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ABSTRACT 
This paper presents a functional data model – a model that is 
fundamental to supporting management analytics applications. 
This functional data model, henceforth referred to simply as “the 
functional model”, is different from, but complementary to, the 
relational model. The functional model is also distinct from other 
similarly named concepts, including the DAPLEX functional 
database model, and functional language databases. 
The functional model comprises multidimensional hierarchical 
consolidation, as is commonly found in OLAP technologies, 
relational-based and otherwise. But it goes beyond OLAP by 
requiring a spreadsheet-like cell orientation, and definition of 
cells calculated as functions of other cells. Because a functional 
definition of calculation according to formulas and consolidation 
is incorporated into the data model, databases implementing the 
model will inherently always return calculated cell values that are 
up to date and consistent with respect to the latest input cell 
values in interactive database update scenarios. These concepts 
are lacking in the relational model but are essential for support of 
flexible and interactive business performance management 
analytics.  
The validity and effectiveness of the functional model is evident 
in the long-standing success of commercial product technology 
that embodies the model to deliver practical analytics solutions 
across a broad range of management analytics domains. 
We present a formal definition of the functional model, a brief 
discussion of database technology that implements the model 
efficiently, and a comparison that shows how the relational model 
is inadequate in terms of expressiveness for scenarios 
fundamental to management analytics. 

Categories and Subject Descriptors 
H.2.1 [Database Management]: Logical Design 

Keywords 
Database, OLAP, Functional, Relational, Analytics, Spreadsheets, 
Multidimensional, Planning, What-if 

1. Introduction 
Analytics, especially forward looking or prospective analytics 
requires interactive modeling, “what if”, and experimentation of 
the kind that most business analysts do with spreadsheets. This 
interaction with the data is enabled by the spreadsheet’s cell 
orientation and its ability to let users define cells calculated as a 
function of other cells. 
The relational database model has no such concepts and is thus 
very limited in the business performance modeling and 
interactivity it can support. Accordingly, relational-based 
analytics is almost exclusively restricted to historical data, which 
is static. This misses most of the strategic benefits of analytics, 
which come from interactively constructing views of the future. 

This paper introduces the functional data model. The functional 
model is based on multidimensional arrays, or “cubes”, of cells 
that, as in a spreadsheet, can be either externally input, or 
calculated in terms of other cells. Such cubes are constructed 
using dimensions which correspond to hierarchically organized 
sets of real entities such as products, geographies, time, etc. A 
cube can be seen as a function over the cartesian product of the 
dimensions, mapping coordinate n-tuples to cell values; thus the 
name “functional”. The model retains the flexibility and potential 
for interactivity of spreadsheets, as well as the multidimensional 
hierarchical consolidations of relational-based OLAP tools. At the 
same time, the functional model overcomes the limitations of both 
the relational database model and classical spreadsheets. 
Products that implement the principles of the functional model to 
varying degrees have been in existence for some time, including 
products such as Oracle® Hyperion® Essbase®, IBM® Cognos® 
TM1®, Alea, Microsoft® Analysis Services®, etc. [16, 19, 20, 
21, 22, 23]. But other than publications such as the OLAP Report 
[17,18], and a paper by E. F. Codd [10], very little has been 
written on its mathematical foundation. Other than in 
Spreadsheets in RDBMS for OLAP [26], very little has been 
published on the technology used to implement functional 
databases. Much of it is considered proprietary and only some 
early patents [24, 25] give a glimpse of the technical challenges 
that had to be overcome for proper implementation. 
This paper is intended to familiarize others with the concepts and 
significance of the functional model, to encourage the broader 
application of the technology, and to set its mathematical 
foundation as a base for future work to improve the functionality, 
scalability and performance of databases based on the model. Its 
ultimate goal is to improve the efficiency and effectiveness with 
which enterprises and other organizations are run, to the benefit 
us all. 
This paper first covers business performance management 
analytics and how the functional model facilitates it, specifically: 
 The nature of analytics, particularly management analytics 

and its importance to the more effective functioning of an 
enterprise. 

 How the functional model fits in the context of analytics. 
 The relationship between spreadsheets and the functional 

model. 
 The key ideas behind the functional model and how it 

benefits analytics. 
 How the functional model compares to the relational model. 

We then present a formal definition of the functional model, along 
with a discussion of related work and future research directions. 

2. Context 
Enterprises, like all living organisms, must be aware of and adapt 
to their environment in order to survive and thrive. Their behavior 



starts with a planning process that assesses the current business 
climate and attempts to predict its future evolution. This involves 
an understanding of its markets and customers, the competition, 
government regulations, technology, the economy, etc. 
Once the plan – the enterprise’s intended course of action – is 
established, the enterprise proceeds to execute the plan. As it does 
so, it periodically compares and analyzes its actual performance 
vis-à-vis the plan, and adjusts its behavior or the plan accordingly. 
The process is effectively a feedback control loop – plan the 
work, work the plan, measure the results. Information Technology 
(IT) plays now a central role in making management control loops 
more efficient and effective. One could say this is a major benefit 
of IT. 
The importance of automation to the success of an enterprise is 
now generally considered vital: The management control loop is 
its nervous system, and clearly its speed, accuracy and 
effectiveness can make the difference between success and 
failure. Improving the management control loop makes for a 
smarter and more successful enterprise. 

2.1 Prospective and Retrospective Analytics 
The management loop can be thought of as having two layers as 
shown in Figure 1. 
 

 
Figure 1.  Management Cotrol Loop 
 
The three components of the control loop have different time 
perspectives. Operations looks at the here and now, whereas 
analytics looks at the past and the future. The information needs 
of each component are different. Operations is concerned with 
recording transactions and keeping track of the current state of the 
business – inventory, work in progress etc.  Analytics has two 
parts, prospective: develop plans, and retrospective: measure 
results.  
In retrospective analytics, transactions resulting from operations 
are boiled down and accumulated into arrays of cells. These cells 
are identified by as many dimensions as are relevant to the 
business: time, product, customer, account, region, etc. The cells 
are typically arrayed in cubes that form the basis for retrospective 
analyses such as comparing actual performance to plan. 
Prospective analytics develops similar cubes of data but for future 
time periods. The development of prospective data is typically the 
result of human input or mathematical models that are driven and 
controlled through user interaction. 

