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ON THE p-MEDIAN POLYTOPE AND THE DIRECTED ODD CYCLE

INEQUALITIES II: ORIENTED GRAPHS

MOURAD BAÏOU AND FRANCISCO BARAHONA

Abstract. This is the second part of a study of the odd directed cycle inequalities
in the description of the polytope associated with the p-median problem. We treat
oriented graphs, i.e., if (u, v) is in the arc-set, then (v, u) is not in the arc-set. We
characterize the oriented graphs for which the obvious linear relaxation together with
the directed odd cycle inequalities describe the p-median polytope. In the first part [2],
we treated triangle-free graphs, this is the first step for an induction on the number of
triangles used in the present paper to treat general oriented graphs.

1. Introduction

Let G = (V,A) be a directed graph, not necessarily connected, where each arc (u, v) ∈
A has an associated cost c(u, v). The p-median problem (pMP) consists of selecting p
nodes, usually called centers, and then assign each nonselected node to a selected node.
The goal is to select p nodes that minimize the sum of the costs yielded by the assignment
of the nonselected nodes.

If we associate the variables y to the nodes, and the variables x to the arcs, the
following is a linear relaxation of the pMP.

∑

v∈V

y(v) = p,(1)

y(u) +
∑

v:(u,v)∈A

x(u, v) = 1 ∀u ∈ V,(2)

x(u, v) ≤ y(v) ∀(u, v) ∈ A,(3)

0 ≤ y(v) ∀v ∈ V,(4)

x(u, v) ≥ 0 ∀(u, v) ∈ A.(5)
∑

a∈A(C)

x(a) ≤
|A(C)| − 1

2
for each odd directed cycle C.(6)

We denote by Pp(G) the polytope defined (1)-(5), and by PCp(G) the polytope defined

by (1)-(6). Also let pMP (G) be the convex hull of Pp(G) ∩ {0, 1}|V |+|A|. The p-median
polytope of a graph G is pMP (G). In general we have

pMP (G) ⊆ PCp(G) ⊆ Pp(G).

The purpose of this study is to characterize the oriented graphs G for which

pMP (G) = PCp(G).

A simple cycle C is an ordered sequence v0, a0, v1, a1, . . . , at−1, vt, where
1



2 M. BAÏOU AND F. BARAHONA

• vi, 0 ≤ i ≤ t− 1, are distinct nodes,
• either vi is the tail of ai and vi+1 is the head of ai, or vi is the head of ai and
vi+1 is the tail of ai, for 0 ≤ i ≤ t− 1, and

• v0 = vt.

Let V (C) and A(C) denote the nodes and the arcs of C, respectively. By setting

at = a0, we associate with C three more sets : Ĉ, Ċ and C̃. Each node v is incident to
two arcs a′ and a′′ of C. If v is the head (resp. tail) of both arcs a′ and a′′ then v is in

Ĉ (resp. Ċ) and if v is the head of one of them and a tail of the other, then v is in C̃.

Notice that |Ĉ| = |Ċ|. A cycle will be called g-odd if |C̃| + |Ĉ| is odd, otherwise it

will be called g-even. A cycle C with V (C) = C̃ is a directed cycle, otherwise it is called
a non-directed cycle. The notion of g-odd (g-even) cycles generalizes the notion of odd
(even) directed cycles. The size of C is |V (C)|. A directed cycle of size three will be
called a triangle.

Definition 1. A simple cycle is called a Y -cycle if for every v ∈ Ĉ there is an arc (v, v̄)

in A, where v̄ is in V \ Ċ.

The main theorem of this paper is

Theorem 2. Let G = (V,A) be an oriented graph, then PCp(G) is integral for any
integer p if and only if

(C1) it does not contain as a subgraph neither of the graphs H1, H2 nor H3 of Figure 1,
and

(C2) it does not contain a non-directed g-odd Y -cycle C and an arc (u, v) with neither
u nor v in V (C).

The graphs H1, H2 and H3 are defined in Figure 1 below.

H1 H2 H3

Figure 1

In [2] we proved the following two results.

Theorem 3. Let G = (V,A) be an oriented graph. If G satisfies condition (C1) of
Theorem 2 and does not contain a non-directed g-odd Y -cycle, then PCp(G) is integral,
for any integer p.

Theorem 4. Let G = (V,A) be an oriented graph. If G is triangle-free and satisfies both
conditions (C1) and (C2), then PCp(G) is integral, for any integer p.
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Also in [2] we proved that conditions (C1) and (C2) are necessary. Now, to complete
the proof of Theorem 2, we need to prove the following.

Theorem 5. Let G = (V,A) be an oriented graph containing a non-directed g-odd Y -
cycle and satisfying (C1) and (C2), then PCp(G) is integral, for any integer p.

The proof of this theorem is given in Section 3, it uses Theorem 4 as the starting point
of the induction on the number of triangles in G.

In Section 2 we give some properties of the extreme points of PCp(G) in general
graphs, this will be used for our proof. We finish this section giving some definitions that
will be used extensively, and a previous result on the p-median polytope that will also
be used.

For W ⊂ V , we denote by δ+(W ) the set of arcs (u, v) ∈ A, with u ∈ W and v ∈ V \W .
Also we denote by δ−(W ) the set of arcs (u, v), with v ∈ W and u ∈ V \W . We write
δ+(v) and δ−(v) instead of δ+({v}) and δ−({v}), respectively.

Definition 6. A node that has one arc entering it, and no arc leaving it is called a
pendent node.

Definition 7. The graph G(s, t) is obtained from G by removing the arc (s, t) and adding
the arc (s, t′) with t′ a new pendent node.

