, they nonetheless suffer from certain
limitations:
 Limited data identification. Cells are identified by row and

columns, not the business concepts they represent.
 Limited dimensionality. Spreadsheets are two dimensional,

and multiple pages provide the semblance of three
dimensions, but business data often has more dimensions.

 Data is tied to a spreadsheet. If users want to perform another
analysis on the same set of data, the data needs to be
duplicated. Spreadsheet links can sometimes be used, but
most often are not practical.

The combined effect of these limitations is that there is a limit on
the complexity of spreadsheets that can be built and managed. As
the needs of the business drive users to more complexity, they
find themselves in a situation commonly known as spreadsheet
hell.

4. The Functional Model for Analytics
While the functional model retains the key features of the
spreadsheet, it also overcomes its main limitations, which were
identified above. With the functional model, data is arranged in a
grid of cells, but cells are identified by business concept instead
of just row or column. Rather than worksheets, the objects of the
functional model are dimensions and cubes. Rather than two or
three dimensions: row, column and sheet, the functional model
supports as many dimensions as are necessary. And the
dimensions of the cube support hierarchical structures that define
consolidations implicitly.

4.1 Functional Databases
Another benefit of the functional model, as compared to the
spreadsheet, is that it can be implemented using database
technology, and that affords the end user all of the benefits
typically associated with such technology. As was mentioned
above, these benefits include: data independence, concurrent
multiuser access, integrity, scalability, security, audit trail,
backup/recovery, and data integration.
Data independence is of particularly high value for analytics. Data
need no longer reside in spreadsheets. Instead the functional data
base acts as a central information resource that can be shared by
multiple spreadsheets and multiple users. Updates submitted by
multiple users are available to all users subject to security rules.
Accordingly there is always a single shared version of the truth.
The functional data model forms the theoretical basis for
functional databases, and functional databases implement the
functional data model with a particular focus on efficient
representation, calculation, and consolidation for large sparse
multidimensional datasets having hierarchies in each dimension.
With a functional database, an analytics model can consist of
multiple cubes where appropriate – for instance, where there are
multiple collections of data, each having different dimensionality.
The cubes are interlinked by calculation rules that contain inter-
cube references.

4.2 Dimensions, Cubes and Cells
A dimension is a finite set of elements, or members, that partition
or abstract the business reality into concepts, or bins, that can be
used for predictions and comparisons, e.g., time periods, products,
areas or regions, line items, etc.
Cubes are built using any number of dimensions. A cube is a
collection of cells, each of which is identified by a tuple of
elements, one from each dimension of the cube. Each cell in a
cube contains a value. A cube is effectively a function that assigns
a value to each n-tuple of the cartesian product of the dimensions.
The value of a cell may be:
 Assigned externally (input) and stored in the cell, or
 The result of a calculation that uses other cells, in the same

cube or other cubes, and a formula that specifies the
calculation.

As well, some cells may have no value – their value is not
calculated, and they have not been assigned an input value. Such
cells can be treated as having the value zero for purposes of
consolidation.
As with spreadsheets, users need not worry about executing
recalculation. When the value of a cell is requested, the value that
is returned is up to date with respect to the values of all of the
cells that go into its calculation i.e. the cells on which it depends.
Dimensions typically contain consolidation hierarchies where
some elements are defined as parents of other elements, and a
parent is interpreted as the sum of its children. Cells that are
identified by a consolidated element in one or more dimensions
are automatically calculated by the functional model as sums of
cells having child elements in those dimensions. Please see the
formal definition below for more detail. When the value of a
consolidated cell is requested, the value that is returned is always
up to date with respect to the values of all of the cells that it
consolidates.

4.3 An Example
The concepts of the functional model will be illustrated with an
example shown in Figure 2. Its functional database consists of
five cubes that are interconnected by formulas into a single
analytics model. The dimensions of the cubes are built from tables
in a data warehouse shown at the top of the diagram. The cubes
and their dimensions (in parentheses) are as follows:
 P&L (Region, Account, Currency, Time)
 Sales(Region, Product, Time)

 Payroll(Region, Employee, Time)
 Overhead(Account, Time)
 Foreign Exchange(Currency, Time)

Figure 2. Example of a Functional Model

All cubes support the typical consolidation and pivoting
operations of OLAP multidimensional databases. Furthermore,
the cubes in the model are interconnected through formulas:
The P&L cube picks up the dollar costs from the payroll cube
through a formula of the form:

P&L(“Payroll”, “Dollars”) = Payroll (“All
Employees”)

The dimensions that are omitted from the expression are assumed
to range over all the leaf elements of those dimensions. Thus this
expression is equivalent to:

P&L(xRegion, “Payroll”, “Dollars”, xTime) = Payroll
(xRegion, “All Employees”, xTime), for all leaves
xRegion in Region and all leaves xTime in Time.

