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MAXIMUM WEIGHTED INDUCED BIPARTITE SUBGRAPHS AND

ACYCLIC SUBGRAPHS OF PLANAR CUBIC GRAPHS

MOURAD BAÏOU AND FRANCISCO BARAHONA

Abstract. We study the node-deletion problem consisting of finding a maximum
weighted induced bipartite subgraph of a planar graph with maximum degree three.
We show that this is polynomially solvable. It was shown in [4] that it is NP-complete
if the maximum degree is four. We also extend these ideas to the problem of balancing
signed graphs.

We also consider maximum weighted induced acyclic subgraphs of planar directed
graphs. If the maximum degree is three, it is easily shown that this is polynomially
solvable. We show that for planar graphs with maximum degree four it is NP-complete.

1. Introduction

Given an undirected graph G = (V,E), a graph H = (W,F ) is said to be induced if
W ⊆ V and F is the set of edges in E having both endnodes in W . If every node u has a
non-negative weight w(u), the Maximum Weighted Induced Bipartite Subgraph Problem
(MWBSP) consists of finding an induced bipartite subgraph with maximum total weight.
In this paper we show that for planar graphs with degree at most three, this problem is
polynomially solvable. We extend this procedure to balancing signed graphs. For planar
graphs with degree at most four, it was shown in [4] that this is NP-Complete. This
problem was studied in [4], and its connection to via-minimization of integrated circuits
and printed circuit boards was discussed. Later in [8] they studied the application to
via-minimization and to DNA sequencing. The polyhedral approach to this problem has
been studied in [2], [3] and [8]. An approximation algorithm for general graphs was given
in [14], and an approximation algorithm for planar graphs was presented in [15].

For a directed graph G = (V,A) and induced subgraph is defined in a similar way. If
every node u has a non-negative weight w(u), the Maximum Weighted Induced Acyclic
Subgraph Problem (MWASP) consists of finding and induced acyclic subgraph of maxi-
mum total weight. If a node-set induces an acyclic subgraph, its complement is called a
Directed Feedback Vertex Set (DFVS). The DFVS problem is an NP-complete problem
that appeared in the first list of NP-complete problems in Karp’s seminal paper [17].
It has applications in areas such as operating systems [23], database systems [12], and
circuit testing [18]. It was shown that it is NP-Complete for planar directed graphs with
in-degree and out-degree at most three, see [13]. A polyhedral approach has been pre-
sented in [9], see also [2] and [3]. An approximation algorithm for general directed graphs
was given in [6], and for planar directed graphs an approximation algorithm was given in
[15]. See [7] for a survey on Feedback Set problems. Here we point out that it is easy to
see that for planar graphs with maximum degree three, it is polynomially solvable, then
we show that it is NP-complete for planar graphs with in-degree and out-degree at most
two, i.e., maximum degree four.

This paper is organized as follows. In Section 2 we present some definitions and recall
some classic results that will be used in the sequel. In Section 3 we study maximum
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weighted induced bipartite subgraphs. In Section 4 we deal with balancing signed graphs.
Section 5 is devoted to maximum weighted induced acyclic subgraphs.

2. Preliminaries

In this section we give some definitions and present some classic results to be used in
the following sections.

If G = (V,E) is an undirected graph, the degree of a node is the number of edges
incident to it. If S is a nod-set set we denote by δ(S) the set of edges with exactly one
endnode in S. We use δ(v) instead of δ({v}). If e is an edge with endnodes u and v, we
also use uv to denote the edge e. If F ⊆ E, the graph H = (V, F ) is called a spanning
subgraph of G.

If D = (V,A) is a directed graph, the in-degree (out-degree) of a node is the number
of arcs entering (leaving) it. The degree of a node is its in-degree plus its out-degree.
For a node set S we use δ+(S) to denote the set {(u, v) |u ∈ S, v /∈ S}. We use δ−(S)
to denote δ+(V \ S).

Now we review two classic results in combinatorial optimization.

