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Abstract
Bundle discounts are used by retailers in many industries.
Optimal bundle pricing requires learning the joint distribu-
tion of consumer valuations for the items in the bundle, that
is, how much they are willing to pay for each of the items.
We suppose that a retailer has sales transaction data, and the
corresponding consumer valuations are latent variables. Our
main contribution is the development of a statistically con-
sistent and computationally tractable inference procedure for
fitting a copula model over correlated valuations. Simula-
tions and data experiments demonstrate consistency, scala-
bility, and the importance of incorporating correlations in
the joint distribution.

1 Introduction
Item bundles, when a collection of items are sold together
at a discount, are used across many industries, especially
in retail. Both theoretical and empirical work has shown
that introducing an appropriately priced bundle can signifi-
cantly increase profits, with low risk to the retailer (Eppen
et al., 1991). Even if a bundle has not been previously of-
fered, useful information about how to price the bundle can
be obtained from the sales history of the individual items
included in the bundle. Choosing the optimal bundle price
relies critically on a knowledge of the price consumers are
willing to pay for each item in the bundle, called their val-
uations, as well as the interplay between the valuations of
items in the bundle. A retailer generally does not know the
full, joint distribution of valuations. However, the retailer
likely does have historical sales transaction data for the in-
dividual items. We introduce a procedure for learning the
joint valuation distribution from sales transaction data for
the individual items, thus allowing for optimal bundle pric-
ing.

The economics literature on bundling has extensively
examined the economic efficiency of bundling and when
bundling can be used for price discrimination (Adams &
Yellen, 1976; Schmalensee, 1982; McAfee et al., 1989). These
foundational studies have been extended in many directions.

Several papers have focused on analytical solutions for the
optimal bundle price and other quantities of interest (Venkatesh
& Kamakura, 2003; McCardle et al., 2007; Eckalbar, 2010).
These analytical results were obtained for the special case of
uniformly distributed valuations, with the distributions for
items in the bundle either independent or perfectly corre-
lated. Schmalensee (1984) obtained some analytical results
and insights by assuming the joint distribution to be bivariate
normal. Other results have been obtained for a finite collec-
tion of deterministic valuations (Hanson & Martin, 1990).

A number of useful insights can be gained from these
simplified models (see, for example, Stremersch & Tellis,
2002). However, our main interest is in learning the con-
sumer response to bundling from data. When working with
data, such strong assumptions about the joint distribution,
particularly independence, are no longer appropriate. Je-
didi et al. (2003) eschew independence assumptions and use
methodology based in utility theory to measure valuations.
Their measurement procedure requires offering the bundle
at various prices to elicit the demand function for the bun-
dle. Based on their empirical results, they report that “mod-
els that assume statistical independence are likely to be mis-
specified.” Venkatesh & Mahajan (1993) also study bundle
pricing without distributional assumptions for valuations, by
mailing out questionnaires that directly asked consumers for
their valuations. Conjoint analysis has also been used to es-
timate the valuation distribution from questionnaire data in
the context of bundling (Goldberg et al., 1984; Wuebeker &
Mahajan, 1999).

Our main contribution is to present an inference proce-
dure for predicting the expected change in profits when a
bundle is offered at a particular price. The procedure is de-
veloped for sales transaction data, and does not require col-
lecting sales data for the bundle a priori, nor does it require
direct elicitation of valuations via questionnaires. The pro-
cedure is based on inference of a copula model over latent
consumer valuations, which allows for arbitrary marginal
distributions and does not assume independence. Because
the valuations are unobserved, the likelihood function in-
volves integrating over the latent valuations, and standard
formulas for copula fitting cannot be directly applied. We
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show how these computationally intractable integrals can be
transformed into distribution function evaluations, thus al-
lowing for efficient estimation. Our simulation studies and
data experiments suggest that the inference procedure al-
lows for data-based bundling decisions which can help re-
tailers increase profits.

2 Copula Inference and Bundle Pric-
ing

We suppose that a collection of n items have been selected
as a candidate bundle, and our goal is to determine the op-
timal price and its associated profit if the bundle were to be
introduced1. We consider the situation where the items have
not previously been offered as a bundle, but historical sales
transaction data are available for the individual items.