P&L also picks up sales revenue from the Sales cube through:
P&L(“Sales”, “Dollars”) = Sales(“All Products”)

Overhead accounts are allocated by region on the basis of sales:
P&L(“Region”, “Dollars”) = Ovhd() * Sales(“Region”)
/ Sales(“All Regions”)

Finally, other currencies are derived from the dollar exchange
rate:

P&L() = P&L(“Dollars”) * Fx()
Note: The expression syntax used is for illustration purposes and
may not reflect syntax used in the formal model or in particular
products that implement the functional model..

4.4 Use of the Model
The historical portion of the cubes is populated from the data
warehouse. In this simplified example, the calculations just
discussed may be done in the data warehouse for the historical
portion of the cubes, but generally, the functional model supports
the calculation of other functions, such as ratios and percentages
that can deliver insight into historical data.
While the history is static, the future portion is dynamic and
developed interactively by business analysts in various
organizations and various backgrounds:
 Sales forecasts should be developed by experts from each

region. They could use forecasting models and parameters
that incorporate their knowledge and experience of that
region, or they could simply enter them through a
spreadsheet. Each region can use a different method with
different assumptions.

 The payroll forecast could be developed by HR experts in
each region.

 The overhead cube would be populated by people in
headquarters finance, and so would the exchange rate
forecasts.

The forecasts developed by regional experts are first reviewed and
recycled within the region and then reviewed and recycled with
headquarters.

The model can be expanded to include a Version dimension that
varies based on, for example, various economic climate scenarios.
As time progresses, each planning cycle can be stored in a
different version, and those versions compared to actual and to
one another.
At any time the data in all the cubes, subject to security
constraints, is available to all interested parties. Users can bring
slices of cubes dynamically into spreadsheets to do further
analyses, but with a guarantee that the data is the same as what
other users are seeing.

4.5 Functional Database Benefits for Interactive
Analytics
Many of the benefits of databases that implement the functional
model derive from both the multidimensional qualities of the
model and the database qualities of the implementation. However,
the most valuable benefit is uniquely the result of the model being
cell-based and the implications inherent in that for support of
interactive modeling via recalculation. Those unique benefits are
highlighted and summarized in the following four areas:

4.5.1 Data integration
A functional database brings together data from multiple disparate
sources and ties the disparate data sets into coherent consumable
models. It also brings data scattered over multiple spreadsheets
under control. This lets users see a summary picture that
combines multiple components, e.g., to roll manpower planning
into complete financial picture automatically. It gives them a
single point of entry to develop global insights based on various
sources. And by bringing spreadsheets under control delivers
them from spreadsheet hell.
The relational model can be used to integrate multiple tables;
however, to implement the calculation model that interlinks the
cubes at the cell level, as in the example above, would require the
development of a highly complex ETL application by a SQL
expert. A simpler approach could implement the calculations by
performing a series of single-cell SQL queries, but the
performance of this approach is likely to be inadequate.
Otherwise the application could transfer the data to cubes that are
cell addressable. In the end, the ETL tool would effectively
implement an ad hoc functional database, but one that would be
read only. Spreadsheets in RDBMS for OLAP [26] describes in
some detail the limitations of SQL in this context.

4.5.2 Interactive What If
A functional database, like spreadsheets, also lets users change
input values while all dependent values are up to date. This
facilitates what-if experimentation and creating and comparing
multiple scenarios. Users can then see the scenarios side by side
and choose the most appropriate.
When planning, users can converge on a most advantageous
course of action by repeatedly recycling and interacting with
results. Actionable insights come from this intimate interaction
with data that users normally do with spreadsheets

4.5.3 Interactive Modeling
A functional database not only provides a common interactive
data store. It also brings together models developed by analysts
with knowledge of a particular area of the business that can be
shared by all users.
To facilitate this, a functional database retains the spreadsheet’s
interactive cell-based modeling capability. This makes possible

models that more closely reflect the complexities of business
reality.

4.5.4 Collaborative Interaction
Perhaps a functional database’s largest single contribution to
analytics comes from promoting collaboration. It lets multiple
individuals and organizations share single version of the truth, but
a truth that is dynamic and constantly changing. Its automatic
calculations quickly consolidate and reconcile inputs from
multiple sources. This promotes interaction of various
departments, facilitates recycle and makes it possible for differing
viewpoints to converge and be reconciled. Also, since each
portion of the model is developed by the people that are more
experts in the area, it is able to leverage experience and insights
that exist up and down the organization.

5. Formal Description of the Functional
Model
5.1 Dimensions and Cubes
A functional model consists of a set of dimensions and a set of
cubes.