2.1. The Chinese Postman Problem. Given an undirected connected graph G =
(V,E) with nonnegative edge weights w(e) for each edge e, this problem consists of
finding a tour of minimum weight, so that every edge is visited at least once. Edmonds
& Johnson [5] gave a polynomial algorithm for this. One has to find an edge-set of
minimum weight that should be visited twice. This can be formulated as follows.

minimize
∑

e∈E

w(e)x(e)(1)

∑

e∈δ(v)

x(e) ≡

{

1 (mod 2) if v ∈ T ,

0 (mod 2) if v ∈ V \ T ,
(2)

x(e) ∈ {0, 1} for all e ∈ E.(3)

Here T denotes the set of nodes of odd degree. A solution of this corresponds to a set
of paths matching the nodes in T . For this Edmonds & Johnson gave a combinatorial
algorithm that solves the following linear program.

minimize
∑

e∈E

w(e)x(e)(4)

∑

e∈δ(S)

x(e) ≥ 1 for each node-set S with |S ∩ T | odd,(5)

x(e) ≥ 0 for all e ∈ E.(6)

Their algorithm shows that this linear program always has an optimal solution that is
integer valued.

If T is an arbitrary set of nodes with |T | even, the same results hold, and this is called
the Minimum T -join problem. We are going to use this problem in Section 3.

Let n = |V |. If G is a complete graph, this problem can be solved in O(n3) time, see
[10]. If the graph is planar, one can use the planar separator theorem of [20] to solve this

in O(n3/2 logn), see [1].
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2.2. The Luchessi-Younger Theorem. Let G = (V,A) be a directed graph. An arc-
set C is called a directed cut if there is a node set U ⊂ V such that C = δ−(U) and
δ+(U) = ∅. Suppose that each arc a has a non-negative weight w(a). Lucchesi & Younger
[21] proved that the linear program below always has an optimal solution that is integer
valued.

minimize
∑

a∈A

w(a)x(a)(7)

∑

a∈C

x(a) ≥ 1 for every directed cut C,(8)

x(a) ≥ 0 for all e ∈ A.(9)

Lucchesi [22] gave an O(n5 logn) algorithm for this. Later Gabow [11] gave an O(n2m)
algorithm. Here n = |V | and m = |A|.

3. Maximum weighted induced bipartite subgraphs

In this section we assume that the graph G = (V,E) is planar, with degree at most
three, and with a non-negative weight w(u) for each node u ∈ V . We have to find an
induced bipartite subgraph of maximum total weight. For the case when all node weights
are equal to one, i.e., the maximum cardinality version, it was pointed out in [4] that this
reduces to a maximum cardinality cut problem in a planar graph, that is polynomially
solvable. For general non-negative weights this transformation is not valid, so this case
has to be treated in a different way.

This problem is equivalent to look for a node-set of minimum weight that should be
deleted to leave a bipartite graph. This can be formulated as the following linear integer
program.

minimize
∑

u∈V

w(u)x(u)(10)

∑

u∈C

x(u) ≥ 1, for each odd cycle C,(11)

x(u) ∈ {0, 1}, for all u ∈ V.(12)

Consider the linear programming relaxation obtained by replacing (12) by x(u) ≥ 0,
for all u ∈ V . Suppose for instance that G is the graph K4, and that all weights are
equal to one. If we set all variables equal to 1/3, we have a solution of value 4/3. On the
other hand the optimal value of (10)-(12) is 2. This shows that this linear programming
relaxation is not tight. At the end of this section we present a linear programming
formulation (17)-(19), that gives the value of a minimum weight node-set to be deleted.
This can be seen as an extended formulation, since we have three variables for each node.

We assume that G is connected, otherwise each connected component is treated inde-
pendently. Starting from G, we create a signed graph G′ = (V ′, E′), where each edge is
labeled as positive or negative as follows.

• If a node u has degree one, let uv be the edge incident to u. Since the node u
will appear in every maximum weighted induced bipartite subgraph, we remove



4 M. BAÏOU AND F. BARAHONA

the node u and the edge uv. We repeat this until every node has degree at least
two.

