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Abstract—Cloud service providers enable enterprises with the
ability to place their business applications into availability zones
across multiple locations worldwide. While this capability helps
achieve higher availability with smaller failure rates, business
applications deployed across these independent zones may expe-
rience different Quality of Service (QoS) due to heterogeneous
physical infrastructures. Since the perceived QoS against specific
requirements are not usually advertised by cloud providers,
selecting an availability zone that would best satisfy the user
requirements is a challenge. In this paper, we introduce a
predictive approach to identify the cloud availability zone that
maximizes satisfaction of an incoming request against a set of
requirements. The predictive models are built from historical
usage data for each availability zone and are updated as the
nature of the zones and requests change. Simulation results
show that our method successfully predicts the unpublished zone
behavior from historical data and identifies the availability zone
that maximizes user satisfaction against specific requirements.

Keywords—Availability zones, multiple data centers, cloud, pre-
dictive analytics, performance analysis.

I. INTRODUCTION

A user of an infrastructure cloud service such as EC2
has the option of selecting an availability zone where their
resources are provisioned. An availability zone (AZ) is a data
center that is physically isolated from other availability zones.
Cloud providers offer several of such availability zones in
various geographies. For any cloud provider, availability zones
are not identical - their hardware infrastructure type, version of
management stack, and load characteristics differ. As a result,
services offered by different availability zones will vary.

Some differences in services offered by different availabil-
ity zones are widely known as they are published by the service
provider. Such well known attributes are types of offered
instances, their sizes, and prices. As an example, as of writing
this paper, EC2 does not offer Cluster GPU instances in Sao
Paulo zone while they are available in North Virginia zone.
However, cloud users have observed a number of differences
in the quality of service provided by availability zones that are
not captured in those advertised attributes.

Benchmarking studies performed on EC2 report on varia-
tion between performance of same type instances deployed in
different availability zones. Shad et al. [1] measured significant
differences in instance disk read/write performance, as well as
in instance network performance between availability zones
in US and EU locations. They conjecture that divergent disk
performance is due to different HDD technologies used in

US and EU. They also stipulate that differences in network
performance result from different virtual machine placement
algorithms applied in different availability zones. Furthermore,
Life Scaling blog1 reports up to 100% difference in network
latency between pairs of instances deployed within different
availability zones in the US East region. Farley et al. [2] and
Ou et al. [3] measured substantial performance variation (up
to 280%) between same-type instances deployed on different
processor architectures in EC2 with benchmarks stressing
various types of resources. Furthermore, Ou et al. [3] estimated
up to 9.5 times higher probability of acquiring an instance
on a specific processor architecture between two availability
zones indicating that, due to infrastructure differences, the
expected instance performance in these two zones should vary
considerably. Outside of scientific studies, users of EC2 report
particularly high probability of instance deployment rejection
due to resource contention in certain availability zones (mostly
in the US East region).

The above data suggest that considerable difference in qual-
ity of service may be observed by cloud users with different
availability zones, even when offered by the same provider.
This observation is not surprising as different data centers are
likely made of different generations of hardware and software
technologies. Moreover it should be expected that those char-
acteristics will change over time. From a user perspective,
such inconsistency in service availability and behavior is an
unwelcome challenge as availability zone selection may have a
rather drastic impact on the availability, performance, and cost-
efficiency of the deployed workload. A tool that would help
a user to automatically select an availability zone suitable for
their requirements would alleviate these concerns. As the QoS
attributes needed to make a decision are not usually advertised
as part of a service description, in addition to the fact that they
may vary over time, a suitable tool will have to estimate such
attributes based on prior observations.

In this paper, we present an adaptive and predictive method
for automatically selecting availability zones. In the proposed
model a user provides a set of desired quality of service
attributes for each instance deployment request and their
importance. Based on this input, we construct a utility function.
QoS measurements for previously deployed instances by the
same or other users are available with their associated utility
value. We use these observed utility values to train prediction
models for each availability zone. In essence, the prediction

1http://orensol.com/2009/05/24/network-latency-inside-and-across-amazon-
ec2-availability-zones/



models help us learn unpublished attributes of a service. We
accommodate time varying changes in service attributes by
reconstructing the models based on continuously changing
input data. Given the prediction model and the requirement
specified in a new request, we formulate and solve an opti-
mization problem to select the optimum availability zone for
that request.