The transaction data that we consider consist of two com-
ponents: purchase data yt and price data xt. Specifically,
we let yt = [yt1, . . . , y

t
n] denote the sales data for transac-

tion t, with yti = 1 if item i was purchased in transaction t,
and 0 otherwise. We assume that the price of each item at
the time of each transaction is known, and denote the price
of item i at the time of transaction t as xti. Let T denote the
total number of transactions.

2.1 Valuations and Consumer Rationality
We suppose that each consumer has a valuation for each
item, with vti representing the (unobserved) valuation for
item i by the consumer in transaction t. As is done through-
out the bundling literature and much of the economics lit-
erature, we assume that consumers are rational. Specifi-
cally, we model consumers as having infinite budget, and
as purchasing the assortment of items that maximizes their
total consumer surplus (the difference between their valua-
tion and the price):

yt ∈ argmax
y∈{0,1}n

n∑
i=1

(vti − xti)yi. (1)

The rationality assumption implies that yti = 1 if and only if
vti > xti.

2

The rationality assumption provides a model for the re-
lationship between valuations vti and transaction data yti and
xti. Using this model, we now derive likelihood formulas for
inferring a joint distribution of valuations from sales trans-
action data. Then, in Section 2.6 we show how the valuation
distribution can be used to find the optimal bundle price.

1The type of bundle that we consider here is called mixed bundling, in
which consumers are offered both the bundle and the individual items, with
the bundle discounted relative to the sum of the item prices.

2We model vti as a continuous random variable, and thus do not need to
devote attention to the case vti = xt

i .

2.2 Joint Distribution Models and Copula In-
ference

The most straightforward approach to model a joint distri-
bution is to assume independence. This type of joint model
allows for arbitrary margins, however independence is a po-
tentially unreasonable assumption, especially because corre-
lations are quite important for bundling, as we show in Sec-
tion 3. Modeling the joint distribution as a multivariate nor-
mal allows for correlations via a covariance matrix, however
it requires the margins to be normally distributed, which can
also be a strong assumption when learning from data. Here
we model the joint distribution using a copula model, which
is a class of joint distributions that allows for both corre-
lation structures and arbitrary margins. Copula models are
widely used in statistics and finance, and are becoming in-
creasingly utilized for machine learning due to their flexibil-
ity and computational properties (see, for example, Elidan,
2010, 2013).

We assume consumers are homogenous, and model the
consumer valuations vt as independent draws from a joint
distribution with distribution function F (z1, . . . , zn). Our
goal is to infer this joint distribution. Let Fi(zi) be the
marginal cumulative distribution function for item i. Then,
a copula C(·) for F (·) is a distribution function over [0, 1]n

with uniform margins such that

F (z1, . . . , zn) = C(F1(z1), . . . , Fn(zn)).

The copula combines the margins in such a way as to return
the joint distribution. A copula allows for the correlation
structure to be modeled separately from the marginal distri-
butions, in a specific way which we show below. The field
of copula modeling is based on a representation theorem by
Sklar (1973) which shows that every distribution has a cop-
ula, and if the margins are continuous, the copula is unique.
The copula representation for a joint distribution has a num-
ber of interesting properties that are helpful for efficient in-
ference - see Trivedi & Zimmer (2005) for a more detailed
exposition.

Our approach to estimating F (·) will be to choose para-
metric forms for the margins Fi(·) and the copula C(·), and
then find the parameters for which C(F1(z1), . . . , Fn(zn))
is closest to F (z1, . . . , zn), in a likelihood sense. Specif-
ically, suppose each margin is a distribution function with
parameters θi, and the copula distribution belongs to a fam-
ily with parameters φ. We denote the parameterized mar-
gins as Fi(zi;θi) and the parameterized joint distribution
as F (z;θ,φ) = C(F1(z1;θ1), . . . , Fn(zn;θn);φ). We are
interested in the maximum likelihood problem(