Definition 8. When dealing with a vector z ∈ PCp(G), we say that the arc (u, v) is
tight if

z(u, v) = z(v).

In [1] we characterized the oriented graphs for which Pp(G) is integral, as follows.

Theorem 9. Let G = (V,A) be an oriented graph, then Pp(G) is integral if and only if

• (i) it does not contain as a subgraph any of the graphs F1, F2 or F3 of Figure 2,
and

• (ii) it does not contain a g-odd Y -cycle C and an arc (u, v) with neither u nor v
in V (C).

Notice that condition (ii) forbids an odd directed cycle C with an extra arc whose
endnodes are not in C, whereas condition (C2) of Theorem 2 allows this configuration.

F1 F2 F3

Figure 2
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u v

w

s

t

Figure 3. The graph H.

2. Some useful properties of the extreme points of PCp(G)

Here we present some operations on the graph, and we discuss their consequences on
the polytope.

Let H be the graph of Figure 3. Let G1 be any directed graph and define G to be the
graph obtained by composing H and G1 as follows: pick any two distinct nodes in G1,
call them u′ and v′ and join the graphs G1 and H by adding the arcs (u′, u) and (v′, v),
see Figure 4.

Define G′
1 to be the graph defined from G by removing the node w and its incident

arcs and by adding the arc (t, w′), where w′ is a new pendent node. Define G′′
1 to be the

graph obtained from G′
1 by adding an arc (s′, t′) where both s′ and t′ are new nodes, so

t′ is a pendent node. The graphs G′
1 and G′′

1 are represented in Figure 4.

u v

w

s

t

u′ v′
G1

G

u v

w′

t

u′ v′
G1

u v

w′

s′

t

t′

u′ v′
G1

G′

1
G′′

1

Figure 4. The graphs G, G′
1 and G′′

1.

Lemma 10. If PCp(G
′
1) and PCp+1(G

′′
1) are integral, then PCp(G) does not have a

fractional extreme point z, with z(t, w) > 0.

Proof. Assume that PCp(G
′
1) and PCp+1(G

′′
1) are integral. Let z be such a fractional

extreme point of PCp(G), with z(t, w) > 0. We distinguish two cases, the arc (s, w) is
tight or not. Before the study of these cases let us notice two useful facts.

Remark 11. By the definition of G any odd directed cycle is completely included in G1

or in H.
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Remark 12. The definition of H and the validity of z imply that the arcs (w, v) and
(w, u) are not tight.

Proof. Assume that (w, v) is tight. Then z(w, v) = z(v) = 1− z(v, t). But then the odd
cycle inequality z(w, v) + z(v, t) + z(t, w) ≤ 1 implies z(t, w) = 0.

The proof in the other case is similar. �

Case 1. z(s, w) = z(w).

Define z′1 to be the restriction of z on G′
1 with z′1(t, w

′) = z(t, w) and z′1(w
′) = 1.

Notice that the fact that z(s, w) = z(w) and the validity of z imply that z(s)+z(w) = 1.
Therefore, by definition z′1 ∈ PCp(G

′
1). Since by hypothesis, PCp(G

′
1) is integral this

implies that z′1 may be written as a convex combination of 0-1 vectors in PCp(G
′
1) that

satisfy with equation each constraint among (1)-(6) that is satisfied with equation by z′1.
Among these solutions choose one, z∗, with z∗(t) = 0. Notice that, z∗(u) = z∗(v) = 1.

Define the solution zH1 as follows: zH1 (t, w) = zH1 (s, w) = zH1 (w) = 1; zH1 (u) = zH1 (v) =
1; and zH1 (·) = 0 for all other nodes and arcs of H.

From zH1 and z∗ we will define z̄ ∈ PCp(G) as follows. Every arc and node that
belongs to H and G takes the value of zH1 ; otherwise it takes the value of z∗. Formally,

z̄(r) =

{

zH1 (r) if r ∈ V (H),
z∗(r) if r ∈ V (G1),

z̄(r, q) =















zH1 (r, q) if (r, q) ∈ E(H),
z∗(r, q) if (r, q) ∈ E(G1),
z∗(u′, u) if (r, q) = (u′, u),
z∗(v′, v) if (r, q) = (v′, v),

It is easy to check that z̄ ∈ PCp(G). Remarks 11 and 12 help to establish that every
constraint in PCp(G) that is satisfied with equation by z is also satisfied with equation
by z̄. This is a contradiction with the fact that z is an extreme point of PCp(G).

Case 2. z(s, w) < z(w).

Let δ = z(w)− z(s, w). The validity of z imply that z(s)+ z(w) = 1+ δ. The solution
z′1 as defined in Case 1 does not belong to any polytope PCn(G

′
1) with n integer, since

∑

z′1(v) = p− δ is fractional. Hence we need another valid transformation which is the
graph G′′

1. Define z′′1 to be the restriction of z on G′′
1 with z′′1 (t, w

′) = z(t, w); z′′1 (w
′) = 1;

z′′1 (s
′) = δ; z′′1 (s

′, t′) = 1− δ and z′′1 (t
′) = 1. It is clear that z′′1 ∈ PCp+1(G

′′
1). Therefore,

since PCp+1(G
′′
1) is integral the solution z′′1 may be written as a convex combination

of 0-1 solutions of PCp+1(G
′′
1) that satisfy with equation each constraint among (1)-(6)

that is satisfied with equation by z′′1 . Among these solutions choose the one, where the
variable associated with t is zero. Call this solution z∗. Notice that if z∗(s′) = 0, then the
solution z̄ as defined in Case 1 belongs to PCp(G) and yields to the same contradiction
as above. Let us assume that z∗(s′) = 1, in this case the solution z̄ as defined above is no
longer in PCp(G) but it belongs to PCp−1(G). To transform z̄ to a solution in PCp(G)
it is sufficient to transform zH1 , the solution associated with the graph H and defined in
Case 1. We define zH2 as follows: zH2 (s, w) = 0 and zH2 (s) = 1; otherwise zH2 (·) = zH1 (·).
We define z̄ ∈ PCp(G) as in Case 1 where zH1 is exchanged with zH2 .