• For each node u of degree two, let uv1 and uv2 be the edges incident to u. We
split the node u into u1 and u2. We create the following edges.

– u1u2, with weight w(u) and labeled positive. This edge is called artificial.
– u1v1, labeled negative.
– u2v2, labeled negative.

• For each node u of degree three, let uv1, uv2, uv3 be the edges incident to u. We
split u into u1, u2, u3 and we create the following edges.

– The edges u1u2, u2u3, and u3u1, all with weight w(u)/2 and labeled positive.
These edges are called artificial.

– The edges u1v1, u2v2, u3v3, all labeled negative.

Notice that the graph G′ is also planar. This construction is illustrated in Figure 1.
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Figure 1. Construction of the graph G′. Negative edges appear with
thick lines. Positives edges with thin lines.

We need the following lemma.

Lemma 1. Finding a maximum weighted induced subgraph of G is equivalent to give the
labels ”a” and ”b” to the nodes of G′ in such a way that:

(1) The endnodes of each negative edge have different labels.
(2) The total weight of the positive edges whose endnodes have different labels, is

minimum.

Proof. First assume that U ⊆ V induces a bipartite subgraph ofG with maximum weight.
Let U1 and U2 be the bipartition of U . We give the label a to each node in G′ associated
with a node in U1, and the label b to every node in G′ associated with a node in U2. Then
for each negative edge that has only one labeled endnode, we give the opposite label to
the other endnode. Finally for each negative edge whose endnodes have no label, we give
arbitrarily opposite labels to the endnodes.

Let Ū = V \ U , and w(Ū) the total weight of the nodes in Ū .

Let λ be the sum of the weight of the positive edges whose endnodes have different
label. Since all nodes of G′ associated with a node in U have the same label, we have
λ ≤ w(Ū).

Let λ̂ be the weight of an optimal labeling satisfying (1) and (2). We have λ̂ ≤ λ. Let
S be the set of nodes of G whose associated nodes in G′ have the same label. Clearly S
induces a bipartite subgraph. Let S̄ = V \ S and w(S̄) the total weight of the nodes in

S̄. We have w(S̄) = λ̂, and
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w(Ū) ≤ w(S̄) = λ̂ ≤ λ ≤ w(Ū).

�

Now we have to give an algorithm that finds a labeling satisfying (1) and (2) of
Lemma 1. For that we need one more definition.

Definition 2. For a signed graph, and a labeling of the nodes, we say that an edge e is
violated if:

• e is positive and its endnodes have different labels, or
• e is negative and its endnodes have the same label.

Lemma 3. If a cycle contains and odd (resp. even) number of negative edges, then for
any labeling it has an odd (resp. even) number of violated edges.

Proof. Consider a cycle with an odd number of negative edges. Start by giving the label
a to all nodes, then there is an odd number of violated edges. Now if we change the label
of a node, either the number of violated edges increases by two, or decreases by two,
or remains the same. Then if we keep changing the node-labels the number of violated
edges is always odd.

The proof for the other case is similar �

Now we have to prove the converse.

Lemma 4. Consider a signed graph and a set of edges marked as violated, so that for
each cycle, if it has an odd (resp. even) number of negative edges then there is an odd
(resp.even) number of violated edges. Then there is a set of node-labels according to
Definition 2

Proof. Start with a spanning tree T , pick any node and give it the label a, then extend
the labels through T according to Definition 2.

Then pick an edge e /∈ T , we have to see that the labels of its endnodes satisfy
Definition 2. Let C be the cycle obtained when adding e to T .

Consider the case when C has an odd number of negative edges. Assume that e is
positive and marked as violated. We should show that its endnodes have different labels,
so assume the opposite. Based on the labels e is not violated. But C \e contains an even
number of edges marked as violated, this contradicts Lemma 3. The proof for all other
cases is similar. �

These two lemmas show that it is equivalent to work with the node labels, or with sets
of violated edges satisfying the parity conditions of Lemma 3. From now on we use the
second alternative. We associate to each edge e a variable x(e) that should take the value
1 if e is violated and 0 otherwise. Then x should satisfy for each cycle C, the following.