θ̂ML, φ̂ML

)
∈ argmax

θ,φ
`(θ,φ),

where `(θ,φ) is the appropriate log-likelihood function. The
main advantage in using a copula model is that the parame-
ters can be separated into those that are specific to one mar-
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gin (θi) and those that are common to all margins (φ). Us-
ing a procedure called inference functions for margins (IFM)
(Joe & Xu, 1996), the optimization can be performed in two
steps. First, each margin is fit independently, and then the
margin estimates are used to fit the correlation structure:

θ̂i ∈ argmax
θi

`i(θi), i = 1, . . . , n (2)

φ̂ ∈ argmax
φ

`(θ̂,φ). (3)

This gives computational tractability by significantly reduc-
ing the dimensionality of the optimization problem that must
be solved. In general, IFM does not yield exactly the maxi-
mum likelihood estimate: (θ̂ML, φ̂ML) 6= (θ̂, φ̂). However,
the IFM estimates (θ̂, φ̂), like the maximum likelihood esti-
mates, are statistically consistent and asymptotically normal
(Joe & Xu, 1996; Xu, 1996).

The inference problem that we face here differs from a
typical copula modeling problem because the distribution of
interest is that over valuations, which are unobserved, latent
variables. In the next two sections, we use the rationality
assumption of (1) to derive tractable likelihood formulas to
be used in (2) and (3).

2.3 Margin Likelihood and Demand Models
We first consider the margin maximum likelihood problem
in (2). Let pi(xti) be the probability of purchase at the price
xti, that is, the demand model for item i. Then, the follow-
ing proposition shows an equivalence between the marginal
valuation distribution function and demand models.

Proposition 1. The demand function and the inverse marginal
valuation distribution function are identical, i.e.,

pi(x
t
i) = 1− Fi(x

t
i;θi).

Proof. By the rationality assumption of (1), item i is pur-
chased if and only if vti > xti:

pi(x
t
i) = P(vti > xti) = 1− Fi(x

t
i;θi).

We thus choose the following likelihood model for the
observed purchase data:

yti ∼ Bernoulli(1− Fi(x
t
i;θi)).

Given data {xti, yti}Tt=1, the log-likelihood function for each
margin is:

`i(θi) =

T∑
t=1

(
yti log(1− Fi(x

t
i;θi))

+ (1− yti) log(Fi(x
t
i;θi))

)
. (4)

If Fi(·;θi) is linear in θi, for example when using a lin-
ear demand model, then the maximum likelihood problem is

a concave maximization. For general demand models, a lo-
cal maximum can easily be found using standard optimiza-
tion techniques. In Section 2.7 we discuss some possible
choices for the family of Fi(·;θi).

2.4 Copula Inference over Latent Variables

Once the margin parameters θ̂i have been estimated by max-
imizing (4), these estimates are used, together with the data,
to obtain an estimate of the copula parameters φ. We now
derive an expression for the log-likelihood function of φ.

`(θ̂,φ) =

T∑
t=1

log p(yt|xt, θ̂,φ)

=

T∑
t=1

log

∫
p(yt|vt,xt, θ̂,φ)p(vt|xt, θ̂,φ)dvt.

(5)

Given vt and xt, yt is deterministic, with yti = 1 if vti > xti
and 0 otherwise. Thus the integral over vt can be limited
to all vt that are consistent with yt and xt, meaning the
integral is over vti > xti for i such that yti = 1, and over
vti ≤ xti for i such that yti = 0. We then define the limits of
integration as,

vt,`i =

{
−∞ if yti = 0,

xti if yti = 1,
and vt,ui =

{
xti if yti = 0,

+∞ if yti = 1.

The quantity p(vt|xt, θ̂,φ) = p(vt|θ̂,φ) is exactly the cop-
ula density function, which we denote as f(·; θ̂,φ). Contin-
uing the likelihood expression from (5), we have,

`(θ̂,φ)

=

T∑
t=1

log

∫ vt,u
n

vt,`
n

. . .

∫ vt,u
1

vt,`
1

f(vt1, . . . , v
t
n; θ̂,φ)dvt1 . . . dv

t
n.