A dimension D consists of a set of base or leaf elements B.D and
a set of hierarchies H.D.

5.1.1 Cubes and Cells
A cube C is a function whose domain is the cartesian product of
dimension leaf elements B.D1 × B.D2 × … × B.Dn and whose
range is either the set of real numbers ≠, or the set of finite
character strings S. If the range of C is ≠, the cube is called a
numeric cube. For a numeric cube,

C: B.D1 × B.D2 × … × B.Dn d ≠

(Note: As in the relational model [4], for simplicity and flexibility
the actual model should not require identifying the dimensions of
a cube, or the elements of the domain of C as ordered n-tuples,
rather it should identify the components of a tuple using the
concept of relationships and role tags rather than a position index.
This scheme will not be used or described further in this paper,
instead we will use cartesian products and ordered n-tuples.)
The elements of the domain of C, i.e., the n-tuples of dimension
leaf elements, are called leaf cells. The range element assigned to
a leaf cell by the cube function is called the cell value. The value
of a leaf cell may be either:

• An externally assigned (input) value effectively stored in the
cell

• The result of a calculation formula that refers to other cells in
the same cube or other cubes.

• Undefined or empty. Most actual cubes are mostly empty or
sparse. Consolidations will normally skip such cells,
effectively treating them as if their value was zero.

5.2 Consolidations
In addition to stored and calculated leaf cells, cubes also contain
consolidations associated with the elements of hierarchies. Such
consolidation calculations are kept automatically up to date
whenever underlying values change.

5.2.1 Hierarchies
A hierarchy h of dimension D, h ∈ H.D, consists of a finite set
E.h of hierarchy elements, and for each element e, a set of
components C.e. The components of a hierarchy element can be

leaf elements, or other elements of the hierarchy,
i.e., C.e ` E.h 4 B.D.
Components are also referred to as children. Note that unlike in
biology, the value of parents is derived from its children.

The set of descendents of a hierarchy element e, D.e, is the union
of C.e and the descendents of each of the elements of C.e.
Hierarchies do not allow circular references, so no element can be
its own descendent: ∀e∈ h (e∉D.e)

The leaf components of e, B.e are the descendents that are leaf
elements of the dimension: B.e = D.e 3 B.D.
For leaf elements, we define the set of components as a singleton
containing the element itself , i.e.

∀b∈ B.D (B.b = D.b = { b })

5.2.2 Extended Set of Elements
The extended set of elements of a dimension E.D is the union of
the leaf elements of D and the elements of all its hierarchies.

E.D = B.D 4 U
DHh

hE
.

.
∈

5.2.3 Consolidation Cube
Given a numeric-valued cube C,

C: B.D1 × B.D2 × … × B.Dn d ≠

The consolidated cube C’ is the extension of C to the Cartesian
product of extended sets of elements of its dimensions:

C’: E.D1 × E.D2 × … × E.Dn d ≠

Where

C’(e1, e2, …, en) = ∑
∈ 1.B1 eb

∑
∈ 2.B2 eb

… ∑
∈ enbn .B

C(b1, b2, …, bn)

5.3 Multiple Hierarchies
Dimensions often originate from relational tables in operational
systems or star schemata in data warehouses. Such dimension
tables may be denormalized, with one row per leaf element, or
may be stored as multiple tables corresponding to different levels
in hierarchies as in snowflake schemata. For our purposes we will
assume a single denormalized dimension table.
For example, respondents to a survey may have the following
attributes: Age, Sex, Occupation, Income, Street Address, City,
State, and Zip Code.
Note that respondent is a single dimension and that its attributes
give rise to multiple hierarchies.
For purposes of analysis it may be desirable to group the
respondents by: Age group, Sex, Occupation, Income Bracket,
and Location. This would give rise to five different hierarchies.
Implementations of the functional model should provide the tools
to automatically generate and update dimensions and hierarchies
based on relational dimension tables.
In this example, analytical needs may require displaying different
hierarchies of the same dimension along different axes,
effectively treating them as independent dimensions. The
functional model supports this requirement as described in the
next section.