(13)
∑

e∈C

x(e) ≡

{

1 (mod 2) if C has an odd number of negative edges,

0 (mod 2) if C has an even number of negative edges.

Here we have an exponential number of equations over GF (2), but we only need a
maximal set that is linearly independent. Thus it is enough to impose equations (13) for
the cycles in a cycle basis of G′.
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Since G′ is a planar graph, we can use the set of faces as a cycle basis. Let F be the
set of faces of G′, let P be the set of positive edges in G′, A the set of artificial edges,
and N the set of negative edges in G′. For each artificial edge e in G′, let λ(e) be the
weight of it. Our problem can be formulated as below.

minimize
∑

e∈A

λ(e)x(e)(14)

∑

e∈C∩A

x(e) ≡

{

1 (mod 2) if C ∈ F and |C ∩N| is odd,

0 (mod 2) if C ∈ F and |C ∩N| is even,
(15)

x(e) ∈ {0, 1} for all e ∈ A.(16)

Notice that only variables associated with artificial edges have been included in prob-
lem (14)-(16). This is because edges associated with the original edges of G, should not
be violated. If we work with the dual graph of G′, problem (14)-(16) can be solved as a
minimum T -join problem, see Section 2.

In Figure 2 we show an example of a graph G and its associated graph G′. If we look
at a solution of (14)-(16) in the dual graph, we obtain a set of paths matching pairs of
faces that have an odd number of negative edges, see Lemma 5. We illustrate this in
Figure 3, for every violated edge we draw a perpendicular dashed line. This corresponds
to an edge of the dual graph. Also we draw a square on each face having an odd number
of negative edges. Also in Figure 3 we show the induced bipartite subgraph obtained
after removing the nodes associated with the violated edges.

Lemma 5. A signed planar graph has an even number of faces containing an odd number
of negative edges.

Proof. Start with all edges labeled positive. Pick one positive edge and change its label
to negative. Then exactly two faces have an odd number of negative edges. After that,
when we change any other label from positive to negative, either the number of faces
with an odd number of negative edges increases by two, or decreases by two, or remains
the same. �
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Figure 2. An example of the graphs G and G′. The numbers near the
nodes are their weights. In G′ the numbers near the positive edges are
their weights.

Using planar duality, and the results of Edmonds & Johnson [5], we can see that
problem (14)-(16) is equivalent to the linear program below.
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Figure 3. A solution. The violated edges are crossed with a dashed line.
We also show the corresponding induced bipartite subgraph of the original
graph.

minimize
∑

e∈A

λ(e)x(e)(17)

∑

e∈C∩A

x(e) ≥ 1 for each cycle C with |C ∩N| odd,(18)

x(e) ≥ 0 for all e ∈ A.(19)

Now we state the main result of this section.

Theorem 6. The problem of finding a maximum weighted induced bipartite subgraph of
a planar graph with degree at most three, can be solved in O(n3/2 log n) time.

4. Balancing signed graphs

A signed graph is called balanced if we can give the labels ”a” and ”b” to the nodes so
that if and edge is positive, its endnodes have the same label; and if an edge is negative,
its endnodes have different labels. Here we discuss how to apply the ideas of Section 3
for finding a maximum balanced subgraph.

4.1. The node deletion case. Here we assume that G = (V,E) is signed planar graph
with non-negative weights w(v), for each node v ∈ V , and with maximum degree three.
We are looking for a balanced induced subgraph of maximum total weight.

We use a construction similar to the one in Section 3. The edges of the graph G′ that
are not artificial, keep the same labels as their associated edges in G. Then we have to
solve (14)-(16) as described in Section 3. Thus we can state the following.

Theorem 7. The problem of finding a maximum weighted balanced induced subgraph of
a planar graph with degree at most three, can be solved in O(n3/2 log n) time.