Here also we obtain the same contradiction as in the previous case. Notice that
z̄(s, w) = zH2 (s, w) = 0 < z̄(w) = zH2 (w) = 1. But recall that we also have z(s, w) < z(w).

�
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Let H ′ be the graph of Figure 3, but without the node s and the arc (s, w). Let G1

be any directed graph and define G′ to be the graph obtained by composing H ′ and G1

as follows: take any two distinct nodes in G1, call them u′ and w′ and join the graphs
G1 and H ′ by adding the arcs (u′, u) and (w′, w), see Figure 5.

Define G∗
1 to be the graph defined from G′ by removing the node v and t and their

incident arcs and by adding the arcs (u, t′), (w, s) and (s, t′′), where s, t′ and t′′ are new
nodes and t′ and t′′ are pendent nodes. Define G∗

2 to be the graph obtained from G′ by
removing w and t and their incident arcs and by adding the arcs (u, v), (w′, v) and (v, t′)
where t′ is a new pendent node. The graphs G∗

1 and G∗
2 are shown in Figure 5.

u

w

w′

s

t′ t′′

u′

G1

u

w′

t′

v

u′

G1

G∗

1
G∗

2

u v

w

t

u′

w′

G1

G′

Figure 5. The graphs G′, G∗
1 and G∗

2.

Lemma 13. If PCp+1(G
∗
1) and PCp(G

∗
2) are integral, then PCp(G) does not have a

fractional extreme point z with z(w, u) > 0, z(w, v) > 0, z(t, w) > 0, z(v, t) > 0.

Proof. Assume that PCp+1(G
∗
1) and PCp(G

∗
2) are integral but PCp(G) is not.

Let z be a fractional extreme point of PCp(G). First notice that the validity of z
implies that the arcs (w, u), (u, t), and (w, v) are not tight. This fact will be used
implicitly in the proof. Let ∆1 = {(w, v), (v, t), (t, w)} and ∆2 = {(w, u), (u, t), (t, w)}.
We need the two relations below.

• We have z(∆1) < 1 .
To prove it assume that z(∆1) = z(w, v)+z(v, t)+z(t, w) = 1. By the validity

of z we have z(v, t) = 1−z(v) and z(t, w) = 1−z(t). Combining with z(∆1) = 1,
we obtain

z(v) + z(t) = 1 + z(w, v).(7)

Define from z a solution z∗1 ∈ PCp+1(G
∗
1) as follows: z

∗
1(w, s) = z∗1(s) = z(w, v),

z∗1(s, t
′′) = 1 − z(w, v); z∗(u, t′) = z(u, t) and z∗1(t

′) = z∗1(t
′′) = 1; for all other

arcs and nodes we set z∗1(·) = z(·). Using (7) and the definition of z∗1 , it is
easy to check that

∑

z∗1(v) = p + 1. It is obvious to see that z∗1 ∈ PCp+1(G
∗
1).

Since PCp+1(G
∗
1) is integral, we may choose a 0-1 solution in PCp+1(G

∗
1), call

it z1 that satisfies with equation each constraint that is satisfied with equation
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by z∗1 , where z1(w, u) = 1. From z1 one can define z̄ ∈ PCp(G
′) as follows:

z̄(w) = z̄(t, w) = z̄(w, v) = z̄(v) = 0; z̄(v, t) = z̄(t) = 1; z̄(u, t) = 0 and otherwise
z̄(·) = z1(·). It is obvious to see that z̄ contradicts the fact that z is an extreme
point of PCp(G

′.
• We have z(∆2) = 1.

Otherwise, from the claim above we have z(∆1) < 1, and the solution obtained
from z by adding a sufficiently small positive scalar ǫ to z(w, v) and removing
this same value from z(w, u) contradicts the fact that z is extreme.

• We should have z(t, w) = z(w).
Otherwise the solution obtained from z by adding a some positive scalar ǫ to

z(w, u), z(v, t) and to z(t) and removing this same value from z(w, v), z(v) and
z(t, w); we obtain a solution that satisfies with equation each constraint that z
satisfies with equation.

Hence we may assume that

z(∆1) < 1,(8)

z(∆2) = 1,(9)

z(t, w) = z(w).(10)

Combining z(t, w) = z(w) and z(t, w) = 1− z(t), we obtain

z(w) + z(t) = 1.(11)

From (9) we have z(w, u) + z(u, t) + z(t, w) = 1. The validity of z implies that
z(w, u) = 1− z(w)− z(w, v). Combining these two last equations with (10) we obtain

z(w, v) = z(u, t).(12)

From (8) and (10), we have z(w) + z(w, v) < z(v). Therefore, we may conclude that

z(w) < z(v).(13)

Let us define z∗2 ∈ PCp(G
∗
2) from z as follows: z∗2(u, v) = z(u, t); z∗2(w

′, v) = z(w′, w);
z∗(v, t′) = z(v, t) and z∗2(t

′) = 1; otherwise z∗2(·) = z(·).