5.3.1 Pivoting Hierarchies
The functional model supports the presentation of slices of cubes.
Various views of the cube can be shown by arranging some of the
dimensions as rows, some as columns and some as titles. Single
elements are selected from the title dimensions and subsets of
elements for the axis (row and column) dimensions.
In situations where a dimension has multiple hierarchies as in the
survey respondent example above, it is often desirable to present
slices of a cube where the rows and columns are not from
different dimensions, but from different hierarchies of the same
dimension.
For example, if the respondent dimension has two hierarchies
Age, with elements {young, old, all ages}, and Sex with elements
{male, female, all sexes}, it may be of interest to see responses
tabulated with sex as columns and age as rows. The cell under the
column “female” in row “young” would consolidate all the
respondents who are both young and female, which is the same as
the intersection of the leaf children of element “young” and the
leaf children of element “female”.
To that end, cubes in the functional model support consolidations
not only for the (extended) set of elements of its dimensions, but
also for sets of such elements. Formally:
Given a consolidation cube C’

C’: E.D1 × E.D2 × … × E.Dn d ≠

The multi-hierarchy consolidated cube C’’ is defined as follows:

C’’: P(E:D1) × P(E:D2) × … × P(E:Dn)

Where P(S) is the power set of S, or the set of all subsets of S.
The value of a cell identified by subsets S1, S2, …, Sn, is given
by:

C’’(S1, S2, …, Sn) = ∑
∈ 11 Ib

∑
∈ 22 Ib

… ∑
∈Inbn

C(b1, b2, …, bn)

And where I1, I2, …, In is the intersection of the leaf children of
the members of each set, i.e.:

Ik = I
Ske

eB
∈

.

In the example above, the value of the cell for young females
would be given by:
C’’(…, {young, female}, …)
where {young, female} appears in the position of dimension
“respondent”.

5.4 Updating Cubes
Information is input into a functional model by changing the
value of leaf cells. The values of all calculated leaf cells and all
consolidations will immediately reflect the change.

5.5 Leaf Cell Calculations
As mentioned before, in addition to consolidations, the functional
model supports arbitrary calculations of cells in terms of other
cells. As in the spreadsheet, where users typically copy formulas
across rows, columns or ranges, the language that expresses
calculation formulas does so for ranges of cells. Without going
into the detailed syntax, a calculation is expressed by means of a
rule that has the form:
<Range of Cells> = <Expression>;

Where <Range of Cells> is a subset of the leaf cells of a cube,
and <Expression> is written in terms of references to cells in any
cube, both leaf and consolidated, i.e., references to the extended
version of any cube.
Such calculated leaf cells are treated as input cells for purposes of
consolidation.
When <Range of Cells> for multiple rules overlap, the rule that
appears first will override the others.

5.5.1 Element Calculation Rules
Calculations can also be defined for leaf elements of a dimension
using a rule of the form:
<Element> = <Expression>
Where <Expression> is written using references to other leaf
elements of the dimension.
Such a rule applies in all cubes that use the dimension to all cells
identified by <Element>.
Element rules are overridden by cell rules that may be defined for
such cells.
When multiple element rules apply to the same cell, the order is
resolved based on the order in which the dimensions appear in the
cube. Such default order can be overridden by writing cell rules
that do so.

5.6 Nonlinear Summary Calculations
Rules can be written also for summary cells, in which case the
rule overrides the normal consolidation that would otherwise be
calculated. This can be used effectively to calculate ratios and
also array functions such as Maximum, Minimum, Average,
Count, etc. These functions are order dependent (unlike Sum
which is the basis of consolidations) and cannot be defined
globally the way consolidations are.
In the two dimensional cube below, rules are defined for
calculating minima and maxima along each dimension.

 Jan Feb Mar 1Q Max Min

North 15 28 79 122 79 15

South 55 75 26 156 75 26

East 6 55 86 147 86 6

West 33 40 54 127 54 33

Total Region 109 198 245 552 245 109

Max Region 55 75 86 156 86 33

Min Region 6 28 26 122 54 6

Note that the value for Total Regions, Max Month, 245, is
calculated by calculating the totals first and then taking their
maxima, i.e., the rule is calculated “last”. Note also that the cell
for Min Region, Max Month, 54 is calculated by taking the
minimum of the maxima. This is because we chose the Region
rules to override the Month rules. If we did the opposite, the result
would be different. Mixing such nonlinear calculations can be
misleading and confusing so the recommended practice is to leave
such “compound nonlinear” cells as undefined:

 Jan Feb Mar 1Q Max Min

North 15 28 79 122 79 15

South 55 75 26 156 75 26

East 6 55 86 147 86 6

West 33 40 54 127 54 33

Total Region 109 198 245 552 245 109

Max Region 55 75 86 156

Min Region 6 28 26 122

5.7 Relational Aspects of the Functional Model
While taking advantage of the benefits of the functional model,
users should not have to give up the set manipulation power of the
relational model. For example, when issuing queries to a
functional server, the server should not just do the cell
calculations, but should also support expressions that calculate
sets of elements used in views, as in the OLAP multidimensional
expressions (MDX) language.
The set calculations in the functional model should be as dynamic
as those used to perform cube calculations. So, for example, if a
set expression depends on values stored in a cube, when users
update those values, the set should be automatically recalculated
to reflect the change.