2.2 Historical Perspective  
It is instructive to consider the emergence of automated support 
for analytics, and the failings that constituted barriers to 
widespread adoption. Table 1 summarizes the history of the tools 
and technologies used in the three elements of the management 
control loop. 
Table 1.   History Control Loop Elements 

Period Operations Retrospective 
Analytics 

Prospective 
Analytics 

Pre 
Automation 

Ledger books Profit & Loss, 
Balance Sheet 
reports 

Paper 
spreadsheets 

Early 
Automation 

80-column card 
Sequential files 
Random Access 
DBMS 

Reporting 
languages. 
4GL 

APL 
Math 
Programming 
Statistical 
Analytics 

Late 
Automation 

RDBMS 
SQL 
 

Star Schema 
BI, DW 
OLAP, MDX 

Electronic 
Spreadsheet 
Functional 
Database 

 
Back in the days of quill pen and paper, operational transactions 
were recorded in a ledger books, and retrospective analytics 
amounted to financial reports (balance sheet, P&L, etc.) that were 
derived from the ledger. Prospective analytics at best was done on 
paper spreadsheets. 
In the early days of automation, recording of operational 
transactions was the main priority. The first step was to put those 
records on 80 column punch cards. As electronics progressed, the 
records were moved, first to magnetic tape, then to disk. Software 
technology progressed as well and gave rise to database 
management systems that centralized the access and control of the 
data.  
Databases made it then possible to develop languages that made it 
easy to produce reports for retrospective analytics. At about the 
same time, languages and systems were developed to handle 
multidimensional data and to automate mathematical techniques 
for forecasting and optimization as part of prospective analytics. 
Unfortunately, this technology required a high level of expertise 
and was not comprehensible to most end users. As a result, its 
user acceptance was limited, and consequently so were the 
benefits derived from it.  
As information management software matured, record-based 
databases were formalized in the relational model and SQL [14], 
which became pervasive in support of operations. Subsequently, 
in support of analytics, a multidimensional construct based on the 
relational model – the star schema – was invented [15]. It 
provided much better functionality and flexibility for deriving 
value from historical data. Data warehousing and business 
intelligence were mostly based on this notion, and the OLAP 
query language MDX [16] further facilitated the presentation of 
multidimensional data.  
However, the most important contribution to improving the 
management loop was the introduction of the electronic 
spreadsheet in support of both retrospective and prospective 

Execute 
Plans 

Measure 
Results 

Develop  
Plans 

Analytics 

Operations 



analytics. For the first time end users had a tool that they could 
understand and control, and use it to model their business as they 
understood it.  They could interact, experiment, adapt to changing 
situations, and derive insights and value very quickly. As a result, 
spreadsheets were adopted broadly, came to be regarded widely 
as a “killer app”, and ultimately became pervasive. To this day, 
spreadsheets remain an indispensible tool of any enterprise.  
The functional data model, as was discussed above, affords end 
users key capabilities and benefits similar to those of the 
spreadsheet, but goes beyond those by incorporating multiple 
dimensions and consolidation, overcoming the scalability 
limitations of the spreadsheet. Functional databases – those based 
on the functional model – additionally offer benefits typically 
associated with conventional database technology: data 
independence, concurrent multiuser access, integrity, scalability, 
security, audit trail, backup/recovery, and data integration. 
Functional database technology is being adopted in support of 
analytics by ever-growing numbers of enterprises.   

3. Spreadsheets for Analytics 
Business analysts get most of the information they use to make 
decisions about the future of their enterprises from what are in 
today’s parlance business intelligence (BI) systems. Such systems 
consist primarily of report generation software acting on a data 
warehouse that stores historical transaction data. 
Before analysts will base decisions and take action on the 
information provided by the BI systems, they will go through a 
process of interactive exploration and reflection. They will have 
what amounts to an intimate conversation with their data. It is 
through this interaction process that analysts arrive at insights and 
conclusions. They also develop confidence in the conclusions to 
the point of basing decisions on them. The tool they use for this 
conversation is almost exclusively an electronic spreadsheet. 
Even if their spreadsheets are not fed automatically from the BI 
systems, users will go through the pain of feeding them manually 
by typing in the data from the reports. 
In order to extract insights and gain confidence, users will 
calculate other derived values. For example they may calculate 
the percent growth of a group of products from the prior period 
and compare the result with that of other product groups by 
various geographies. Or they may look at the historic costs of the 
components of a product, project what the cost will be in future 
periods and the effect on the cost of the product. In building those 
models, they will use their experience and intuition, focusing on 
those areas where they can see opportunities. 
Spreadsheets have a key set of characteristics that facilitate 
modeling and analysis: 
 Data from multiple sources can be brought together in one 

worksheet. 
 Cells can be defined by means of calculation formulas in 

terms of other cells. So facts from different sources can be 
logically interlinked to calculate derived values. 

 Calculated cells are updated automatically whenever any of 
the input cells on which they depend changes. When users 
have a “what if” question, they simply change some data 
cells, and automatically all dependent cells are brought up to 
date 

 Cells are organized in rectangular grids and juxtaposed so 
that significant differences can be spotted at a glance or 
through associated graphic displays.  

 Spreadsheet grids normally also contain consolidation 
calculations along rows and or columns. This permits 
discovering trends in the aggregate that may not be evident 
at a detailed level. 

3.1 Limitations of Spreadsheets 
While spreadsheets are fundamental to extracting insights and 
decisions from data, they nonetheless suffer from certain 
limitations:  
 Limited data identification. Cells are identified by row and 

columns, not the business concepts they represent. 
 Limited dimensionality. Spreadsheets are two dimensional, 

and multiple pages provide the semblance of three 
dimensions, but business data often has more dimensions. 