By definition we have
∑

z∗2(v) = p. We also have by the definition of z∗2 , the validity
of z and (12) and (13), that z∗2(u, v) = z(u, t) = z(w, v) ≤ z(v) = z∗2(v) and z∗2(w

′, v) =
z(w′, w) ≤ z(w) < z(v) = z∗2(v). The validity of the other constraints is straightforward.

Let z1 be a 0-1 solution of PCp(G
∗
2) with z1(v) = 0 that satisfies with equation each

constraint that z∗2 satisfies with equation.

Since z1(v) = 0, its validity imply that z1(w
′, v) = 0; z1(u, v) = 0; z1(u) = 1;

z1(v, t
′) = 1.

Then z̄ ∈ PCp(G
′) is defined as follows:

z̄(u) = z̄(w, u) = z̄(t) = z̄(v, t) = 1,

z̄(w′, w) = z̄(t, w) = z̄(w) = z̄(u, t) = z̄(v) = z̄(w, v) = 0,

z̄(·) = z1(·) for all other arcs and nodes.
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It is a simple exercise to check that z̄ ∈ PCp(G
′) and that it satisfies with equation

each constraint that is satisfied with equation by z. �

Lemma 14. If the following statements hold

(i) z is a fractional extreme point of PCp(G),
(ii) The only inequality of PCp(G) that z satisfies with equation is z(s, t)− z(t) ≤ 0,

and
(iii) PCp+1(G(s, t)) is integral,

then z(s, t) = z(t) = 1
2 .

Proof. Assume that (i), (ii) and (iii) hold.

Let z′ be the restriction of z on G(s, t) with z′(s, t′) = z(s, t) and z′(t′) = 1. Clearly
z′ ∈ PCp+1(G(s, t)). Since PCp+1(G(s, t)) is integral and since z′ is fractional, z′ may be

written as convex combination of 0-1 solutions of PCp+1(G(s, t)), z1, . . . , zl, where each
constraint of PCp+1(G(s, t)) that is satisfied with equation by z′ is also satisfied with
equation by each solution zi, i = 1, . . . , l. We have

z′ =
l

∑

i=1

λizi,(14)

l
∑

i=1

λi = 1,(15)

λi ≥ 0, i = 1, . . . , l.(16)

Assume first that there exist one solution among z1, . . . , zl, say z1 with z1(s, t′) = z1(t).
Define z̄ from z1 as follows: z̄(·) = z1(·) except for the arc (s, t) we set z̄(s, t) = z1(s, t′) =
z1(t). The solution z̄ as defined belongs to PCp(G). Moreover, it satisfies with equation
each constraint that is satisfied with equation by z, this is due to (ii). This contradicts
the fact that z is an extreme point of PCp(G). Thus in each solution zi for i = 1, . . . , l,
we have zi(s, t′) 6= zi(t). From the system (14)-(16), there exist 0 ≤ l1 ≤ l, such that

l1
∑

i=1

λi = z′(s, t′),(17)

l
∑

i=l1+1

λi = z′(t).(18)

Since z′(s, t) is fractional we have that l1 < l. And since by definition z′(s, t′) = z(s, t),
z′(t) = z(t) and that from (ii) z(s, t) = z(t) so z′(s, t′) = z′(t) . This combined with (17),
(18) and (15) imply that z′(s, t′) = z′(t) = 1

2 . Therefore we have

z(s, t) = z(t) =
1

2
.

�
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3. Proof of Theorem 5

Here we use induction on the number of triangles to prove Theorem 5. Recall that if
there is no non-directed g-odd Y -cycle, the result follows from Theorem 3, and if there
is no triangle it follows from Theorem 4.

We assume that the oriented graph G = (V,A) satisfies conditions (C1) and (C2) of
Theorem 2, it contains a non-directed g-odd Y -cycle, and that z is a fractional extreme
point of PCp(G). Based on this we plan to arrive to a contradiction. In [2], Lemmas
14-16, we showed that arcs (u, v) with z(u, v) = 0 can be removed, and nodes v with
δ+(v) = ∅ can be splitted. Thus we assume that G and z have the following properties:

• z(u, v) > 0 for all (u, v) ∈ A,
• z(v) > 0 for all v ∈ V with |δ−(v)| ≥ 1, and
• |δ−(v)| = 1, for every node v with δ+(v) = ∅, i.e., v is a pendent node.

These properties will be used implicitly throughout the paper.

Let ∆(G) be the set of triangles in G. We assume that |∆(G)| = m + 1 and that
PCp(G

′) is integral for any graph G′ satisfying (C1) and (C2), with |∆(G′)| ≤ m, and
for any value p. This is our induction hypothesis.

We start with some Lemmas.

3.1. Some useful lemmas.

Lemma 15. Let (s, t) be an arc that does not belong to any odd cycle such that its
associated inequality is tight. If PCp+1(G(s, t)) is integral, then z(s, t) = z(t).

Proof. Assume that z(s, t) < z(t). We define z′ ∈ PCp+1(G(s, t)), where z′(s, t′) =
z(s, t), z′(t′) = 1, z′() = z() for all other nodes and arcs. Since PCp+1(G(s, t)) is
integral, z′ can be written as convex combination of 0− 1 vectors in PCp+1(G(s, t)) that
satisffy with equation every constraint of PCp+1(G(s, t)) that is satisffied with equation
by z′. Among these vectors there is one, z̄, with z̄(s, t′) = 0.