5.7.1 Dimension Attributes and Hierarchies
In the example of respondents to a survey that was presented
above to illustrate multiple hierarchies, those hierarchies are
derived from a dimension table with columns:

• Age
• Sex
• Occupation
• Income
• Street Address
• City
• State
• Zip Code
In the ROLAP star schema, such columns are called attributes of
the dimension.
We could construct the various hierarchies in the example
externally, based on the table, and then use them to update the
hierarchies in the functional model.

5.7.2 Dynamic Hierarchies
Alternatively, this information can be kept in a set of functions,
i.e., cubes that are directly updatable by the user. The functions
are then used to define the components of hierarchy elements.
We define an Age Group dimension with elements:

 AgeGroup. B = {“Child”, “Youth”, “Adult”,
 “Middle Age”, “Senior”}
and two functions LowAge(AgeGroup) and HighAge(
AgeGroup) to define the ages that fall in each group.
We define a hierarchy for the respondent dimension:

 AgeGroup. H = AgeGroup. B 4 {“All”}
Using the function Age(Respondent) we define the components
of each age group by the expression:

 ∀ g ∈ AgeGroup. B
 C .g = {y ∈ B.Respondents |
 Age(y) >= Low Age(g) & Age(y) <= High Age(g)}
and the components of “All” by:

 C.All = AgeGroup
This way the age of respondents, as well as the range of ages for
the age groups could be adjusted dynamically.

5.7.3 Measures in the Functional Model
When a cube in a ROLAP star schema is translated to the
functional model, multiple functions are created, one for each
column in the fact cube, which is called the measures dimension
in star schema parlance.
Rather than generate multiple cubes, an alternative formulation of
the functional model could group all functions with the same
dimensionality in one cube, by introducing an additional measures
dimension. Each element of the measures dimension defines a
range of values. Cubes thus formed become an agglomeration of
functions rather than pure functions. Arguably, this formulation
has simplicity benefits for users.

5.7.4 Storing Relational Tables in Cubes
As mentioned at the beginning of this paper, planning sometimes
involves predicting individual future events or transactions, for
example, capital projects, hiring for certain positions, or major
predicted orders. Also, last minute adjustments, such as journal
entries, may have to be made as part of the planning process. The
occurrence of such relational inputs increases as the planning
applications concern themselves with finer levels of detail. The
functional model should have provisions to handle such
transactions without having to resort to a relational server.
This can be accomplished by introducing an Index dimension
whose members correspond to the natural numbers, 1, 2, …, and
which is open-ended. This dimension in addition would have a
single hierarchy with a Total element in it.
Let us suppose we are given a table with no candidate key, where
some of the columns D1, D2, …, DN that correspond to
dimensions in an existing functional model, and the rest of the
columns V1, V2, …, VM, contain data values. We can store such
a table in a cube with dimensions D1, D2, …, DN, Index, and
Measures. The elements of Measures correspond to the data
columns of V1, …, VM.
For example, a denormalized order detail table might contain the
following columns:

• Customer ID
• Region (of Customer)
• Order No
• Date Placed
• Month (Placed)
• Product Code
• Qty
Assuming that Region, Month, and Product Code are dimensions,
the information in the table can be stored in a cube with
dimensions:

• Region
• Product Code
• Month
• Index
• Measures
Where Measure’s elements are:

• Customer ID
• Order No
• Date Placed
• Qty
The table will yield quantity summaries at any level of
aggregation for Region Product or Month by means of a query
that requests

Order(region, product, month, “Total”, “Qty”).
Individual transactions can be displayed via a view that
suppresses empty elements of Index.

6. Comparison with the Relational Model
In the relational model, the primary objects are flat files or tables.
These can be formalized as relations. A relation is simply a subset
of the cartesian product of two or more sets, that is to say a set of
tuples. The operations on this model consist of selecting subsets
of the rows, or joining multiple tables into larger tables, or
summarizing sets of rows. Columns can be calculated in terms of
other columns, but there is no concept of a cell, or of calculating
individual cells.
The relational model can implement a relational OLAP, or
ROLAP, which is able to accumulate, cross-tabulate and report on
historical data using what is called a star schema. Most data
warehousing and business intelligence (BI) applications use this
approach. However, ROLAP provides no way of expressing cells
as a function of other cells thus the ability to express modeling
calculations is very limited. Also, the lack of support for a quick
update / recalculation cycle do not make it appropriate for
interactive analytics.
The functional and relational models are not two separate worlds.
The mathematical concepts are quite close. In fact a function is a
special kind of relation. If function f maps a set D to another set
R, then f can be thought as a relation between D and R since f is a
subset of D × R.
Also a relation can be expressed as a function. Given a relation R
where
R ` C1 × C2 × … × Cn
R can be expressed as a function fR where
fR: C1 × C2 × … × Cn d { 0, 1 }

and the value of fR for a tuple x is 1 if and only if x∈R.
In practice, the functional model depends on the relational model
for a number of things:
 Most of the input for the functional model comes from actual

transactions. Accordingly, the functional model must
perform SQL queries to import and aggregate relational data
from operations.