 Data is tied to a spreadsheet. If users want to perform another 
analysis on the same set of data, the data needs to be 
duplicated. Spreadsheet links can sometimes be used, but 
most often are not practical. 

The combined effect of these limitations is that there is a limit on 
the complexity of spreadsheets that can be built and managed. As 
the needs of the business drive users to more complexity, they 
find themselves in a situation commonly known as spreadsheet 
hell. 

4. The Functional Model for Analytics 
While the functional model retains the key features of the 
spreadsheet, it also overcomes its main limitations, which were 
identified above. With the functional model, data is arranged in a 
grid of cells, but cells are identified by business concept instead 
of just row or column. Rather than worksheets, the objects of the 
functional model are dimensions and cubes. Rather than two or 
three dimensions: row, column and sheet, the functional model 
supports as many dimensions as are necessary. And the 
dimensions of the cube support hierarchical structures that define 
consolidations implicitly. 

4.1 Functional Databases 
Another benefit of the functional model, as compared to the 
spreadsheet, is that it can be implemented using database 
technology, and that affords the end user all of the benefits 
typically associated with such technology. As was mentioned 
above, these benefits include: data independence, concurrent 
multiuser access, integrity, scalability, security, audit trail, 
backup/recovery, and data integration. 
Data independence is of particularly high value for analytics. Data 
need no longer reside in spreadsheets. Instead the functional data 
base acts as a central information resource that can be shared by 
multiple spreadsheets and multiple users. Updates submitted by 
multiple users are available to all users subject to security rules. 
Accordingly there is always a single shared version of the truth. 
The functional data model forms the theoretical basis for 
functional databases, and functional databases implement the 
functional data model with a particular focus on efficient 
representation, calculation, and consolidation for large sparse 
multidimensional datasets having hierarchies in each dimension. 
With a functional database, an analytics model can consist of 
multiple cubes where appropriate – for instance, where there are 
multiple collections of data, each having different dimensionality. 
The cubes are interlinked by calculation rules that contain inter-
cube references. 



4.2 Dimensions, Cubes and Cells 
A dimension is a finite set of elements, or members, that partition 
or abstract the business reality into concepts, or bins, that can be 
used for predictions and comparisons, e.g., time periods, products, 
areas or regions, line items, etc.  
Cubes are built using any number of dimensions. A cube is a 
collection of cells, each of which is identified by a tuple of 
elements, one from each dimension of the cube. Each cell in a 
cube contains a value. A cube is effectively a function that assigns 
a value to each n-tuple of the cartesian product of the dimensions. 
The value of a cell may be: 
 Assigned externally (input) and stored in the cell, or 
 The result of a calculation that uses other cells, in the same 

cube or other cubes, and a formula that specifies the 
calculation. 

As well, some cells may have no value – their value is not 
calculated, and they have not been assigned an input value. Such 
cells can be treated as having the value zero for purposes of 
consolidation. 
As with spreadsheets, users need not worry about executing 
recalculation. When the value of a cell is requested, the value that 
is returned is up to date with respect to the values of all of the 
cells that go into its calculation i.e. the cells on which it depends. 
Dimensions typically contain consolidation hierarchies where 
some elements are defined as parents of other elements, and a 
parent is interpreted as the sum of its children. Cells that are 
identified by a consolidated element in one or more dimensions 
are automatically calculated by the functional model as sums of 
cells having child elements in those dimensions. Please see the 
formal definition below for more detail. When the value of a 
consolidated cell is requested, the value that is returned is always 
up to date with respect to the values of all of the cells that it 
consolidates. 

4.3 An Example 
The concepts of the functional model will be illustrated with an 
example shown in Figure 2. Its functional database consists of 
five cubes that are interconnected by formulas into a single 
analytics model. The dimensions of the cubes are built from tables 
in a data warehouse shown at the top of the diagram. The cubes 
and their dimensions (in parentheses) are as follows: 
 P&L (Region, Account, Currency, Time) 
 Sales(Region, Product, Time) 

 Payroll(Region, Employee, Time) 
 Overhead(Account, Time) 
 Foreign Exchange(Currency, Time) 

 
Figure 2.   Example of a Functional Model 

All cubes support the typical consolidation and pivoting 
operations of OLAP multidimensional databases. Furthermore, 
the cubes in the model are interconnected through formulas:  
The P&L cube picks up the dollar costs from the payroll cube 
through a formula of the form: 

P&L( “Payroll”, “Dollars”) = Payroll (“All 
Employees”) 

The dimensions that are omitted from the expression are assumed 
to range over all the leaf elements of those dimensions. Thus this 
expression is equivalent to: 

P&L( xRegion, “Payroll”, “Dollars”, xTime) = Payroll 
(xRegion, “All Employees”, xTime), for all leaves 
xRegion in Region and all leaves xTime in Time. 

P&L also picks up sales revenue from the Sales cube through: 
P&L( “Sales”, “Dollars”) = Sales(“All Products”) 

Overhead accounts are allocated by region on the basis of sales: 
P&L(“Region”, “Dollars”) = Ovhd() * Sales(“Region”) 
/ Sales(“All Regions”) 

Finally, other currencies are derived from the dollar exchange 
rate: 

P&L() = P&L(“Dollars”) * Fx() 
Note: The expression syntax used is for illustration purposes and 
may not reflect syntax used in the formal model or in particular 
products that implement the functional model.. 

4.4 Use of the Model 
The historical portion of the cubes is populated from the data 
warehouse. In this simplified example, the calculations just 
discussed may be done in the data warehouse for the historical 
portion of the cubes, but generally, the functional model supports 
the calculation of other functions, such as ratios and percentages 
that can deliver insight into historical data. 
While the history is static, the future portion is dynamic and 
developed interactively by business analysts in various 
organizations and various backgrounds: 
 Sales forecasts should be developed by experts from each 

region. They could use forecasting models and parameters 
that incorporate their knowledge and experience of that 
region, or they could simply enter them through a 
spreadsheet. Each region can use a different method with 
different assumptions. 