The proposed solution moves cloud service users from the
common practice of manually selecting a cloud availability
zone, by relying on community knowledge, to the automatic
selection of customized solutions, focused on their needs. It
is important to note that our solution considers the possibility
of a deployment across multiple providers, i.e., the resources
can be placed in different zones of different providers if such
a deployment is supported by other important factors such as
availability of suitable images and automation, similarity of
service types, etc. In a multi-cloud setting our solution would
benefit cloud brokering services which become increasingly
popular.

The remainder of this paper is structured as follows. Sec-
tion II describes the problem formulation and details the main
elements of our model construction. Section IV presents the
configuration of the simulated environment used for extracting
performance results, which are presented in Section V. Section
VI surveys related works. And, Section VII concludes the
paper with final remarks and future work.

II. PROBLEM DEFINITION

We consider the system depicted in Figure 1. In this
system, we assume either the availability zone manager, or
a monitoring tool deployed within it, provide the necessary
measurements to evaluate the satisfaction level of each require-
ment specified in the request. Information about architectural
features of a node, failure and recovery notifications, runtime
performances such as throughput of various resources, latency,
etc. can be gathered by monitoring. To obtain such a mea-
surement, one can use a monitoring service provided by the
cloud owner, e.g., Cloud Watch offered by EC2, or deploy
a proprietary tool to monitor the deployment and runtime
characteristics of provisioned instances.

Figure 1 shows the monitoring agent that collects measure-
ments and evaluates how much the requirements specified in a
request are satisfied. The evaluation results are then passed to
the cloud manager. In this paper, we focus on the cloud man-
ager part of the system, where we build prediction models to
decide which availability zone satisfies the user’s requirement
most. The only input that is needed for cloud manager from the
monitoring agent is the requirement satisfaction vector. With
the input of user requirement and their associated weights,
cloud manager makes a decision on the availability zone that
meets the user requirement most.

A. Formulation of the problem

In this Section, we describe the user request attributes,
details of the availability zone model and the associated
measures.

AZ	
  1	
  

AZ	
  5	
   AZ	
  8	
  AZ	
  7	
  

AZ	
  2	
   AZ	
  3	
   AZ	
  4	
  

AZ	
  
12	
  

AZ	
  
11	
  

AZ	
  
11	
  AZ	
  9	
  

Monitoring	
  
Agent	
  
(C)	
  

Cloud	
  Manager	
  

User	
  
Request	
  
(W,	
  R)	
  

Actual	
  deployment	
  

Requirement	
  saDsfacDon	
  vector	
  

Weight	
  and	
  	
  
Requirement	
  

vector	
  

AZ	
  6	
  

Monitor	
  

Monitor	
  Monitor	
  

Monitor	
  Monitor	
  Monitor	
  

Monitor	
  

Monitor	
  

Monitor	
  

Monitor	
  

Monitor	
   Monitor	
  

PredicDon	
  
Models	
  

History	
  
Log	
  

Placement	
  
Decision	
  

Cloud	
  Manager	
  

Fig. 1. System diagram

1) Request attributes: A user request is represented by a
requirement vector. Let the ith user request be represented by
the vector, ririri = [ri1, ri2, . . . , riJ ], where rij , j = 1, . . . , J ,
specifies the jth requirement of user i that is expected to be
satisfied by the selected availability zone. User requirements
may include: (i) resources, as the resource amounts required
by the user (e.g., CPU, memory etc); (ii) QoS criteria, as
quality of service objective that a user wants to achieve (e.g.,
highest reliability, minimum latency, highest performance);
(iii) constraints, as restrictions on possible service provisioning
(e.g., locality, throughput, load balancing constraints); (iv) user
instance types, as the type of instance the user wants to run;
and (v) user machine types, as the type of machine that the
user requires the availability zone to provide.

2) Availability Zone Model: Availability zones differ in
characteristics depending on their implementation. Attributes
such as availability zone size, hardware infrastructure, or man-
agement stack (including instance placement policies) result in
different levels of reliability and performance. Attribute values
that influence the QoS offered by an availability zone for a
particular instance type are not known. Generally, QoS data
for any particular instance type in a given availability zone
are not known a priori. It is, however, possible to measure
the QoS parameters after an instance has been deployed. Such
measurements may be evaluated against the requirements spec-
ified in the request. We call the results of such an evaluation
a requirement satisfaction level.