(6)

The integral in (6) renders the likelihood formula intractable.
To allow for efficient inference, we will use the following
formula for a rectangular integral of a probability density
function. This formula is critical to the scalability of our in-
ference procedure as it allows us to replace the multidimen-
sional integral in (6) with distribution function evaluations.

Lemma 1. Let f(·) be a joint probability density function
over continuous random variables z1, . . . , zn with the cor-
responding joint distribution function F (·). Then,∫ zu

n

z`
n

. . .

∫ zu
1

z`
1

f(z1, . . ., zn)dz1 . . . dzn

=

n∑
k=0

(−1)k
∑

I⊆{1,...,n}
|I|=k

F (z̃(I)),
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where

z̃i(I) =

{
z`i if i ∈ I,
zui otherwise.

Proof. For each i, define the probability events Ai = {zi ≤
z`i}. Let B = ∩ni=1{zi ≤ zui }. Then,∫ zu

n

z`
n

. . .

∫ zu
1

z`
1

f(z1, . . . , zn)dz1 . . . dzn

= P (B ∩ (∩ni=1A
c
i))

= P
(
B ∩ (∪ni=1Ai)

c)
= P(B)− P (B ∩ (∪ni=1Ai))

= P(B)− P (∪ni=1 (B ∩Ai))

= P(B)−
n∑

k=1

(−1)k−1
∑

I⊆{1,...,n}
|I|=k

P(B ∩AI)

by the inclusion-exclusion formula, with AI = ∩i∈IAi.
Substituting P(B) = F (zu1 , . . . , z

u
n) and P(B∩AI) = F (z̃(I))

as defined above, we obtain the statement of the lemma.

With Lemma 1, we are now equipped to evaluate the
log-likelihood expression in (6):

`(θ̂,φ) =

T∑
t=1

log

n∑
k=0

(−1)k
∑

I⊆{1,...,n}
|I|=k

F (ṽt(I); θ̂,φ),

(7)
where as before

ṽti(I) =

{
vt,`i if i ∈ I,
vt,ui otherwise.

For the most simple case of two items in a bundle, the ex-
pression evaluates to

2∑
k=0

(−1)k
∑

I⊆{1,2}
|I|=k

F (ṽt1(I), ṽt2(I))

=


F (xt1, x

t
2) if y = (0, 0),

F1(xt1)− F (xt1, x
t
2) if y = (0, 1),

F2(xt2)− F (xt1, x
t
2) if y = (1, 0),

1− F1(xt1)− F2(xt2) + F (xt1, x
t
2) if y = (1, 1).

2.5 Consistency and Scalability
Combining (4) and (7) yields the complete inference proce-
dure, which we give in the following proposition.

Proposition 2. The inference procedure

θ̂i ∈ argmax
θi

T∑
t=1

(
yti log(1− Fi(x

t
i;θi))

+ (1− yti) log(Fi(x
t
i;θi))

)
φ̂ ∈ argmax

φ

T∑
t=1

log

n∑
k=0

(−1)k
∑

I⊆{1,...,n}
|I|=k

F (ṽt(I); θ̂,φ)

is statistically consistent.

Because the inference is exactly the IFM procedure, it
follows from Xu (1996) that it is statistically consistent.

The computation is exponential in the size of the bun-
dle n, however in retail practice bundle offers generally do
not contain a large number of items. Importantly, the com-
putation is linear in the number of transactions T , which
allows inference to be performed even on very large trans-
action databases. The main computational step is evaluat-
ing the copula distribution function in (7). For many copula
models, such as the Gaussian copula which we describe in
Section 2.7, efficient techniques are available for distribu-
tion function evaluation.

2.6 Computing the Optimal Bundle Price
Given the joint valuation distribution, the expected profit per
consumer as a function of item and bundle prices can be
computed. For notational convenience, here we give the re-
sult for n = 2. Consumers are rational, in that they choose
the option (item 1 only, item 2 only, bundle, or no purchase)
that maximizes their surplus vi − xi. For this result, we
assume that the valuation for the bundle is the sum of the
component valuations vB = v1 + v2, although this could
easily be relaxed to other bundle valuation models such as
those in Venkatesh & Kamakura (2003). We denote the cost
per item of item i as ci and assume that the bundle cost is
the sum of the component costs.