 Some planning applications require tracking major
predictable transactions individually. This is clearly the case
when forecasting product demand for large-ticket items.

 Adjustments, such as journal entries, must be recorded as
transactions.

 The results of the planning process may need to be fed to
operations in the form of transactions.

 Dimensions typically originate as relational tables, and most
consolidation hierarchies are derived from attributes of the
members stored in those tables.

 And for some analyses it may be necessary to calculate sets
of members using expressions that are better expressed as
relational queries.

7. Instantiation Considerations
Describing details of an instantiation of the functional model that
delivers adequate performance would not be possible given the
constraints of this paper. Another hurdle is that the technologies

involved are typically proprietary. Nonetheless, we can describe
some general principles and considerations that any such
implementation must adhere to.

7.1 Calculation on Demand
A functional data base must provide quick response to changes in
data. Just as in a spreadsheet, calculations should be transparent to
the user. They should occur automatically, without user initiation
and the time to perform the calculation should be in the sub-
second range in order not to interfere with the user’s interactive
thought process.
Since the functional model places no constraints on the size of
cubes or dimensions, users should be able to create very large
models. Users are also free to define calculations and thus a value
in a cell may be used as a “parameter” in the calculation of
millions of other cells. For example, a cell that contains a growth
factor parameter may affect all the cells in a forecast period.
Changes to one cell may also affect a large number of
consolidated cells. For example, in a cube with 10 dimensions
where each dimension has 3 levels of consolidations in addition to
the leaf level, the value of any leaf cell will affect the value of
410 – 1, or 1,048,575 consolidated cells. Such geometric
“explosion” is very typical of large multidimensional models.
The use of parametric cells and geometric explosion of
consolidated cells effectively rules out pre-calculation both from a
response time and storage standpoint.
When users are interacting with models, they typically work on
limited “slices” of cubes, which means they would be looking at a
miniscule subset of all the cells that would be affected by changes
they make. Accordingly, the only practical way of providing high
speed interactive calculations is by performing calculations only
on demand.

7.2 In-memory Hypersparsity
The ability to write expressions that access random cells in cubes
requires that those cells be readily accessible and thus requires
that they be stored using in-memory data structures. Such
structures must not only provide quick random access, but must
also efficiently store cubes that are “hypersparse”, i.e., where only
a very small portion of the cells are populated. Real business
models with a density of less than 10-10 are not atypical.
Also, since values may be inserted into cubes at random and in
real time, the structures used must be able to efficiently handle
random insertions.

7.3 Calculation Caching and Invalidation
A parametric cell that is used in the calculation of many other
cells may in turn be the result of a calculation. Clearly it would
make no sense to repeatedly re-calculate the parametric cell. Thus
to deliver good calculation performance, a functional data base
must store calculated cells for potential future use.
Once those cells are stored, there also need to be mechanisms that
invalidate them whenever the cells they depend on change values.

7.4 Parallelized Calculations
At the moment, the main scalability tool available for handling
large scale calculations is massive parallelization. A properly
implemented functional data base server must be able to perform
calculations in parallel whenever possible while maintaining the
proper order of calculation. This if further complicated by the

need to maintain high performance and data integrity with
multiple users making changes to the base data.

7.5 Mixed Disk/Memory Storage
In some applications of the functional model, for example in
retail, the volume of data may be so large as to preclude the use of
memory. Such large data volumes typically occur in historical
periods where data do not change and thus random access in-
memory data structures may not be required and thus a hybrid
storage approach may be appropriate.

7.6 Simplicity
As with most new technology, the most difficult challenge is to
keep things simple. This is a key to the success of the electronic
spreadsheet and one that a functional data base must retain. In
particular, it must self-optimize to relieve the user of as many
“tuning knobs” as possible.