 The payroll forecast could be developed by HR experts in 
each region. 

 The overhead cube would be populated by people in 
headquarters finance, and so would the exchange rate 
forecasts. 

The forecasts developed by regional experts are first reviewed and 
recycled within the region and then reviewed and recycled with 
headquarters.  



The model can be expanded to include a Version dimension that 
varies based on, for example, various economic climate scenarios. 
As time progresses, each planning cycle can be stored in a 
different version, and those versions compared to actual and to 
one another. 
At any time the data in all the cubes, subject to security 
constraints, is available to all interested parties. Users can bring 
slices of cubes dynamically into spreadsheets to do further 
analyses, but with a guarantee that the data is the same as what 
other users are seeing. 

4.5 Functional Database Benefits for Interactive 
Analytics 
Many of the benefits of databases that implement the functional 
model derive from both the multidimensional qualities of the 
model and the database qualities of the implementation. However, 
the most valuable benefit is uniquely the result of the model being 
cell-based and the implications inherent in that for support of 
interactive modeling via recalculation. Those unique benefits are 
highlighted and summarized in the following four areas: 

4.5.1 Data integration 
A functional database brings together data from multiple disparate 
sources and ties the disparate data sets into coherent consumable 
models. It also brings data scattered over multiple spreadsheets 
under control. This lets users see a summary picture that 
combines multiple components, e.g., to roll manpower planning 
into complete financial picture automatically. It gives them a 
single point of entry to develop global insights based on various 
sources. And by bringing spreadsheets under control delivers 
them from spreadsheet hell.  
The relational model can be used to integrate multiple tables; 
however, to implement the calculation model that interlinks the 
cubes at the cell level, as in the example above, would require the 
development of a highly complex ETL application by a SQL 
expert. A simpler approach could  implement the calculations by 
performing a series of single-cell SQL queries, but the 
performance of this approach is likely to be inadequate. 
Otherwise the application could transfer the data to cubes that are 
cell addressable. In the end, the ETL tool would effectively 
implement an ad hoc functional database, but one that would be 
read only. Spreadsheets in RDBMS for OLAP [26] describes in 
some detail the limitations of SQL in this context. 

4.5.2 Interactive What If 
A functional database, like spreadsheets, also lets users change 
input values while all dependent values are up to date. This 
facilitates what-if experimentation and creating and comparing 
multiple scenarios. Users can then see the scenarios side by side 
and choose the most appropriate. 
When planning, users can converge on a most advantageous 
course of action by repeatedly recycling and interacting with 
results. Actionable insights come from this intimate interaction 
with data that users normally do with spreadsheets 

4.5.3 Interactive Modeling 
A functional database not only provides a common interactive 
data store. It also brings together models developed by analysts 
with knowledge of a particular area of the business that can be 
shared by all users. 
To facilitate this, a functional database retains the spreadsheet’s 
interactive cell-based modeling capability. This makes possible 

models that more closely reflect the complexities of business 
reality. 

4.5.4 Collaborative Interaction 
Perhaps a functional database’s largest single contribution to 
analytics comes from promoting collaboration. It lets multiple 
individuals and organizations share single version of the truth, but 
a truth that is dynamic and constantly changing. Its automatic 
calculations quickly consolidate and reconcile inputs from 
multiple sources. This promotes interaction of various 
departments, facilitates recycle and makes it possible for differing 
viewpoints to converge and be reconciled. Also, since each 
portion of the model is developed by the people that are more 
experts in the area, it is able to leverage experience and insights 
that exist up and down the organization. 
 

5. Formal Description of the Functional 
Model 
5.1 Dimensions and Cubes 
A functional model consists of a set of dimensions and a set of 
cubes. 

A dimension D consists of a set of base or leaf elements B.D and 
a set of hierarchies H.D. 

5.1.1 Cubes and Cells 
A cube C is a function whose domain is the cartesian product of 
dimension leaf elements B.D1 × B.D2 × … × B.Dn and whose 
range is either the set of real numbers ≠, or the set of finite 
character strings S. If the range of C is ≠, the cube is called a 
numeric cube. For a numeric cube, 

C: B.D1 × B.D2 × … × B.Dn d ≠ 

(Note: As in the relational model [4], for simplicity and flexibility 
the actual model should not require identifying the dimensions of 
a cube, or the elements of the domain of C as ordered n-tuples, 
rather it should identify the components of a tuple using the 
concept of relationships and role tags rather than a position index. 
This scheme will not be used or described further in this paper, 
instead we will use cartesian products and ordered n-tuples.) 
The elements of the domain of C, i.e., the n-tuples of dimension 
leaf elements, are called leaf cells. The range element assigned to 
a leaf cell by the cube function is called the cell value. The value 
of a leaf cell may be either: 

• An externally assigned (input) value effectively stored in the 
cell 

• The result of a calculation formula that refers to other cells in 
the same cube or other cubes.  

• Undefined or empty. Most actual cubes are mostly empty or 
sparse. Consolidations will normally skip such cells, 
effectively treating them as if their value was zero. 

5.2 Consolidations 
In addition to stored and calculated leaf cells, cubes also contain 
consolidations associated with the elements of hierarchies. Such 
consolidation calculations are kept automatically up to date 
whenever underlying values change. 

5.2.1 Hierarchies 
A hierarchy h of dimension D, h ∈  H.D, consists of a finite set 
E.h  of hierarchy elements, and for each element e, a set of 
components C.e. The components of a hierarchy element can be 



leaf elements, or other elements of the hierarchy,  
i.e., C.e ` E.h  4  B.D. 
Components are also referred to as children. Note that unlike in 
biology, the value of parents is derived from its children. 