Then we define z̃ ∈ PCp(G), where z̃(s, t) = z̄(s, t′), z̃() = z̄() for all other nodes and
arcs. With the exception of z(s, t) ≤ z(t), z̃ satisfies with equation all other constraints
of PCp(G) that z satisfies with equation. Since z is an extreme point, the only possibility
is to have z̃(s, t) < z̃(t) and z(s, t) = z(t). �

Lemma 16. Let (s, t) be an arc of a triangle ∆ = {(s, t), (t, w), (w, s)} in G, with
z(s, t) < z(t). If (s, t) does not belong to any odd directed cycle different from ∆, whose
associated inequality is satisffied with equation, then PCp+1(G(s, t)) is not integral.

Proof. Assume that PCp+1(G(s, t)) is an integral polytope. Let z′ the solution defined
from z as follows: z′(u, v) = z(u, v) for all (u, v) ∈ A, different from (s, t′) and z′(s, t′) =
z(s, t); z′(u) = z(u) for all u ∈ V and z′(t′) = 1. It is clear that z′ ∈ PCp+1(G(s, t)).

Since PCp+1(G(s, t)) is integral, z′ is a convex combination of 0-1 vectors in
PCp+1(G(s, t)). Among them there is a vector, call it z∗, with z∗(w, s) = 1. This
imply that z∗(s) = 1; z∗(s, t′) = 0; z∗(w) = 0, z∗(t, w) = 0.

From z∗ construct a solution z̄ as follows: z̄(u, v) = z∗(u, v) for all (u, v) ∈ A, (u, v) 6=
(s, t); z̄(s, t) = 0; and z̄(u) = z∗(u) for each u ∈ V . Notice that z̄(∆) = 1, and since (s, t)
does not belong to any other odd directed cycle whose associated inequality is tight, each
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inequality tight for z remains tight for z̄. This contradicts the fact that z is an extreme
point of PCp(G). �

u2

u3

u1

u4

Figure 6. A cycle of size four in bold with δ+(u3) = δ−(u1) = {(u3, u1)}.

Lemma 17. Assume that G contains the cycle

C = u1, (u1, u2), u2, (u2, u3), u3, (u4, u3), u4, (u1, u4), u1,

with δ+(u3) = δ−(u1) = {(u3, u1)}, see Figure 6. Then both graphs G(u2, u3) and
G(u4, u3) satisfy conditions (C1) and (C2).

Proof. We give the proof for G(u2, u3), the other proof is similar. It is straightforward
that G(u2, u3) does not contain H2. And since δ−(u1) = δ+(u3) = {(u3, u1)}, then the
configuration H1 cannot occur, otherwise it is also present in G. Also if H3 is present, it
would also be present in G.

Now suppose that (C2) is not satisfied. Let C ′ be a non-directed g-odd Y -cycle in
G(u2, u3), with both nodes u2 and u′3 not in V (C ′). This cycle is also a non-directed
g-odd Y -cycle in G. But since G satisfies (C2), the node u3 must belong to V (C ′) and
by definition (u4, u3) and (u3, u1) belong to A(C ′). Then (u1, u4) also belongs to C ′ and
we obtain the triangle induced by {u1, u3, u4}. �

Lemma 18. There is no intersection between two odd directed cycles having both size at
least five.

Proof. Assume that C1 and C2 are such cycles. Suppose that (u, v) ∈ C1 \ C2, (w, v) ∈
C2 \ C1, and (v, t) ∈ C1 ∩ C2. Then in order to not have H1, we should have an arc
(t, u) ∈ C2 \ C1 and an arc (t, w) ∈ C1 \ C2.

With the same argument, in order to not have H1, we obtain blocks defined as follows.
For k = 3j + 1, j = 0, . . . , 2p, each block Bj contains

• the nodes vk, vk+1, vk+2, vk+3, and
• the arcs (vk, vk+1) ∈ C1, (vk+1, vk+2) ∈ C1 ∩ C2, (vk+2, vk+3) ∈ C1, (vk+2, vk) ∈
C2, (vk+3, vk+1) ∈ C2,

with v6p+4 = v1.

Because of (C1), the only other arcs that the graph could contain are (vk, z), with
z /∈ C1 ∪ C2, in each block Bj . See Figure 7.

For each block Bj we have the triangle Tj = {(vk, vk+1), (vk+1, vk+2), (vk+2, vk)} and
T ′
j = {(vk+1, vk+2), (vk+2, vk+3), (vk+3, vk+1)}.

If we add the inequalities associated with C1 and C2 we obtain

z(C1) + z(C2) ≤ 6p+ 2.
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v2

v3

v4
v1

z

Figure 7. The cycles C1 and C2. The arcs in C1 \ C2 appear in dashed
lines. The arcs in C2 \ C1 appear with dotted lines. The arcs in C1 ∩ C2

appear in solid lines. Arcs not in C1 ∪ C2 appear with double lines.

Adding the inequalities associated with the triangles we have

z(C1) + z(C2) =
∑

j

(

z(Tj) + z(T ′
j)
)

≤ 4p+ 2.

Therefore we cannot have z(C1) = 3p+ 1 and z(C2) = 3p+ 1 at the same time.

So assume that z(C1) < 3p + 1. We also have z(v1, v2) < z(v2), otherwise we would
have z(v3, v1) = 0. Now we build G(v1, v2). Let z′ be the solution defined from z as
follows:

• z′(u, v) = z(u, v) for all (u, v) ∈ A, (u, v) 6= (v1, v2), and z′(v1, v
′
2) = z(v1, v2);

• z′(u) = z(u) for all u ∈ V and z′(v′2) = 1.