4.2. The edge deletion case. Assume that G = (V,E) is a signed planar graph with
non-negative weights w(e) for each edge e ∈ E. In this case we have no restriction
on the node-degrees. Here we are looking for an edge set S of minimum weight so that
H = (V,E \S) is balanced. Notice that if all edges are labeled negative, this is equivalent
to the max-cut problem in a planar graph, that can be solved in polynomial time cf. [16].

We use the same reasoning as in Section 3, to formulate this as below.
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minimize
∑

e∈E

w(e)x(e)

∑

e∈C

x(e) ≡

{

1 (mod 2) if C is a cycle with an odd number of negative edges,

0 (mod 2) if C is a cycle with an even number of negative edges,

x(e) ∈ {0, 1} for each edge e ∈ E.

As before, this can be solved as a minimum T -join problem in the dual graph. Thus
we have the following.

Theorem 8. The problem of finding a maximum weighted balanced spanning subgraph
of a planar graph, can be solved in O(n3/2 log n) time.

5. Maximum directed induced acyclic subgraphs

Consider a planar directed graph G = (V,A), with node-weights λ(v) ≥ 0, for each
node v ∈ V . We study the problem of finding a node set S of maximum weight that
induces an acyclic subgraph. The complement of S is a directed feedback set. This
problem is also known as the Directed Feedback Vertex Set Problem.

One can try a technique similar to the one in Section 3, splitting nodes, adding extra
arcs keeping planarity, and using planar duality. We discuss here the limitations of this
technique.

Consider the following simple transformation. Split each node v into v1 and v2, add
the arc (v1, v2), replace every arc (u, v) with (u, v1), and every arc (v, w) with (v2, w).
Let G′ be this new graph. If G′ is planar, we work with the dual graph as follows. Let D
be the dual graph of G′ regardless of the orientations of the arcs. Then for each arc a of
G′ let a⊥ be the corresponding edge of the dual graph, we give an orientation to a⊥, so

that the pair (a, a⊥) forms a positively oriented basis of R2. Let
→

D be the directed graph

obtained with this orientation. Notice that directed cuts in
→

D correspond to directed
cycles of G′. Thus it follows from the Theorem of Lucchesi & Younger [21], that the
following linear program has an optimal solution that is integer valued, moreover, this
can be solved in polynomial time.

minimize
∑

v∈V

λ(v)x(v)(20)

∑

v∈C

x(v) ≥ 1 for each directed cycle C,(21)

x(v) ≥ 0 for all v ∈ V.(22)

To see this one should start with problem (7)-(9), associated with the graph
→

D. Then
all variables associated with the original arcs are set to zero, and one obtains (20)-(22).

In particular, this transformation works when the degree of every node is at most
three. The following theorem shows the limits of this transformation.

Theorem 9. The minimum feedback vertex set problem is NP-Complete for planar
graphs with maximum degree four, and with in-degree and out-degree at most two.
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Proof. We use a construction similar to the one used in [4] for induced bipartite sub-
graphs. We start with the following NP-complete problem, see [19].

Planar 3-Satisfiability (P3SAT).

Instance: A set U = {vi | 1 ≤ i ≤ n} of n boolean variables and a set C = {cj | 1 ≤
j ≤ m} of m clauses over U such that each clause contains exactly three variables or
their complements. Furthermore, the following graph is planar:

GC = (VC , EC), where

VC = {cj | 1 ≤ j ≤ m} ∪ {vi | 1 ≤ i ≤ n}, and

EC = {cjvi | vi ∈ cj or v̄i ∈ cj} ∪ {vivi+1 | 1 ≤ i ≤ n− 1} ∪ {vnv1}.

Question: Is there a truth assignment for U such that each clause in C is true?

Given a planar embedding of GC we build a planar directed graph G = (V,A) as
follows.