The set of descendents of a hierarchy element e, D.e, is the union 
of C.e and the descendents of each of the elements of C.e.  
Hierarchies do not allow circular references, so no element can be 
its own descendent: ∀e∈ h  ( e∉D.e) 

The leaf components of e, B.e are the descendents that are leaf 
elements of the dimension:  B.e =  D.e 3 B.D. 
For leaf elements, we define the set of components as a singleton 
containing the element itself , i.e.  

∀b∈ B.D  ( B.b = D.b = { b } ) 

5.2.2 Extended Set of Elements 
The extended set of elements of a dimension E.D is the union of 
the leaf elements of D and the elements of all its hierarchies. 

E.D = B.D  4 U
DHh

hE
.

.
∈

 

5.2.3 Consolidation Cube 
Given a numeric-valued cube C,  

C: B.D1 × B.D2 × … × B.Dn d ≠ 

The consolidated cube C’ is the extension of C to the Cartesian 
product of extended sets of elements of its dimensions: 

C’: E.D1 × E.D2 × … × E.Dn d ≠ 

Where  

C’(e1, e2, …, en) = ∑
∈ 1.B1 eb

∑
∈ 2.B2 eb

… ∑
∈ enbn .B

C(b1, b2, …, bn) 

5.3 Multiple Hierarchies 
Dimensions often originate from relational tables in operational 
systems or star schemata in data warehouses. Such dimension 
tables may be denormalized, with one row per leaf element, or 
may be stored as multiple tables corresponding to different levels 
in hierarchies as in snowflake schemata. For our purposes we will 
assume a single denormalized dimension table. 
For example, respondents to a survey may have the following 
attributes: Age, Sex, Occupation, Income, Street Address, City, 
State, and Zip Code. 
Note that respondent is a single dimension and that its attributes 
give rise to multiple hierarchies.  
For purposes of analysis it may be desirable to group the 
respondents by: Age group, Sex, Occupation, Income Bracket, 
and Location. This would give rise to five different hierarchies.  
Implementations of the functional model should provide the tools 
to automatically generate and update dimensions and hierarchies 
based on relational dimension tables. 
In this example, analytical needs may require displaying different 
hierarchies of the same dimension along different axes, 
effectively treating them as independent dimensions. The 
functional model supports this requirement as described in the 
next section. 

5.3.1 Pivoting Hierarchies 
The functional model supports the presentation of slices of cubes. 
Various views of the cube can be shown by arranging some of the 
dimensions as rows, some as columns and some as titles. Single 
elements are selected from the title dimensions and subsets of 
elements for the axis (row and column) dimensions. 
In situations where a dimension has multiple hierarchies as in the 
survey respondent example above, it is often desirable to present 
slices of a cube where the rows and columns are not from 
different dimensions, but from different hierarchies of the same 
dimension.  
For example, if the respondent dimension has two hierarchies 
Age, with elements {young, old, all ages}, and Sex with elements 
{male, female, all sexes}, it may be of interest to see responses 
tabulated with sex as columns and age as rows. The cell under the 
column “female” in row “young” would consolidate all the 
respondents who are both young and female, which is the same as 
the intersection of the leaf children of element “young” and the 
leaf children of element “female”. 
To that end, cubes in the functional model support consolidations 
not only for the (extended) set of elements of its dimensions, but 
also for sets of such elements. Formally: 
Given a consolidation cube C’   

C’: E.D1 × E.D2 × … × E.Dn d ≠ 

The multi-hierarchy consolidated cube C’’ is defined as follows: 

C’’: P(E:D1) × P(E:D2) × … × P(E:Dn)  

Where P( S)  is the power set of S, or the set of all subsets of S.  
The value of a cell identified by subsets S1, S2, …, Sn, is given 
by: 

C’’(S1, S2, …, Sn) = ∑
∈ 11 Ib

∑
∈ 22 Ib

… ∑
∈Inbn

C(b1, b2, …, bn) 

And where I1, I2, …, In is the intersection of the leaf children of 
the members of each set, i.e.: 

Ik =  I
Ske

eB
∈

.  

In the example above, the value of the cell for young females 
would be given by:  
C’’(…, {young, female}, …)  
where {young, female} appears in the position of dimension 
“respondent”. 

5.4 Updating Cubes 
Information is input into a functional model by changing the 
value of leaf cells. The values of all calculated leaf cells and all 
consolidations will immediately reflect the change. 

5.5 Leaf Cell Calculations 
As mentioned before, in addition to consolidations, the functional 
model supports arbitrary calculations of cells in terms of other 
cells. As in the spreadsheet, where users typically copy formulas 
across rows, columns or ranges, the language that expresses 
calculation formulas does so for ranges of cells. Without going 
into the detailed syntax, a calculation is expressed by means of a 
rule that has the form: 
<Range of Cells> = <Expression>; 



Where <Range of Cells> is a subset of the leaf cells of a cube, 
and <Expression> is written in terms of references to cells in any 
cube, both leaf and consolidated, i.e., references to the extended 
version of any cube. 
Such calculated leaf cells are treated as input cells for purposes of 
consolidation. 
When <Range of Cells> for multiple rules overlap, the rule that 
appears first will override the others. 

5.5.1 Element Calculation Rules 
Calculations can also be defined for leaf elements of a dimension 
using a rule of the form: 
<Element> = <Expression> 
Where <Expression> is written using references to other leaf 
elements of the dimension. 
Such a rule applies in all cubes that use the dimension to all cells 
identified by <Element>. 
Element rules are overridden by cell rules that may be defined for 
such cells.  
When multiple element rules apply to the same cell, the order is 
resolved based on the order in which the dimensions appear in the 
cube. Such default order can be overridden by writing cell rules 
that do so. 

5.6 Nonlinear Summary Calculations 
Rules can be written also for summary cells, in which case the 
rule overrides the normal consolidation that would otherwise be 
calculated. This can be used effectively to calculate ratios and 
also array functions such as Maximum, Minimum, Average, 
Count, etc. These functions are order dependent (unlike Sum 
which is the basis of consolidations) and cannot be defined 
globally the way consolidations are. 
In the two dimensional cube below, rules are defined for 
calculating minima and maxima along each dimension. 