Let cij ∈ [0, 1] denote the satisfaction level of requirement
rij . If the requirement rij is fully satisfied, then cij = 1,
otherwise 0 ≤ cij < 1. In this paper, we are not prescribing a
method to measure how much a user requirement is satisfied
after deployment. Rather, we are stating that such an evaluation
can be done using any existing method to produce the vector of
satisfaction levels, CT

i = [ci1, ci2, . . . , ciJ ], for each incoming
request ririri, deployed to an availability zone. The input CT

i is
the only input that cloud manager needs from the monitoring
agent.

III. PREDICTIVE METHOD

In this Section, we explain how to build a prediction
model [4], by learning the behavior of each availability zone
based on the historical data of past requests. Our prediction
model maps the requirement vector of an incoming request,
ri = [ri1, ri2, . . . , riJ ], to a customer satisfaction measure
defined by a utility function, f(ri) ∈ [0, 1]. The utility



function reaches its maximum value of one when there is
complete satisfaction. The value of f(ri) depends on how
much the requirements of an incoming request is satisfied
by the availability zone where the request is placed. The
vector of satisfaction levels, CT

i = [ci1, ci2, . . . , ciJ ], for
each incoming request ri, is observed after the request is
deployed. The satisfaction of some requirements may be more
crucial than others, therefore the satisfaction level of each
requirement may have different significance. The weight vector
WT

i = [wi1, wi2, . . . , wiJ ] denotes the significance levels for
requirement attributes for request ri. The more the value of
wij , the stronger the significance of jth requirement is. One
possible way of defining the utility function f(ri) is to take a
linear combination of the satisfaction level for each incoming
request Ci and the associated weights WT

i multiplied by an
indicator function φ(ri). The indicator function is used to set
the satisfaction level to zero when the request is rejected.
Hence, we define the utility function as,

f (ri) = φ(ri)
J∑

j=1

wijcij = φ(ri)Wi
T Ci, (1)

where

φ(ri) =

{
0, if the request is rejected,
(
∑

j wij)
−1, otherwise.

(2)

Note that the selection of φ(ri) = (
∑

j wij)
−1, in the case

of no rejection, normalizes the weight vector and limits the
maximum possible value of f (ri) to 1.

A. Example

Let ri =[rS , rL, rI , rA, rMh] be the requirement vector
of an incoming request. The request contains requirements
related to the size, supported instance type, infrastructure type,
and reliability of an availability zone. The description of the
requirement attributes are listed below.

rS : Requested CPU and RAM resources where rS ∈
{micro, small, medium, large, xlarge}

rL: Level of reliability where rL∈{low, medium,
high}

rI : Tolerance to interruption where rI∈[0, 1]
rA: Requested instance type where rA∈{compute in-

tense, storage, memory intense Instance }
rMh: Requested machine type where rM∈{Intel Xeon-

series, AMD Opteron-series}

The measured satisfaction for each requirement is captured by
vector CT

i . Let’s assume that for an incoming request with a
requirement vector ri = [ “large”, “medium”, “1”, “compute in-
tense”,“Intel Xeon-series”], the satisfaction vector is observed
as; CT

i = [0, 1, 0, 1, 1]. Note that partial satisfaction levels are
not considered to simplify the example. This means that the
size and tolerance to interruption requirements of the incoming
request, rS = {“large”} and rI = {“1”}, are not satisfied
while other requirements are fully satisfied. If the associated
weight vector is WT

i = [0.2, 0.3, 0.3, 0.1, 0.1], then the utility
function for ri is computed as,

f (ri) =

{
φ(ri)Wi

T Ci = 0.5, if request is placed,
0, if request is rejected,

where φ(ri) = 1 if the request is placed and 0 otherwise. Note
that due to the weights associated with each requirement, the
satisfaction level did not exceed 0.5 when more than half of
the requirements are satisfied.

B. Predicting the utility function

If there are multiple availability zones providing the same
services, it is natural that the availability zone which returns
the maximum utility value f(ri) for the incoming request is
likely to satisfy the requirements most. The exact value of
the utility function can be computed only after deployment.
It can be, however, predicted based on the utility values of
deployed requests in the past. In this paper, we propose to
build a prediction model for every availability zone and use
the predicted utility values, f̃(ri), in selecting an optimum
availability zone.