It is clear that z′ ∈ PCp+1(G(v1, v2)). From Lemma 17 the graph G(v1, v2) satisfy condi-
tions (C1) and (C2), so the induction hypothesis applies and we have that PCp+1(G(v1, v2))
is integral. Thus z′ is a convex combination of 0 − 1 vectors in PCp+1(G(v1, v2)), and
among them there is a vector z∗, with z∗(v3, v1) = 1. This implies that z∗(v1) = 1;
z∗(v1, v

′
2) = 0; z∗(v3) = 0, z∗(v2, v3) = 0; z∗(v2) = 1. See Figure 8.

v2

v3

v4v1

1

0

0

1

0

v′2

1

1

Figure 8

From z∗ construct a solution z̄ as follows:

• z̄(u, v) = z∗(u, v) for all (u, v) ∈ A, (u, v) 6= (v1, v2); z̄(v1, v2) = 0;
• and z̄(u) = z∗(u) for each u ∈ V .
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Notice that z̄(v1, v2) + z̄(v2, v3) + z̄(v3, v1) = 1 and since (v1, v2) does not belongs to
any other directed cycle whose associated inequality is tight, then any tight odd directed
cycle inequality for z remains tight for z̄. Therefore, each inequality tight for z remains
tight for z̄, which contradicts the fact that z is an extreme point of PCp(G). �

Lemma 19. G does not contain a cycle

C = u1, (u1, u2), u2, (u2, u3), u3, (u4, u3), u4, (u1, u4), u1,

where δ+(u3) = δ−(u1) = {(u3, u1)}. See Figure 6.

Proof. Assume that G contains the cycle C. We will prove that both the induction
hypothesis and that of Lemma 16 hold forG(u2, u3) orG(u4, u3), which is a contradiction.

Notice that the validity of z imply

z(u2, u3) < z(u3),(19)

z(u4, u3) < z(u3).(20)

It is clear that at least one of the arcs (u2, u3) or (u4, u3) does not belong to any other
odd directed cycle different from the triangles ∆1 = {(u1, u2), (u2, u3), (u3, u1)} and ∆2 =
{(u1, u4), (u4, u3), (u3, u1)}. Otherwise, they belong to two different odd directed cycle
of size at least five that have the common arc (u3, u1), but this contradicts Lemma 18.

As a consequence, Lemma 16 applies for G(u2, u3) or for G(u4, u3). Hence

PCp+1(G(u2, u3)) or PCp+1(G(u4, u3)) is not integral .(21)

From Lemma 17 the graphs G(u2, u3) and G(u4, u3) satisfy conditions (C1) and (C2).
Therefore, the induction hypothesis applies for both graphs G(u2, u3) and G(u4, u3),
which implies that PCp+1(G(u2, u3)) and PCp+1(G(u4, u3)) are integral. This contra-
dicts (21). �

u1 u2

u3

Figure 9. A triangle with δ+(u3) = {(u3, u1)}; δ
−(u3) = {(u2, u3)} and

δ+(u2) = {u2, u3)}

Lemma 20. G does not contain a triangle ∆ = {(u1, u2), (u2, u3), (u3, u1)}, with δ+(u3) =
{(u3, u1)}, δ

−(u3) = {(u2, u3)} and δ+(u2) = {u2, u3)}, see Figure 9.

Proof. By hypothesis, we have δ+(u2) = {(u2, u3)}. Combining this with the validity
of z we obtain that z(u1, u2) < z(u2). Notice that the only odd directed cycle that
contains (u1, u2) is ∆. So Lemma 16 applies for ∆ and the arc (u1, u2) and it implies
that PCp+1(G(u1, u2)) is not integral. By the lemma hypothesis it is easy to establish
that G(u1, u2) satisfies condition (C1). Assume that G(u1, u2) contains a g-odd Y -cycle
C ′ such that both nodes u1 and u′2 are not in C ′. So C ′ is also a g-odd Y -cycle in G and



p-MEDIAN POLYTOPE AND DIRECTED CYCLES 13

since G satisfies condition (C2), u2 must be in V (C ′) but not u1. Because of (C2), u3
should be in C ′ that is impossible.

Thus the induction hypothesis applies, and we have a contradiction, since we have
shown above that PCp+1(G(u1, u2)) is not integral. �

Lemma 21. Let ∆ = {(u, v), (v, w), (w, u)}. If δ−({u, v, w}) = ∅, and u, v and w have
a neighbor in V \ {u, v, w} and none in common, then G(s, t) satisfies conditions (C1)
and (C2) for any arc (s, t) ∈ ∆.

Proof. Let (s, t) = (u, v). It is easy to see that G(u, v) satisfies (C1). Now we have to
see that G(u, v) satisfies (C2).

Suppose that C is a non-directed g-odd Y -cycle in G(u, v), and that u and v′ are not
in V (C). Since G satisfies (C2), the nodes v and w should be in V (C). We have the two
cases below.

Case 1: v, w ∈ Ċ. Let P1 and P2 be the two paths in C between v and w. One of these
two paths, P1 say, together with (v, w) form a g-odd Y -cycle. Condition (C2) implies
that P2 should consist of exactly two arcs. Let (w, t) and (v, t) be these two arcs, we
have a contradiction because v and w should not have a common neighbor different from
u.

Case 2: v ∈ Ċ and w ∈ C̃. Let v̄ and w̄ the neighbors of v and w, respectively, in C.
Also recall that there is an arc (u, ū) with ū /∈ {u, v, w}. The node ū must be in V (C),
otherwise C with (u, ū) violates (C2) in G. Let P1 be the path in C between w̄ and ū
not containing v̄, and P2 the path between ū and v̄ not containing w̄.