 Jan Feb Mar 1Q Max Min 

North 15 28 79 122 79 15 

South 55 75 26 156 75 26 

East 6 55 86 147 86 6 

West 33 40 54 127 54 33 

Total Region 109 198 245 552 245 109 

Max Region 55 75 86 156 86 33 

Min Region 6 28 26 122 54 6 

 
Note that the value for Total Regions, Max Month, 245, is 
calculated by calculating the totals first and then taking their 
maxima, i.e., the rule is calculated “last”. Note also that the cell 
for Min Region, Max Month, 54 is calculated by taking the 
minimum of the maxima. This is because we chose the Region 
rules to override the Month rules. If we did the opposite, the result 
would be different. Mixing such nonlinear calculations can be 
misleading and confusing so the recommended practice is to leave 
such “compound nonlinear” cells as undefined: 

 Jan Feb Mar 1Q Max Min 

North 15 28 79 122 79 15 

South 55 75 26 156 75 26 

East 6 55 86 147 86 6 

West 33 40 54 127 54 33 

Total Region 109 198 245 552 245 109 

Max Region 55 75 86 156   

Min Region 6 28 26 122   

5.7 Relational Aspects of the Functional Model 
While taking advantage of the benefits of the functional model, 
users should not have to give up the set manipulation power of the 
relational model. For example, when issuing queries to a 
functional server, the server should not just do the cell 
calculations, but should also support expressions that calculate 
sets of elements used in views, as in the OLAP multidimensional 
expressions (MDX) language. 
The set calculations in the functional model should be as dynamic 
as those used to perform cube calculations. So, for example, if a 
set expression depends on values stored in a cube, when users 
update those values, the set should be automatically recalculated 
to reflect the change. 

5.7.1 Dimension Attributes and Hierarchies 
In the example of respondents to a survey that was presented 
above to illustrate multiple hierarchies, those hierarchies are 
derived from a dimension table with columns: 

• Age 
• Sex 
• Occupation 
• Income 
• Street Address 
• City 
• State 
• Zip Code 
In the ROLAP star schema, such columns are called attributes of 
the dimension. 
We could construct the various hierarchies in the example 
externally, based on the table, and then use them to update the 
hierarchies in the functional model. 

5.7.2 Dynamic Hierarchies 
Alternatively, this information can be kept in a set of functions, 
i.e., cubes that are directly updatable by the user. The functions 
are then used to define the components of hierarchy elements. 
We define an Age Group dimension with elements:  

   AgeGroup. B = {“Child”, “Youth”, “Adult”,  
                              “Middle Age”, “Senior”} 
and two functions LowAge( AgeGroup ) and HighAge( 
AgeGroup ) to define the ages that fall in each group.  
We define a hierarchy for the respondent dimension: 

   AgeGroup. H = AgeGroup. B 4 {“All”} 
Using the function Age( Respondent ) we define the components 
of each age group by the expression:  

   ∀ g ∈ AgeGroup. B    
     C .g =  {y ∈ B.Respondents |  
          Age(y) >= Low Age(g) & Age(y) <= High Age(g)} 
and the components of “All” by: 

   C.All = AgeGroup 
This way the age of respondents, as well as the range of ages for 
the age groups could be adjusted dynamically. 



5.7.3 Measures in the Functional Model 
When a cube in a ROLAP star schema is translated to the 
functional model, multiple functions are created, one for each 
column in the fact cube, which is called the measures dimension 
in star schema parlance. 
Rather than generate multiple cubes, an alternative formulation of 
the functional model could group all functions with the same 
dimensionality in one cube, by introducing an additional measures 
dimension. Each element of the measures dimension defines a 
range of values. Cubes thus formed become an agglomeration of 
functions rather than pure functions. Arguably, this formulation 
has simplicity benefits for users. 

5.7.4 Storing Relational Tables in Cubes 
As mentioned at the beginning of this paper, planning sometimes 
involves predicting individual future events or transactions, for 
example, capital projects, hiring for certain positions, or major 
predicted orders. Also, last minute adjustments, such as journal 
entries, may have to be made as part of the planning process. The 
occurrence of such relational inputs increases as the planning 
applications concern themselves with finer levels of detail. The 
functional model should have provisions to handle such 
transactions without having to resort to a relational server. 
This can be accomplished by introducing an Index dimension 
whose members correspond to the natural numbers, 1, 2, …, and 
which is open-ended. This dimension in addition would have a 
single hierarchy with a Total element in it. 
Let us suppose we are given a table with no candidate key, where 
some of the columns D1, D2, …, DN that correspond to 
dimensions in an existing functional model, and the rest of the 
columns V1, V2, …, VM, contain data values. We can store such 
a table in a cube with dimensions D1, D2, …, DN, Index, and 
Measures. The elements of Measures correspond to the data 
columns of V1, …, VM. 
For example, a denormalized order detail table might contain the 
following columns: 

• Customer ID 
• Region (of Customer) 
• Order No  
• Date Placed  
• Month (Placed) 
• Product Code  
• Qty 
Assuming that Region, Month, and Product Code are dimensions, 
the information in the table can be stored in a cube with 
dimensions: 

• Region 
• Product Code 
• Month 
• Index 
• Measures 
Where Measure’s elements are: 

• Customer ID 
• Order No  
• Date Placed  
• Qty 
The table will yield quantity summaries at any level of 
aggregation for Region Product or Month by means of a query 
that requests  

Order( region, product, month, “Total”, “Qty”). 
Individual transactions can be displayed via a view that 
suppresses empty elements of Index. 