Figure 2 depicts how we create the training tables and
the associated prediction models for each availability zone.
First, the incoming requests are placed into the availability
zones by using a random selector. This way the incoming
requests are distributed uniformly to each zone. After random
placements of requests, the associated satisfaction level vectors
are computed and stored in a history log (Figure 2(a)). Then for
an incoming request r, a training table is built for every zone
based on its weight vector W and the history of satisfaction
vectors of random arrivals to each availability zone from the
history log (Figure 2(b)). Once the training tables are built for
each zone, the associated prediction models are generated by
using machine learning techniques for the incoming request.
In short, prediction models are built based on the history log
and the weight vector of an incoming request for every zone at
the time of arrival. Let Pn denote the prediction model for the

Fig. 2. (a) Collecting satisfaction level history (b) Generating predictive
model for each arrival

satisfaction level of an incoming request placed in an avail-
ability zone n. Pn is trained by sample records or instances
characterized by the tuple (ri, fn(ri)) for i = 1, . . . , I , where
I is the size of the training set, or the number of the instances
used for training. Here, fn(ri) is the empirical value of the
utility function in zone n, associated with the requirement
vector ri in the history log and new coming request r’s
weight vector WT , hence we bias prior requests’ satisfaction
levels with the incoming request weight in the training table.
Classification models assume that utility values are discrete. In
the case that the utility value is continuous, regression models
should be used for prediction. Table I depicts the structure



of the training data set used by Pn to learn the behavior of
availability zone n. After the training phase, Pn learns how to

TABLE I. TRAINING DATA SET FOR ZONE n.

Case Attributes Target

1 r11 r12 . . . r1J fn(r1)
2 r21 r22 . . . r2J fn(r2)
3 r31 r32 . . . r3J fn(r3)
. . . . . . . .
I rI1 rI2 . . . rIJ fn(rI )

predict the satisfaction level for the requirement vector r as
given by,

Pn(r) = f̃n(r). (3)

Here f̃n(r) is the predicted satisfaction level for zone n. The
estimated mean squared prediction error, ē(Pn) for model Pn,
is given by

ē(Pn) =
1

I +m

I+m∑
`=1

[fn(r`)− f̃n(r`)]2. (4)

where m is the number of requests that are deployed to a
zone after prediction. In order to find an unbiased estimate of
the predicted error, the trained model is validated by testing
it against a set of requirement vectors that are not part of
the training set. Cross-validation [5] is a technique often used
in machine learning to evaluate the models by dividing the
sample data into training and validation segments. The first
segment is used to learn the model and the second one is to
validate. Equation 4 shows how to estimate the testing error
by using I test data. In typical cross validation, the training
and validation sets must cross-over in successive rounds such
that each data point has a chance of being validated. We use
k-fold cross validation by randomly partitioning the sample
into k sub-samples where a single sample is retained as the
validation sample and k − 1 sub-samples are used as training
data to measure the accuracy of our prediction models.

Once the prediction models, Pns, are generated for each
zone then they are employed to select the availability zone that
maximizes the satisfaction of an incoming request as described
in the next Section.

C. Selecting an availability zone

Had the value of the utility function been known before
deployment, the availability zone that satisfies the customer
requirements most would have been an obvious choice. The
utility values, however, strongly depend on unpublished zone
properties and they are not publicly available. Regardless, we
can predict them by using the machine learning techniques and
the historical data as explained above and use predicted utility
values for availability zone selection. One possible selection
policy uses the maximum predicted utility value to select the
availability zone. Hence, if there are n availability zones, the
zone that satisfies the requirement vector of the incoming
request r most is represented with the equation,

PS(r) = max
n
{Pn(r)} ∀n ≤ N. (5)

Here the utility function is maximized when n = S. Therefore,
the zone selector assigns zone S as the optimal zone for the
incoming request r provided that zone S has enough capacity.

If the best zone that maximizes the utility function cannot
accommodate the associated request due to shortage in zone
capacity, then the second best zone is selected for placing the
incoming request. This procedure repeats until the request is
placed (or finally rejected). The left hand side of Figure 3
shows how the zone selection procedure loops until the best
available zone that can accommodate the request is determined.