Recall from the lemma hypothesis ū, v̄ and w̄ are different. Let C1 the cycle obtained
by joining P1 with (u, ū), (w, u) and (w, w̄). This is a Y -cycle, it must be g-even otherwise
C1 and (v, v̄) would violate (C2) in G. It implies that the cycle C2 obtained from C1

by removing (w, u) and adding (u, v) and (v, w) is a g-odd Y -cycle. Then the path P2

consists of one arc, otherwise (C2) is violated. If P2 consists of the arc (v̄, ū) then the
cycle induced by {u, ū, v, v̄} is a g-odd Y -cycle and with (w, w̄) it violates (C2). If the
arc (ū, v̄) exists, we obtain the same violation of (C2). �

Lemma 22. Let ∆ = {(u, v), (v, w), (w, u)}. If δ−({u, v, w}) = ∅, and u, v and w have
no neighbor in common, then at least one of the arcs of ∆ is not tight.

Proof. Assume that all arcs in ∆ are tight. Notice that in this case each node of ∆ has
a neighbor outside ∆. We have the two cases below.

Case 1. z(∆) < 1. Take any arc of ∆, say (u, v), and consider the graph G(u, v).
Let z′ be the restriction of z on G(u, v) with z′(u, v′) = z(u, v) and z′(v′) = 1. Clearly
z′ ∈ PCp+1(G(u, v)). Since from Lemma 21, G(u, v) satisfies (C1) and (C2) and has less
triangles than G, then from the induction hypothesis we have that PCp+1(G(u, v)) is
integral. Notice that Lemma 14 applies with (s, t) = (u, v). Statement (i) holds. To see
that (ii) holds, notice that the arc (u, v) belongs to no other odd directed cycle other
than ∆, and that z(∆) < 1. So z(u, v) = z(v) is the unique tight inequality in PCp(G)
that contains the variable z(u, v). Statement (iii) holds by the induction hypothesis.
Therefore, Lemma 14 implies that

z(u, v) = z(v) =
1

2
.

By symmetry we have the same for each arc of ∆. This implies that z(∆) = 3
2 , which is

impossible.
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Case 2. z(∆) = 1. This implies z(δ+({u, v, w})) = 1. Here we build a graph
G′ by removing {u, v, w}, adding the node s, and the arcs (s, j) for each arc (i, j) ∈
δ+({u, v, w}). The graph G′ is a simple oriented graph, and it is easy to see that it
satisfies (C1) and (C2). We define z′ below.

• z′(i, j) = z(i, j) for all (i, j) ∈ A, (i, j) /∈ δ+({u, v, w}) ∪∆.
• z′(s, j) = z(i, j) for all (i, j) ∈ δ+({u, v, w}).
• z′(i) = z(i) for all i ∈ V \∆ and z′(s) = 0.

We have that z′ ∈ PCp−1(G
′). From the induction hypothesis we have that PCp−1(G

′)
is integral, therefore z′ is a convex combination of integral extreme points that satisfy
with equation the same constraints that z′ does. Let z∗ be one of these vectors. We
define z̄ ∈ PCp(G) as follows.

• z̄(i, j) = z∗(i, j) for all (i, j) ∈ A, (i, j) /∈ δ+({u, v, w}) ∪∆.
• z̄(i, j) = z∗(s, j) for all (i, j) ∈ δ+({u, v, w}).
• z̄(i) = z∗(i) for all i ∈ V \∆.
• Suppose that z∗(s, j) = 1 and (s, j) is associated with (u, j). Then we set z̄(u) =
z̄(v) = 0, z̄(w) = 1, z̄(v, w) = 1, z̄(u, v) = z̄(w, u) = 0.

Then z̄ ∈ PCp(G) and it satisfies with equation all constraints that are tight for z, a
contradiction. �

3.2. Intersection of a triangle with a g-odd Y -cycle. Now we assume that G con-
tains a non-directed g-odd Y -cycle C. Recall that G satisfies conditions (C1) and (C2)
and that z is an extreme fractional point of PCp(G). Also we assume that

• z(u, v) > 0 for all (u, v) ∈ A,
• z(v) > 0 for all v ∈ V with |δ−(v)| ≥ 1, and
• |δ−(v)| = 1, for every node v with δ+(v) = ∅, i.e., v is a pendent node.

Let ∆ = {(u, v), (v, w), (w, u)} be a triangle, condition (C2) implies that at least two
nodes of ∆ are in C. Furthermore, it follows from Lemmas 27, 28 and 29 in the Appendix,
that the configurations to be studied are the following.

• Only the arc (u, v) is in C, and w is not in C.
• The arcs (v, w) and (w, v) are in C.

They appear in Figures 10. Let u′ (resp. v′) be the neighbors in C of u (resp. v) that
are different from w.

Lemma 23. In case (c1) we have

(i) δ+(w) = {(w, u)},
(ii) δ−(u) = {(w, u)},
(iii) δ−(w) = {(v, w)},
(iv) the only common neighbor of u and v is w.

Proof. (i) Let (w, ū) be an arc in A with ū 6= u. To avoid H1 we should have ū = v′.
Also we should have δ+(v) = {(v, w)}, otherwise we would have H3. If there is
an arc (w̄, w), w̄ 6= v, we must have w̄ = u′. But then we also have H3. Thus
δ−(w) = {(v, w)}. Then we have a contradiction with Lemma 19.