6. Comparison with the Relational Model  
In the relational model, the primary objects are flat files or tables. 
These can be formalized as relations. A relation is simply a subset 
of the cartesian product of two or more sets, that is to say a set of 
tuples. The operations on this model consist of selecting subsets 
of the rows, or joining multiple tables into larger tables, or 
summarizing sets of rows. Columns can be calculated in terms of 
other columns, but there is no concept of a cell, or of calculating 
individual cells.   
The relational model can implement a relational OLAP, or 
ROLAP, which is able to accumulate, cross-tabulate and report on 
historical data using what is called a star schema. Most data 
warehousing and business intelligence (BI) applications use this 
approach. However, ROLAP provides no way of expressing cells 
as a function of other cells thus the ability to express modeling 
calculations is very limited. Also, the lack of support for a quick 
update / recalculation cycle do not make it appropriate for 
interactive analytics. 
The functional and relational models are not two separate worlds.  
The mathematical concepts are quite close. In fact a function is a 
special kind of relation. If function f maps a set D to another set 
R, then f can be thought as a relation between D and R since f is a 
subset of D × R. 
Also a relation can be expressed as a function. Given a relation R 
where  
R ` C1 × C2 × … × Cn 
R can be expressed as a function fR  where 
fR: C1 × C2 × … × Cn d { 0, 1 } 

and the value of fR  for a tuple x is 1 if and only if x∈R. 
In practice, the functional model depends on the relational model 
for a number of things:  
 Most of the input for the functional model comes from actual 

transactions. Accordingly, the functional model must 
perform SQL queries to import and aggregate relational data 
from operations.   

 Some planning applications require tracking major 
predictable transactions individually. This is clearly the case 
when forecasting product demand for large-ticket items.  

 Adjustments, such as journal entries, must be recorded as 
transactions.  

 The results of the planning process may need to be fed to 
operations in the form of transactions.  

 Dimensions typically originate as relational tables, and most 
consolidation hierarchies are derived from attributes of the 
members stored in those tables.  

 And for some analyses it may be necessary to calculate sets 
of members using expressions that are better expressed as 
relational queries. 

7. Instantiation Considerations 
Describing details of an instantiation of the functional model that 
delivers adequate performance would not be possible given the 
constraints of this paper. Another hurdle is that the technologies 



involved are typically proprietary. Nonetheless, we can describe 
some general principles and considerations that any such 
implementation must adhere to. 

7.1 Calculation on Demand 
A functional data base must provide quick response to changes in 
data. Just as in a spreadsheet, calculations should be transparent to 
the user. They should occur automatically, without user initiation 
and the time to perform the calculation should be in the sub-
second range in order not to interfere with the user’s interactive 
thought process. 
Since the functional model places no constraints on the size of 
cubes or dimensions, users should be able to create very large 
models. Users are also free to define calculations and thus a value 
in a cell may be used as a “parameter” in the calculation of 
millions of other cells. For example, a cell that contains a growth 
factor parameter may affect all the cells in a forecast period.  
Changes to one cell may also affect a large number of 
consolidated cells. For example, in a cube with 10 dimensions 
where each dimension has 3 levels of consolidations in addition to 
the leaf level, the value of any leaf cell will affect the value of 
410 – 1, or 1,048,575 consolidated cells. Such geometric 
“explosion” is very typical of large multidimensional models. 
The use of parametric cells and geometric explosion of 
consolidated cells effectively rules out pre-calculation both from a 
response time and storage standpoint. 
When users are interacting with models, they typically work on 
limited “slices” of cubes, which means they would be looking at a 
miniscule subset of all the cells that would be affected by changes 
they make. Accordingly, the only practical way of providing high 
speed interactive calculations is by performing calculations only 
on demand. 

7.2 In-memory Hypersparsity 
The ability to write expressions that access random cells in cubes 
requires that those cells be readily accessible and thus requires 
that they be stored using in-memory data structures. Such 
structures must not only provide quick random access, but must 
also efficiently store cubes that are “hypersparse”, i.e., where only 
a very small portion of the cells are populated. Real business 
models with a density of less than 10-10 are not atypical.  
Also, since values may be inserted into cubes at random and in 
real time, the structures used must be able to efficiently handle 
random insertions. 

7.3 Calculation Caching and Invalidation 
A parametric cell that is used in the calculation of many other 
cells may in turn be the result of a calculation. Clearly it would 
make no sense to repeatedly re-calculate the parametric cell. Thus 
to deliver good calculation performance, a functional data base 
must store calculated cells for potential future use.  
Once those cells are stored, there also need to be mechanisms that 
invalidate them whenever the cells they depend on change values. 

7.4 Parallelized Calculations 
At the moment, the main scalability tool available for handling 
large scale calculations is massive parallelization. A properly 
implemented functional data base server must be able to perform 
calculations in parallel whenever possible while maintaining the 
proper order of calculation. This if further complicated by the 

need to maintain high performance and data integrity with 
multiple users making changes to the base data. 

7.5 Mixed Disk/Memory Storage 
In some applications of the functional model, for example in 
retail, the volume of data may be so large as to preclude the use of 
memory. Such large data volumes typically occur in historical 
periods where data do not change and thus random access in-
memory data structures may not be required and thus a hybrid 
storage approach may be appropriate. 

7.6 Simplicity 
As with most new technology, the most difficult challenge is to 
keep things simple. This is a key to the success of the electronic 
spreadsheet and one that a functional data base must retain. In 
particular, it must self-optimize to relieve the user of as many 
“tuning knobs” as possible.   