D. Updating the prediction models

Due to the dynamic nature of the cloud environment (i.e.
availability, load, time etc.), the accuracy of the prediction
models may decrease over time. Decline in prediction accuracy
happens when the availability zone features change signifi-
cantly. These changes may not be publicized or become avail-
able to the placement policy. Therefore, as the zone features
change, the prediction models need to be retrained to learn the
new zone behavior. We monitor the prediction error by using
Equation 4 and run a k-fold cross validation after a number
of new requests are placed. After each placement, the training
data set in the history log is updated. The prediction models
are retrained when the average prediction error increases above
a preset threshold.

The right hand side of Figure 3 shows how the new training
samples are collected dynamically to retrain the prediction
models when the prediction error exceeds the threshold value.

Fig. 3. Zone selection method and updating prediction models.

IV. DESCRIPTION OF SETUP

In this Section, we describe the simulation environment
and experimental setting that we developed for evaluating the
predictive method for selecting cloud availability zones.

A. Simulation environment

We used a Java based simulation environment to simulate
various availability zones with different characteristics and an
inter-arrival process for incoming heterogeneous user requests.
Figure 4 shows the components of our simulation infrastruc-
ture. It has mainly three components. The first component is
the zone simulator which simulates availability zones with var-
ious CPU and memory capacities, reliability levels (by inject-
ing different failure types with different probabilities), internal



placement algorithms, delays, supported instance and/or infras-
tructure types. The second component is the arrival process
simulator where incoming requests with various requirements
are simulated based on specified inter-arrival and lifetime
distributions. The desired load factor for an availability zone is
controlled by the parameters of the inter-arrival distribution in
the arrival process simulator. The third component is the zone
selection layer which uses predicted utility values to select the
availability zone that would best satisfy an incoming request.
After the zone models are generated, by using the machine
learning techniques as explained in Section III, the utility value
for an incoming requests is predicted for each zone separately.

After every incoming request generated by the arrival
process is placed into an availability zone by the zone selection
layer, the zone simulator checks whether or not the require-
ments are satisfied. Hence, the implemented satisfaction vector
is a binary vector. The request requirements and the associated
utility value constitute a training sample for the zone that
the request is placed into. In order to generate the training
data, the same simulation infrastructure is used except that
the zone selector and the prediction models are replaced by a
random zone selector as depicted in Figure 2. After generating
a sufficient number of training data sets for each zone, the
training data sets are passed to IBM SPSS Modeler [6], which
offers a variety of modeling methods to develop prediction
models for the utility value of an incoming request. We
generate and compare several prediction models for each zone.
The prediction models we consider include Neural Networks,
Decision Trees, and Support Vector Machines. Among various
models, we choose the one with the highest accuracy.

Fig. 4. Simulation environment.

One other aspect of the zone simulator is that it compares
the predicted utility value with the actual utility value observed
after the placement. If the difference between actual and
predicted values increases, the initial prediction accuracy is
reduced. In this case, the models are trained again with the
latest data stored in the history log.

B. Experimental setting

1) Simulated zone attributes: We simulated 12 availability
zones in various locations worldwide with different capabilities
that are listed in Table II. Most of these attributes, especially
the ones related to performance, are not published and known
a priori (e.g., Reliability levels, placement algorithms). Each
availability zone is composed of 10 racks, each rack contains
2 blade centers and each blade center contains 50 physical

machines (PMs). An availability zone is simulated to support
a heterogenous hardware infrastructure, composed of a mix
of processor models. The used CPU models are: Intel Xeon
series “E5507”, “E5430”, “E5645”, “X5500”, “X5570” and
AMD Opteron series “2218HE”, and “270”. We define 3
different heterogenous infrastructure types depending on the
percentage of hardware mix in a zone. Table III shows the
exact percentage of CPU model mixes per infrastructure type.

TABLE II. CLOUD AVAILABILITY ZONES ATTRIBUTES.

#AZ Region Reliability Placement Support for high Hard-

level algorithm performance instance(s) ware type

1 US- East 1 low random High Storage I
2 US- East 2 low random High Compute I
3 US- East 3 low random High Memory Speed I
4 US- West 1 medium random High Storage II
5 US- West 2 medium random High Compute II
6 EU 1 medium random High Memory Speed II
7 EU 2 medium LeastFull High Storage III
8 South America 1 medium LeastFull High Compute III
9 South America 2 medium LeastFull High Memory Speed III
10 Asia Pacific 1 high LeastFull High Network I/O + SSD I
11 Asia Pacific 2 high LeastFull High Network I/O + SSD II
12 Asia Pacific 3 high LeastFull High Network I/O + SSD III

TABLE III. HARDWARE CONFIGURATION TYPES.