8. Relation to Previous Work
Spreadsheets in RDBMS for OLAP [26] proposes an cell oriented
multidimensional extension to the SQL language as a way to
overcome many of the limitations of relational data bases. It is not
clear to what extent the instantiation it proposes attains the goal of
implicit automatic calculations of the functional model proposed
here.
We should note that the term OLAP [10] is used to refer to
various technologies that are based on multidimensional cubes.
The term multidimensional data base is also often used. [13]. In
some cases MDB has been used [12] to refer to implementations
of OLAP that are memory based and thus deliver much higher
query performance. The term MOLAP (in-memory OLAP) has
also been used to refer to such products. In most cases, however,
simply using memory rather than disk does not provide the same
level of interactivity, or responsiveness to updates as is
contemplated in the functional model. In order to deliver that,
products need to implement cell addressing, cell expressions and
immediate recalculation after data or model changes, i.e.,
implement the functional model.
A cautionary note: one might be tempted to implement the
functional model on top of an RDBMS containing cubes stored
using the star schema. But, in order to provide the performance
necessary for cell level calculations and interactivity, the data
would have to be loaded into in memory cubes designed for that
purpose; even if the RDBMS is implemented in memory. At the
end there would be two versions of the data, one in the RDBMS
and one in the in memory cubes. The updates could be easily
synchronized but the RDBMS would not contain the derived cells
available in the in-memory cubes. Attempting to also store
calculations in the RDBMS and synchronize the two could
introduce enormous delays. For example, if in the illustration of
section 4.3 a single exchange rate, for one currency and one time
period, in cube Fx were to be changed, a slice of cells, those
corresponding to that currency and time period in P&L for all
Products and Regions would need to be updated. In the end, both
choices are undesirable: a) a rather useless set of raw data
RDBMS cubes with no calculations, or b) an exact copy of the in-
memory cubes available at the cost of inordinate delays.
The notion of functional or declarative programming has been
around for some time [2, 5]. While the functional data model
presented here contains functional programming elements – the
expression of cell calculation rules is done through a functional
language – the name functional does not refer to that aspect, but

rather that the fundamental data objects are expressed as set-
theoretic functions instead of relations. The functional or
declarative programming paradigm has been applied to OLAP [9].
The term functional data model has also been around for some
time [3]. The closest prior work is the DAPLEX language [8]. It
represents information as entities and functions, where entities are
discrete sets and functions are defined over entities. Derived
functions are expressed as queries, and their values can be
singletons – numeric or string – or sets of entities.
The underlying data in DAPLEX is still a set of transactions, i.e.,
a relational model, while the underlying data in the functional
model presented here consists of multidimensional arrays of
values, i.e., single-valued functions defined over a cartesian
product of the sets. It developed independently from the need to
perform “spreadsheet” analysis to large volumes of
multidimensional data. It concentrates on the functionality
required for this purpose, for example defining a cell in a
multidimensional grid as a function of other cells, and
consolidating cells in a hierarchical structure. As in the case of the
relational model, the functional model developed in response to a
practical need and its formalization was developed subsequently.

9. Future Directions of Research
As a result of this history, the functional model is not as strong as
DAPLEX or SQL in their ability to express set operations.
Incorporating features such as set selection and functions whose
results are sets rather than single values is one possible future
direction of development for the current embodiment of the
functional model.
There are also very significant challenges in the implementation
of the functional model, primarily centered on scalability of data
volumes and numbers of users. The fact that typically solution
models are tightly integrated implies that as such models grow,
decomposing them on multiple servers may not always be
possible. Also, as the numbers of users for an application
increase, handling the volume of updates and recalculations may
require spreading the workload over multiple servers. This also
presents significant challenges in order to maintain one consistent
version of a dynamic truth.
Another potential opportunity for further scalability, made all the
more challenging by the requirement of frequent updates, is the
application of a massively parallel paradigm such as map reduce.

10. Conclusion
One key purpose of this paper is to encourage the use of a model
that is different but complementary to the more established
relational one and which delivers superior value when it comes to
analytics.
Because of its generality, flexibility and simplicity, the relational
model has supplanted all other transaction oriented technologies,
and remains to this day the dominant paradigm. People in the IT
community have been brought up on relational databases, and the
relational model is often the only data modeling tool in their
arsenal.
Managers that do analytics for the most part do not look at the
world relationally. As explained before, their preferred paradigm
is that of the electronic spreadsheet. The spreadsheet allows them
to freely develop business forecasts and analyses: calculate cells
containing future periods as a function of cells in prior periods,
perform basic consolidations, and easily produce tabular reports

that put relevant numbers next to each other so they can be
compared. The mathematical models users develop with
spreadsheets are fundamental to the automation of analytics since
they incorporate the experience and insights of people who run
the business. And while most of the historical data in such
spreadsheets originates in reports from relational databases, such
databases do not meet their analytics needs and users often go
through the trouble of transcribing them manually in order to take
advantage of the modeling flexibility of the spreadsheet.
This situation, which at first sight appears adequate, has at least
two unfortunate outcomes:
 Spreadsheets have significant limitations, both in terms of

the volumes of data they can handle, and their ability to
handle applications with any complexity beyond the basics.
They quickly become unmanageable and un-maintainable
and put users in the infamous spreadsheet hell.