8. Relation to Previous Work 
Spreadsheets in RDBMS for OLAP [26] proposes an cell oriented 
multidimensional extension to the SQL language as a way to 
overcome many of the limitations of relational data bases. It is not 
clear to what extent the instantiation it proposes attains the goal of 
implicit automatic calculations of the functional model proposed 
here. 
We should note that the term OLAP [10] is used to refer to 
various technologies that are based on multidimensional cubes. 
The term multidimensional data base is also often used. [13]. In 
some cases MDB has been used [12] to refer to implementations 
of OLAP that are memory based and thus deliver much higher 
query performance. The term MOLAP ( in-memory OLAP) has 
also been used to refer to such products. In most cases, however, 
simply using memory rather than disk does not provide the same 
level of interactivity, or responsiveness to updates as is 
contemplated in the functional model. In order to deliver that, 
products need to implement  cell addressing, cell expressions and 
immediate recalculation after data or model changes, i.e., 
implement the functional model. 
A cautionary note: one might be tempted to implement the 
functional model on top of an RDBMS containing cubes stored 
using the star schema. But, in order to provide the performance 
necessary for cell level calculations and interactivity, the data 
would have to be loaded into in memory cubes designed for that 
purpose; even if the RDBMS is implemented in memory. At the 
end there would be two versions of the data, one in the RDBMS 
and one in the in memory cubes. The updates could be easily 
synchronized but the RDBMS would not contain the derived cells 
available in the in-memory cubes. Attempting to also store 
calculations in the RDBMS and synchronize the two could 
introduce enormous delays. For example, if in the illustration of 
section 4.3 a single exchange rate, for one currency and one time 
period, in cube Fx were to be changed, a slice of cells, those 
corresponding to that currency and time period in P&L for all 
Products and Regions would need to be updated. In the end, both 
choices are undesirable: a) a rather useless set of raw data 
RDBMS cubes with no calculations, or b) an exact copy of the in-
memory cubes available at the cost of inordinate delays. 
The notion of functional or declarative programming has been 
around for some time [2, 5]. While the functional data model 
presented here contains functional programming elements – the 
expression of cell calculation rules is done through a functional 
language – the name functional does not refer to that aspect, but 



rather that the fundamental data objects are expressed as set-
theoretic functions instead of relations. The functional or 
declarative programming paradigm has been applied to OLAP [9].  
The term functional data model has also been around for some 
time [3]. The closest prior work is the DAPLEX language [8]. It 
represents information as entities and functions, where entities are 
discrete sets and functions are defined over entities. Derived 
functions are expressed as queries, and their values can be 
singletons – numeric or string – or sets of entities. 
The underlying data in DAPLEX is still a set of transactions, i.e., 
a relational model, while the underlying data in the functional 
model presented here consists of multidimensional arrays of 
values, i.e., single-valued functions defined over a cartesian 
product of the sets. It developed independently from the need to 
perform “spreadsheet” analysis to large volumes of 
multidimensional data. It concentrates on the functionality 
required for this purpose, for example defining a cell in a 
multidimensional grid as a function of other cells, and 
consolidating cells in a hierarchical structure. As in the case of the 
relational model, the functional model developed in response to a 
practical need and its formalization was developed subsequently. 

9. Future Directions of Research 
As a result of this history, the functional model is not as strong as 
DAPLEX or SQL in their ability to express set operations. 
Incorporating features such as set selection and functions whose 
results are sets rather than single values is one possible future 
direction of development for the current embodiment of the 
functional model.  
There are also very significant challenges in the implementation 
of the functional model, primarily centered on scalability of data 
volumes and numbers of users. The fact that typically solution 
models are tightly integrated implies that as such models grow, 
decomposing them on multiple servers may not always be 
possible. Also, as the numbers of users for an application 
increase, handling the volume of updates and recalculations may 
require spreading the workload over multiple servers. This also 
presents significant challenges in order to maintain one consistent 
version of a dynamic truth.  
Another potential opportunity for further scalability, made all the 
more challenging by the requirement of frequent updates, is the 
application of a massively parallel paradigm such as map reduce. 

10. Conclusion 
One key purpose of this paper is to encourage the use of a model 
that is different but complementary to the more established 
relational one and which delivers superior value when it comes to 
analytics.  
Because of its generality, flexibility and simplicity, the relational 
model has supplanted all other transaction oriented technologies, 
and remains to this day the dominant paradigm. People in the IT 
community have been brought up on relational databases, and the 
relational model is often the only data modeling tool in their 
arsenal.  
Managers that do analytics for the most part do not look at the 
world relationally. As explained before, their preferred paradigm 
is that of the electronic spreadsheet. The spreadsheet allows them 
to freely develop business forecasts and analyses: calculate cells 
containing future periods as a function of cells in prior periods, 
perform basic consolidations, and easily produce tabular reports 

that put relevant numbers next to each other so they can be 
compared. The mathematical models users develop with 
spreadsheets are fundamental to the automation of analytics since 
they incorporate the experience and insights of people who run 
the business. And while most of the historical data in such 
spreadsheets originates in reports from relational databases, such 
databases do not meet their analytics needs and users often go 
through the trouble of transcribing them manually in order to take 
advantage of the modeling flexibility of the spreadsheet.  
This situation, which at first sight appears adequate, has at least 
two unfortunate outcomes:  
 Spreadsheets have significant limitations, both in terms of 

the volumes of data they can handle, and their ability to 
handle applications with any complexity beyond the basics. 
They quickly become unmanageable and un-maintainable 
and put users in the infamous spreadsheet hell. 

 The IT community mistrusts the spreadsheet because it does 
not offer the control and security of a database, so they 
attempt to deliver analytics solutions using the relational 
model. Thus most analytics facilities they provide are based 
on the relational model. Relational-based OLAP facilitates 
reporting but its modeling capabilities are severely limited 
and users are unable to interact with them. Their read-only 
nature precludes what-if analyses or interactive planning. 

The net effect is that the most important and strategic business 
benefits of computing technology, those of prospective analytics, 
are not adequately captured. Thus the need to raise awareness of 
the functional model, particularly in the IT community. 
Our hope is also to encourage others to further develop these 
notions, and to improve the functionality scalability and 
performance of functional databases thereby contributing to the 
efficiency with which organizations are run. This, in the end, 
should benefit us all.  

11. Trademarks 
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trademarks or trademarks of Microsoft Corporation or its affiliates 
in the United States and/or other countries. 
Essbase, Hyperion, and Oracle are trademarks or registered 
trademarks of Oracle Corporation and/or its affiliates. 
Other names may be trademarks of their respective owners. 
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