Infrastructure Processor CPU % of CPU
type brand model models

Type I Intel Xeon E5507 50%
Intel Xeon E5430 30%
Intel Xeon E5645 20%

Type II AMD Opteron 2218HE 70%
AMD Opteron 270 30%

Type III Intel Xeon X5500 60%
Intel Xeon X5570 40%

The monitoring service provided by the cloud owner mon-
itors the available capacity in all zones. Incoming requests
are rejected in a zone only if there is not enough capacity to
accommodate the request in the targeted PM for placement. For
the sake of simplicity, we simulated each zone with the same
CPU and memory capacity with 32 cores and 32 GB memory,
respectively. In order to create performance variations, we
introduce two types of internal placement algorithms: random
and load balancing. For availability zones 1-6, a random
placement algorithm where the instances are placed randomly
to PMs is implemented. For the rest, a placement algorithm
which balances the load by selecting the least full PM is
implemented. As for the unpublished characteristics of the
zones, each availability zone is simulated to support different
high performance instance types. For instance, high network
instances with bandwidth requirement of 4KB perform best in
Asia Pacific zones (see Table II). Even though instance types
are advertised as a selection to user, their performance per
zone is not published by the cloud provider. The failures are
simulated such that either entire rack or entire blade center
fails with either low or high probabilities. Depending on the
failure probability, blade center/rack failure and availability
information, reliability levels are classified as low, medium and
high. The mean time between failures is Gamma distributed,
while lifetime of failures (i.e., time to recovery) follows a
LogNormal distribution. For low reliability zones, we inject
both rack and blade center level failures with Gamma(1, 0.33),
for medium reliability zones we inject rack level failures with
Gamma(0.75, 0.2) and for high reliability zones we inject only
blade center failures with Gamma(3, 1) where parameters are



in hours. All three zones have LogNormal(2,0.3) distribution
for time to recovery where parameters are in minutes.

2) Simulated request attributes: We generated training data
sets by simulating multiple instances of user requests with
different attributes. As in the example reported in Section II,
the requirement vector of an incoming request has the form ri
=[rS , rL, rl, rA, rMh]. Each attribute in the vector takes values
among those listed in Table IV.

TABLE IV. USER REQUEST ATTRIBUTES.

rS rL rI rA rMh

micro low [0,1] High Storage Intel Xeon E5507
small medium High Compute Intel Xeon E5430
medium high High Memory Intel Xeon E5645
large High Network Intel Xeon X5500
xlarge SSD Intel Xeon X5570

AMD Opteron 270
AMD Opteron 2218HE

The size of the instances is represented by rS . The smallest
instance size is 1 core with 0.6 GB memory, while the largest
instance is 16 cores and 15 GB memory. We simulated 5
different instance sizes where the details of other instance
sizes are depicted in Table V. Users also indicate the desired
instance type. The types of the instances (e.g., high storage,
high compute etc.) that a user can specify are listed in Table
IV under the rA column. Lastly, users indicate their hardware
infrastructure preference represented as rMh. The simulated
user hardware choices are listed in Table IV.

As for the zone attributes that are changing over the time,
user can also set their preferences up front and the monitoring
tool simulated in zone simulator in Figure 4 monitors the
satisfaction level of these requirements over the lifetime of
the application. Reliability level is denoted by rL and users are
allowed to specify either low, medium or high reliability zones
depending on their application type. Deployed user requests
in a zone that has the required or higher level of reliability
considered to have full satisfaction (cL = 1) from reliability
component of utility function. Users also specify the inter-
ruption tolerance that is the sensitivity for being interrupted
during their application lifetime. Quantity rI represents the
interruption tolerance level, ranging from 0 to 1. Value 0 is
selected for the instances that are very tolerant to interruption,
whereas value 1 is selected for the instances that are very
sensitive to interruption.

TABLE V. INSTANCE SIZES (rS ).

micro small medium large xlarge

CPU 1 2 4 8 16
Memory (GB) 0.6 1.7 3.5 7.5 15

In addition to requirement vector, user sets the weight
vector for utility function as , WT = [wS , wL, wI , wA, wMh].
The user weight function of wi = 0.2 for i ∈ {S,L, I, A,Mh}
is selected to use normalizing factor of 1.0. As the weight
vector indicates, for our experimental settings, all the prefer-
ences have equal weights for this user. Our aim is to observe
the unbiased impact of each requirement. We use normalizing
factor of 1.0 for this particular set up that yields the maximum
value of utility function, when all the requirements are satisfied
as 1, while the minimum value is 0 when the request is
rejected.