Proposition 3. For joint valuation density function f(·) and
joint valuation distribution function F (·), the expected profit
per consumer obtained when items 1, 2, and the bundle are
priced at x1, x2, and xB respectively is

E [profit] = (x1 − c1)(F2(xB − x1)− F (x1, xB − x1))

+ (x2 − c2)(F1(xB − x2)− F (xB − x2, x2))

+ (xB − c1 − c2)

(
1− F1(xB − x2)

− F2(xB − x1) + F (xB − x2, xB − x1)

−
∫ x1

xB−x2

∫ xB−v1

xB−x1

f(v1, v2)dv2dv1

)
The proof relies on Lemma 1 and is given in the Ap-

pendix. The inference procedure from Proposition 2 is used
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to estimate the valuation distribution function, which alows
the expression in Proposition 3 to be evaluated. Maximiz-
ing the expression in Proposition 3 with respect to xB yields
the optimal bundle price. The formula in Proposition 3 is
not concave in general, but a local maximum can be found
using numerical optimization techniques.

2.7 Distributional Assumptions
The likelihood formulas in (4) and (7) hold for arbitrary mar-
gins Fi(·;θi) and an arbitrary copula model C(·;φ). To ap-
ply these formulas to data requires choosing the distribu-
tional form of the margins and the copula family.

The connection between marginal valuation distributions
and demand models given in Proposition 1 shows that the
margin distribution can naturally be selected by choosing an
appropriate demand model. Many retailers already use de-
mand models for sales forecasting, and these existing mod-
els could be directly converted to marginal valuation dis-
tributions. For example, two common choices for demand
models are the linear demand model and the normal-cdf de-
mand model. The linear demand model is

p(xi;βi, ηi) = min(1,max(0, βi − ηixi)),

and the corresponding valuation distribution is in fact a uni-
form distribution:

vi ∼ Unif
(
β − 1

η
,
β

η

)
.

When the demand model is the normal distribution function

p(xi;µi, σ
2
i ) = 1− Φ(xi;µi, σ

2
i ),

the corresponding marginal valuation distribution is the nor-
mal distribution:

vi ∼ N (µi, σ
2
i ).

Remark. Additional covariates like competitor’s prices or
the prices of substitutable and complimentary products are
sometimes used in demand modeling, for instance in a choice
model framework. Even these models can be transformed
into a valuation distribution using Propositon 1.

There is a large selection of copula models, which differ
primarily in the types of correlation they can express. One
of the most popular copula models, and that which we use in
our simulations and data experiments here, is the Gaussian
copula:

C(F1(z1), . . . , Fn(zn);φ) = Φ(F1(z1), . . . , Fn(zn);φ),

where Φ(·;φ) represents the multivariate normal distribu-
tion function with correlation matrix φ. The Gaussian cop-
ula is in essence an extension of the multivariate normal dis-
tribution, in that it extends the multivariate normal correla-
tion structure to arbitrary margins, as opposed to constrain-
ing the margins to be normally distributed. If a correlation
matrix structure is not appropriate to model the dependen-
cies in a particular application, then alternative copula mod-
els are available - see Trivedi & Zimmer (2005).
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Figure 2: Demand models for each of the two items for one
of the simulated datasets. The circles give the empirical pur-
chase probabilities measured from the data, and the lines
show the fitted margin distribution function.

3 Simulation Studies
We demonstrate the inference procedure using a series of
simulation studies. We first use simulations to show empir-
ically how the estimated parameters converge to their true
values as T grows. We then use a simulated dataset to illus-
trate the importance of including correlations in the model.