 The IT community mistrusts the spreadsheet because it does
not offer the control and security of a database, so they
attempt to deliver analytics solutions using the relational
model. Thus most analytics facilities they provide are based
on the relational model. Relational-based OLAP facilitates
reporting but its modeling capabilities are severely limited
and users are unable to interact with them. Their read-only
nature precludes what-if analyses or interactive planning.

The net effect is that the most important and strategic business
benefits of computing technology, those of prospective analytics,
are not adequately captured. Thus the need to raise awareness of
the functional model, particularly in the IT community.
Our hope is also to encourage others to further develop these
notions, and to improve the functionality scalability and
performance of functional databases thereby contributing to the
efficiency with which organizations are run. This, in the end,
should benefit us all.

11. Trademarks
IBM, the IBM logo, ibm.com, TM1, and Cognos are trademarks
or registered trademarks of International Business Machines
Corp., registered in many jurisdictions worldwide.
Microsoft, Analysis Services, and Excel are either registered
trademarks or trademarks of Microsoft Corporation or its affiliates
in the United States and/or other countries.
Essbase, Hyperion, and Oracle are trademarks or registered
trademarks of Oracle Corporation and/or its affiliates.
Other names may be trademarks of their respective owners.

12. References
[1] "Basic Set Theory". Stanford Encyclopedia of Philosophy.

http://plato.stanford.edu/entries/set-theory/primer.html

[2] Bird R.S., Wadler P.L. Introduction to Functional
Programming. Prentice Hall (1988).

[3] Buneman P., Functional Database Languages and the
Functional Data Model. A position paper for the FDM
workshop (June 1997) http://www.cis.upenn.edu/~peter/fdm-
position.html.

[4] Codd, E. F. A Relational Model of Data for Large Shared
Data Banks. Comm. ACM 13, 6 (June, 1970)

[5] Henderson P. Functional Programming Application and
Implementation. Prentice Hall (1980).

[6] Hrbacek, K and Jech, T Introduction to Set Theory, Third
Edition, Marcel Dekker, Inc., New York 1999.

[7] Lang, Serge (1987), Linear algebra, Berlin, New York:
Springer-Verlag, ISBN 978-0-387-96412-6

[8] Shipman D.W. The functional data model and the data
language DAPLEX. ACM Transactions on Database
Systems 6(1), March 1981, p. 140-173.

[9] C.M. Necco, J.N. Oliveira, L. Quintas. A functional
approach for on line analytical processing, 2006. WISBD, III
Workshop de I ngeniería de Software y Bases de Datos.
CACIC'06, XII Congreso Argentino de Ciencias de la
Computación, Universidad Nacional de San Luis, Argentina.

[10] E. F. Codd. Providing olap to user-analysts: an it mandate,
Apr. 1993. Technical Report, E. F. Codd and Associates.

[11] P. Trinder, A functional data base, D.Phil Thesis, Oxford
University 1989.

[12] G. Colliat, Olap relational and multidimensional database
systems, SIGMOD Record, 25(3), (1996)

[13] T. B. Pedersen, C. S. Jensen, Multidimensional database
technology, IEEE Computer 34(12), 40-46, (2001)

[14] C. J. Date with Hugh Darwen: A Guide to the SQL standard :
a users guide to the standard database language SQL, 4th ed.,
Addison Wesley, USA 1997, ISBN 978-0-201-96426-4

[15] Ralph Kimball and Margy Ross, The Data Warehouse
Toolkit: The Complete Guide to Dimensional Modeling
(Second Edition), p. 393

[16] George Spofford, Sivakumar Harinath, Chris Webb, Dylan
Hai Huang, Francesco Civardi: MDX-Solutions: With
Microsoft SQL Server Analysis Services 2005 and Hyperion
Essbase. Wiley, 2006, ISBN 0-471-74808-0

[17] What is OLAP? www.olapreport.com/fasmi.htm

[18] BI Veredict http://www.bi-verdict.com/

[19] Oracle Essbase http://en.wikipedia.org/wiki/Essbase

[20] Jedox OLAP http://www.jedox.com/en/products/jedox-
olap.html

[21] MIS Alea Server http://en.wikipedia.org/wiki/MIS_AG

[22] Infor PM OLAP Server
 http://www.infor.com/content/brochures/infor-pm-olap.pdf/

[23] Karsten Oehler Jochen Gruenes Christopher Ilacqua, IBM
Cognos TM1 The Official Guide, McGraw Hill 2012

[24] http://www.google.com/patents/US5592666

[25] http://www.google.com/patents/US5319777

[26] Andrew Witkowski et al, Spreadsheets in RDBMS for
OLAP, Proceedings of the 2003 ACM SIGMOD
international conference on Management of data, June 09-12,
2003, San Diego, California