3) Request arrival pattern: We simulated all combinations
of 5 user attributes (in Table IV) summing up to more than 450
different instance request types with their unique set up. The
inter-arrival time of each request type follows an exponential
distribution whose parameters depend on the desired load
factor (i.e., 95% for our set up), while the request life time
follows a uniform distribution. The mix of request types is
evenly distributed and this set up is simulated for a 4-week
time window.

V. NUMERICAL RESULTS

In this Section, we demonstrate numerical results for differ-
ent applications of prediction models with the set up described
in Section IV.

The placement approach introduced in this paper does not
require a priori knowledge of availability zone properties. In
other words, the attributes of zones are not available during
placement. Hence, placement is made solely based on the
predicted behavior of the availability zones which is learned
from past behavior. In this Section, we compare the effec-
tiveness of prediction-based placement policy against policies
that perform placement by utilizing the state of the availability
zone and its properties. Our goal is to show that the impact of
availability zone features to user satisfaction can be learned,
and that placement policies based on the learned behavior
perform better.

In our experiments, we compare our Prediction Based
policy that selects the availability zone with highest utility
to other policies making optimal zone selections based on
attributes other than utility function. We compare the policy
classes listed below.

1) Random policy: Incoming requests are placed to
availability zones randomly. This policy is used as
a baseline. Any non-random policy that considers the
characteristics of the zones and the requirements of
the incoming requests is expected to perform better
than the random policy.

2) Load-based policies: Availability zone selection is
made merely based on the utilization of the zone at
the time of request arrival. If the zone with the highest
available capacity is selected for load balancing, we
call the policy Least-Utilized. On the other hand, if
the zone with the lowest availability is selected for
lower energy consumption, we call the policy Most-
Utilized.

3) Attribute-based policies: Zone selection is made by
matching some of the advertised attributes of the
zone with the preferences of incoming requests. In
practice, cloud providers publish supported instance
types per availability zone. However, they do not
publish the performance of the instance types per
availability zone. Even though it is not yet practical
to publish the zone performances for instance types,
we assume that it is hypothetically available to the
user. One example of such a policy, Match Instance
Type policy, makes a selection based on the advertised
performance levels of instance types (see Table II)
by each zone. If the candidate zone supports the
performance level of the instance types required by



the incoming request then it is selected. Similarly, it
is not practical for cloud providers to publicize the
hardware configuration of their infrastructure hence,
the machine types (e.g., CPU models) that instances
are running on are not available to the user. For exper-
imental purposes, we assume that such information
is available to simulate the case where the machine
types are known by the user. The policy, Match
Machine Type, selects availability zones based on the
supported CPU models (see Table III) in different
infrastructure types defined in Table II.

Figure 5 reports the average utility value obtained by
the different policies for best availability zone selection at
different levels of availability zone utilization. The expected
utility value for our Prediction Based policy is close to 0.85
for all utilization levels. This is significantly higher than the
expected utility values achieved by load-based and attribute-
based policies. The utility values are less than 0.7 for Random,
Least Utilized and the Most Utilized policies, and less than
0.8 for attribute-based policies; Match Machine Type and
Match Instance Type. As expected, Random policy achieves
the lowest expected utility value. Figure 5 shows that learning
the behavior of the availability zones based on historical data
satisfies the user requirements better than actually knowing the
zone utilization levels and certain zone attributes, such as the
type of machines or instances supported.

Fig. 5. Comparison of utility values for different policies.

Figure 6 reports the percentage of user requests whose
preferred instance types and preferred machine types are
supported by the availability zones that they are assigned to.
Match Instance Type policy satisfies the users application and
Match Machine Type policy satisfies the users machine type
requirements almost all the time. In both cases, the percentage
of requests that are matched against their requirements is more
than 95%. This is expected, since the Match Instance Type and
the Match Machine Type policies have the prior information
about instances and machine types supported by each zone,
respectively. Policies other than Prediction Based policy match
only 30% of the users machine or instance type requirements.
As an example, while Match Instance Type policy can place
to the requests to a zone where the required instance type is
satisfied almost 100%, it performs very poor when it comes
to matching the machine type requirement. This is because
the prior information about the machine types is not available
to Match Instance Type but it is only available to Match
Machine Type policy. Prediction Based policy, on the other

hand, can match both the instance and the machine type
requirements significantly higher without any prior knowledge
of the distributions of machines and the instance types for
availability zones.