We generated purchase data for a pair of items using uni-
form marginal valuation distributions and a Gaussian cop-
ula, which for two items is characterized by the correlation
coefficient φ. The correlation coefficient φ was taken from
{−0.9,−0.75,−0.5,−0.25, 0, 0.25, 0.5, 0.75, 0.9} and the
number of transactions T was taken from {100, 250, 500, 750,
1000, 1500, 2000}. For each combination of φ and T , 500
datasets were generated, for a total of 31,500 simulated datasets.
For each dataset, the margin parameters vmin and vmax for
each of the two uniform valuation distributions were chosen
independently at random, to allow the simulations to capture
a large range of margin distributions. The parameter vmin

was chosen from a uniform distribution over [−25, 75] and
vmax chosen from a uniform distribution over [100, 200].
For all simulations, the transactions were spread uniformly
across three price points, with the prices of the two items
taken to be 100 for one third of transactions, 75 for one
third, and 50 for the remaining third. In each simulation,
the copula defined by the combination of the correlation co-
efficient and the margin parameters was used to generate T
sets of valuations for the items. These valuations were com-
bined with the prices under the rationality assumption of (1)
to produce binary purchase data.

We applied the inference procedure in Proposition 2 to
the transaction data, with the goal of recovering the true,
generating copula model. Figure 1 shows that as the number
of transactions grows, both the margin estimates and the cor-
relation coefficient estimates converge to their true values.
This holds for the full range of possible values of the corre-
lation coefficient. In these simulations, only a few thousand
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Figure 3: Change in relative profits from introducing the
bundle at a particular discount relative to the sum of item
prices, as estimated from the true distribution, the fitted cop-
ula model, and a distribution corresponding to the fit mar-
gins but assuming independence.

samples were required to recover the true distribution with
high accuracy, suggesting that these techniques are not lim-
ited to retailers with very large datasets.

To further illustrate the simulation results, we selected
at random a simulated dataset with T = 2000 transactions
and φ = 0.5. We show in Figure 2 the fitted margins for
this particular simulated dataset. The estimated correlation
coefficient, found by minimizing (7), was 0.48. To illus-
trate the potential profitability of bundling, in Figure 3 we
held the item prices at 100 and set the cost per item to the
retailer to a 50% markup, meaning, sales price 50% higher
than the retailer’s cost. We show for a range of bundle dis-
counts the profit relative to the profit obtained in the ab-
sence of a bundle discount. The estimated distribution is
very close to the true distribution, and both reveal that offer-

ing a bundle discount of about 12% will increase profits by
about 10%. Using the same estimated margins but assuming
independence to obtain a joint distribution yields very dif-
ferent results. The predicted profits are much larger than the
true value, and the independence model suggests offering
a larger discount than is optimal. This example highlights
the importance of accounting for correlations in valuations
when estimating the response to bundle discounts.

4 Data Experiments
We provide further illustration of the inference procedure by
applying it to actual retail transaction data. We use the pub-
licly available Ta-Feng dataset, which contains four months
of transaction level data from a Taiwanese warehouse club,
totaling about 120,000 transactions and 24,000 items (Hsu
et al., 2004). After some data pre-processing which is de-
scribed in the Appendix, we selected the three items with
the highest support and considered the three possible bundle
pairs that could be obtained from these items. Throughout
this section we refer to the three items as item 38, item 14,
and item 08 - the full EAN-13 for the items is given in the
Appendix. Note that in these experiments the inference pro-
cedure scales to a much larger dataset than those used in the
simulation studies.

As in Section 3, we model the joint valuation distribution
using linear demand models (uniform marginal valuation
distributions) and a Gaussian copula. In Figure 4 we show
the demand models fit by minimizing (4) for each item. The
correlation coefficients φ for the item-item pairs 38-14, 38-
08, and 14-08 were fit by minimizing (7) and were found to
be 0.085, 0.133, and 0.172 respectively. For each pair, we
took the item prices as the mode of the price distribution in
the data. Since the costs per item are unknown, we set them
by assuming a 50% markup, and report the expected profit
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Figure 4: Fitted marginal distributions for items (A) 38, (B) 14, and (C) 08 from the Ta-Feng retail transaction dataset. The
underset histogram shows the number of transactions for which the item was offered at each price. For each price at which
the item was offered, the circles indicate the purchase probability at that price as measured from the data. The line gives
the model fit.

under various bundle scenarios in Figure 5.
Figure 5 illustrates how, depending on the valuation dis-

tribution, prices, and costs per item, introducing a discounted
bundle can increase profits by up to 7%. In a similar way as
Figure 3, Figure 5 shows that assuming independence can
lead to very different predictions. This further highlights the
importance of including correlations in the valuation distri-
bution model.