• Each node vi associated with a variable is replaced by a subgraph called variable
component. Its nodes are {aij,1, . . . , a

i
j,8}, for 1 ≤ j ≤ m. The arcs are:

– (aij,k, a
i
j,k+1), for 1 ≤ k ≤ 7, for 1 ≤ j ≤ m.

– (aij,8, a
i
j+1,1), for 1 ≤ j ≤ m, with aim+1,1 = ai1,1.

– (aij,k+2, a
i
j,k), for k = 1, 3, 5, (aij+1,1, a

i
j,7); for 1 ≤ j ≤ m, with aim+1,1 = ai1,1.

See Figure 4. There are 4m triangles, a directed cycle C1 with 8m nodes and a
directed cycle C2 with 4m nodes. The embedding is done so that C1 is oriented
clockwise, and C2 is oriented counter-clockwise.

• Each node cj associated with a clause is replaced by three nodes c1j , c
2
j , and c3j .

Assume that vi1 , vi2 and vi3 are the three variables (or their complement) that
appear in cj . Assume that they appear in clockwise order in the embedding of
GC . For each variable vik we have two cases:

– If vik appears in cj , we add the arcs (ckj , a
ik
j,2) and (aikj,4, c

k−1
j ), with c0j = c3j .

– If v̄ik appears in cj , we add the arcs (ckj , a
ik
j,4) and (aikj,6, c

k−1
j ), with c0j = c3j .

See Figure 5. These arcs are included in only one directed cycle Dj called a
clause cycle.

a1,2

a1,3 a1,5

a2,1

a2,2

a1,4

a1,7

a1,8a1,6

a1,1

Figure 4. Subgraph associated with a variable vi, for m = 4. The index
i is not shown.

For a variable vi consider it associated component. We need the following observations.



10 M. BAÏOU AND F. BARAHONA

��
��
��
��

�
�
�
�

��
��
��
��

�
�
�
�

�
�
�
�

���� �� ��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

������������
��������
��������
��������
��������������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������

�
�
�
�
�
�

�
�
�
�
�
�

����
����
����

����
����
����

���
���
���
���

���
���
���
���
cj

vi1

vi2

vi3

c
1
j

c
2
j

c
3
j

vi1

vi2vi3

Figure 5. Nodes and arcs associated with a clause cj . In this example
cj contains vi1 , vi2 and v̄i3 .

− A node can cover at most two triangles, and since there are 4m triangles, a node-
set covering all triangles has cardinality at least 2m. The triangles can be covered
with the nodes {aij,3, a

i
j,7} for 1 ≤ j ≤ m, or {aij,1, a

i
j,5} for 1 ≤ j ≤ m. Denote

by Si
1 the first set and by Si

2 the second set. We have |Si
1| = |Si

2| = 2m. Also any
other cycle included in this component is covered by these two sets.

− Consider now any other set S of nodes covering all the triangles. Assume that S
contains p nodes of degree two. Each of them covers exactly one triangle, so there
are 4m−p triangles that should be covered with nodes of degree four. Since each
of these nodes covers two triangles, we need at least 2m − p/2 nodes of degree
four. This shows that |S| ≥ 2m+ p/2.

− Consider now a node-set T containing only nodes of degree four and covering all
triangles. If |T | = 2m, each node should cover two distinct triangles, this can
only happen if T = Si

1 or T = Si
2. It follows that 2mn is a lower bound for the

size of a minimum feedback set in G.

Suppose now that there is an assignment of values to the variables so that each clause
is true. If a variable vi is set to true, we pick the set Si

1; otherwise vi is set to false and
we pick Si

2. Thus we obtain a node set F of size 2mn that covers every directed cycle
contained in each variable component. Now consider a clause cycle Dj corresponding to
a clause cj . Since at least one of the variables included in cj is set to true, this cycle is
covered.

On the other hand if there is a feedback set S of size 2mn, its restriction to the
subgraph associated with a variable vi is either the set Si

1 or Si
2. In the first case we set

vi to true, and in the second case we set vi to false. Since each clause cycle is covered,
then each clause is set to true. �
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