Fig. 6. Percentage of matches in the requirements for different policies.

Prediction Based policy aims to optimize user satisfaction
by selecting the zone with the best utility value while main-
taining a high resource utilization. In order to measure the
impact of the Prediction Based policy to resource utilization,
we compare the average zone CPU utilization values under
different policies. This comparison shows that the Prediction
Based policy is not reducing the utilization of the zones
compared to other policies. Hence, Prediction based policy
increases the utility value for the user without under utilizing
zone resources. The simulation results shows that the average
zone utilization for CPU is around 50% for almost all of the
policies. The reason for less CPU utilization than offered CPU
load is due to high rejection probabilities (& 0.6) for large and
xlarge instances.

In our simulation, we allow every policy to try placing
the request multiple times until it is accepted (see Section
III-C). Figure 7 reports the average number of trials for each
policy in order to get accepted after the first one. We see that
the number of additional attempts after the initial one for the
Prediction Based policy is much less than 1. Therefore, the
requests are placed to their best matching zones in their first
trials most of the time. In contrast to Prediction Based policy,
Most Utilized and Match Machine Type policies require almost
4 additional trials on the average. Random, Least Utilized,
Match Instance Type, on the other hand, require more than 2
additional trials on the average. Our Prediction Based policy
reduces the number of trials significantly compared to other
policies. Having less number of trials for placement enables
instances to be provisioned faster.

VI. RELATED WORK

To the best of our knowledge, this is the first work to
provide a solution to the problem of selecting an availability
zone that satisfies the customer requirements most. However,
there is an extensive work that has been done in the area of
cloud provider selection [7].

In terms of load distribution, an environment is proposed
in [8] whereby load is distributed among a number of data
centers in a cloud (or multiple vendor clouds) in order to
achieve some QoS targets. This results in a federated cloud
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Fig. 7. Average number of trials for different policies.

computing environment (InterCloud) that facilitates just-in-
time, opportunistic, and scalable provisioning of application
services, supporting dynamic expansion or contraction of ca-
pabilities (VMs, services, storage, and database) for handling
sudden variations in service demands.

As for selection for the sake of user satisfaction, the
comparison depends on the criterion and definition of user
satisfaction. Given cost to customers as the satisfaction crite-
rion, [9] describes a splitting algorithm to efficiently split cloud
requests among multiple cloud platforms with the objective of
decreasing cost. Further, several solutions have been proposed
for helping users in cloud selection. Though, they are limited
to the optimization of a specific user’s objective, such as opti-
mizing costs with the goal of decreasing users investment [10],
[11] or reducing risk of service interruptions [12].

The solution approaches to the above-mentioned optimiza-
tion problems are broadly categorized into two approaches:
static and dynamic. In the static approach [13], it is assumed
that the number of required virtual resources is constant and
the cloud provider conditions do not change throughout the
service life-cycle. Conversely, the dynamic approach is more
suitable for variable size services or in the case of changing
cloud provider conditions.

Consequently, one needs an efficient selection algorithm
that runs repetitively. However, the majority of such so-
lutions [14], [15] use linear programming formulations of
the optimization problem, which do not scale when service
properties continuously change over time or even impractical
when provider’s QoS data are unknown.

VII. CONCLUSION

An automated decision making mechanism for cloud avail-
ability zone selection is developed to optimize user satisfac-
tion. Our method employs predictive analytics and machine
learning techniques to learn the unpublished attributes of
availability zones. The models are dynamically updated to
reflect the most recent performance changes in availability
zones. Then, the optimum selection is made based on the
learned behavior of the availability zones.

We compared our selection method to non-predictive selec-
tion methods, which rely on a priori knowledge of unpublished
zone attributes. The results show that the predictive approach
performs better than the non-predictive ones in terms of user
satisfaction, while maintaining high cloud performance.

As future work, we intend to extend our experiments to
more complicated workloads, utility functions, and test in a
real environment. Another extension of this work, which we
wish to pursue, is to investigate the confidence level of the
prediction models and its influence on overall decision making
results, in terms of user satisfaction and cloud performance.
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