5 Discussion and Conclusions
We used copula modeling in the context of an important
business analytics problem, and in the process have devel-
oped new methodological results on learning a copula distri-
bution over latent variables. Business analytics is a budding
application area in machine learning, and our work provides
foundational results for inferring consumer valuations.

The ability to predict the effect of introducing a bundle at
a particular price using only historical sales data is a major
advancement in pricing analytics, and the copula model at
the core of the inference here is flexible enough to be useful
in real applications. Because the copula allows for arbitrary
margins, if a retailer has already developed demand models
for a particular item, the demand model can be used directly
to obtain the marginal valuation distribution. The likelihood
formulas that we derived in this paper provide a theoretically
and computationally sound framework for copula learning
over latent valuations.

6 Appendix
Here we give the proof of Proposition 3, and describe the
data pre-processing done with the Ta-Feng dataset.

6.1 Proof of Proposition 3
The profit can be decomposed into that obtained from each
of the purchase options.

E [profit] = (x1 − c1)P(Purchase item 1 only)

+ (x2 − c2)P(Purchase item 2 only)

+ (xB − c1 − c2)P(Purchase the bundle)

The options no purchase, purchasing item 1 only, pur-
chasing item 2 only, and purchasing the bundle give the
consumer surplus 0, v1 − x1, v2 − x2, and v1 + v2 − xB
respectively. Let us consider the consumers that purchase
only item 1. By the rationality assumption, v1 − x1 ≥ 0,
v1 − x1 ≥ v2 − x2, and v1 − x1 ≥ v1 + v2 − xB . Thus,
after re-arranging,

P(Purchase item 1 only)

= P ({v1 ≥ x1} ∩ {v2 ≤ xB − x1})
= F2(xB − x1)− F (x1, xB − x1),

by Lemma 1. A similar derivation applies to P(Purchase item 2 only).
For the bundle,

P(Purchase the bundle)

= P ({v1 ≥ xB − x2} ∩ {v2 ≥ xB − x1}
∩{v1 + v2 ≥ xB})

= P ({v1 ≥ xB − x2} ∩ {v2 ≥ xB − x1})
− P ({v1 ≥ xB − x2} ∩ {v2 ≥ xB − x1}

∩{v1 + v2 ≤ xB})
= 1− F1(xB − x2)− F2(xB − x1)

+ F (xB − x2, xB − x1)

−
∫ x1

xB−x2

∫ xB−v1

xB−x1

f(v1, v2)dv2dv1,

using Lemma 1.
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Figure 5: Change in relative profits by introducing bundles (A) 38-14, (B) 38-08, and (C) 14-08 as a function of the level
of bundle discount, estimated from the Ta-Feng dataset. In red is the prediction obtained from the fitted copula model, and
in blue is the prediction obtained using the same fitted margins, but assuming independence.

6.2 Data Pre-processing
Each entry in the Ta-Feng dataset corresponds to the sale
of a single item within a transaction. To form the complete
transaction of (potentially) multiple items, we grouped all
sales that occurred on the same day with the same user ID.
For simplicity, we assumed that for each day there was a
single price for each item. If there were multiple prices at
which an item was sold on a given day, we took that day’s
price as the median of the observed prices. If an item was
not sold on a particular day, then we took that day’s price
as the price of the preceding day. To further smooth the
prices, we allowed only prices that covered at least 5% of
transactions, and any price that did not meet that support
threshold was rounded to the nearest price that did. After
removing items that did not have at least three prices in the
data, the three items with the highest support were (EAN-
13) 4714981010038, 4711271000014, and 4710583996008.
In Section 4 we refer to these items by their last two digits.
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