(ii) Assume δ−(u) 6= {(w, u)}. Let (ū, u) ∈ A, with ū 6= w. Assume that there is
an arc (v, v̄) with v̄ 6= w. To avoid H1 we must have v̄ = ū. Then the arcs
(v, ū), (ū, u), (u, u′), (u, v), (w, u) and (v, w) induce H3.
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u v

w

(a1) (b1) (c1) (d1)

(a2) (b2) (c2) (d2)

Figure 10. The cycle C is in bold. The different cases depend upon u
and v are in Ċ, C̃, or Ĉ.

Hence we may assume that δ+(v) = {(v, w)}. If δ−(w) = {(v, w)}, then
Lemma 20 applies to ∆ = {(u, v), (v, w), (w, u)}. So we may assume that there is
an arc (w̄, w), w̄ 6= v. To avoid H1 we must have w̄ = u′. The arc (u′, ū) cannot
exist, otherwise the nodes u′, ū, u, v, w induce H3. Thus there is exactly one arc
leaving u′, (u′, w), and exactly two arcs entering it (u, u′) and (u′′, u′), otherwise
we have H1 or H2 is present. Both arcs (u, u′) and (u′′, u′) belong to C. And
from (i), δ+(w) = {(w, u)}. See Figure 11.

u

v

w

u′

u′′ v′

ū

u

v

w

u′

u′′ v′

ū

ū

u

v

w

u′

u′′ v′

(a) (b) (c)

s

Figure 11. The cycle C is in bold. In all the cases the remaining arcs
of G have both endnodes in V \ {u, v, w, u′}.

We treat the different possibilities of ū. By definition ū /∈ {u, v, w, u′}. Also
u′′ 6= v′, otherwise C is g-even.

– ū ∈ {v′, u′′}. In any case we create a g-odd Y -cycle and (C2) implies that
ū = v′ = u′′. But in this case C is g-even.

– ū ∈ V (C). See Figure 11 (b). Define C1 the cycle obtained by joining the
path from ū to v′ with the arcs (ū, u), (u, v) and (v′, v). Also define C2 to be
the cycle obtained from C1 by removing (u, v) and adding (v, w) and (w, u).
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Notice that these two cycles have different parity. Since C is a Y -cycle then
they are both Y -cycles. Since u′′ 6= v′, and ū 6= u′′, the cycle C1 or C2 with
the arc (u′′, u′) violate (C2), a contradiction.

– ū is adjacent to a node s in C. If s = u′ we would have H3. If s = u′′, the
nodes u, u′, u′′, ū, induce a non-directed g-odd Y -cycle, that together with
(v, w) violate (C2). Thus the node s must be in the path of C joining u′′

to v′ that does not contain u, see Figure 11 (c). Now we consider the cycle
C1 that joins the path between s and v′, the arc between s and ū and the
arcs (ū, u), (u, v) and (v′, v). And define C2 to be the cycle defined from
C1 by removing (u, v) and adding (v, w) and (w, u). These two cycles have
the same properties as the cycles of the previous case and lead to the same
contradiction.

From this discussion we may assume that the unique neighbor of ū is u as
pictured in Figure 11 (a). We will apply Lemma 10. The graph H of this
lemma induced by the nodes u, v, w, u′ and ū. Also notice that G′

1 and G′
2 as

constructed in Lemma 10 satisfy conditions (C1) and (C2). Condition (C1) is
obviously satisfied and (C2) also since none of these two graphs contains a non-
directed g-odd Y -cycle. Moreover both graphs have less triangles than G. Hence
the induction hypothesis applies and implies that PCp(G

′
1) and PCp+1(G

′
2) are

integral. Therefore Lemma 10 applies and implies that z(w, u) = 0, which is
impossible.

(iii) As above if there is an arc (w̄, w), w̄ 6= v, we should have w̄ = u′. Based on (i)
and (ii) we have that the cycle induced by {u′, u, v, w} contradicts Lemma 19.

(iv) Let t be a common neighbor of u and v, t 6= w. First we have to show that t 6= v′.
Suppose that the arc (u, v′) exists. We have two cases.

– If v′ ∈ Ċ, then we can remove from C the arcs (u, v) and (v′, v) and add
(u, v′). This gives us a new non-directed g-odd Y -cycle that together with
(v, w) violate (C2).

– If v′ ∈ C̃ then the graph H1 is present.
Now we assume that t 6= v′, and it follows from (C1) and (ii) that (v, t) and

(u, t) are the only arcs that can make this possible. We have two cases.
– If t /∈ V (C), since t is not pendent, and because of (C2), there is an arc (t, t̄)

with t̄ ∈ V (C). Since the cycle induced by {t, u, v, w} is a g-odd Y -cycle,
condition (C2) implies that C is of size three and g-even.

– If t ∈ V (C), we need two remarks.
∗ We should have u′ 6= t, otherwise (C2) implies that C is of size four
with (u′, v′) an arc of C. Now if we consider the triangle
{(v, u′), (u′, v′), (v′, v)} with the cycle induced by the nodes u, u′, v, w,
we have the situation of case (c1), where v play the role of u and v′

the role of w. Then from (ii) we must have δ−(v) = {(v′, v)}, which is
impossible since (u, v) is an arc with u 6= v′.

∗ Condition (C1) implies that t ∈ Ċ. Denote by C ′ the cycle induced by
{t, u, v, w}. This is a non-directed g-odd Y -cycle, then (C2) implies

that C should be of size five, and u′ ∈ Ĉ. Then there is an arc (u′, r).
Condition (C2) implies r ∈ C ′, but it is impossible because of (C1)
and (iii). �

Lemma 24. In case (b1) we have

(i) δ−(w) = {(v, w)},
(ii) δ+(v) = {(v, w)},
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(iii) δ+(w) = {(w, u)}.

Proof. (i) δ−(w) = {(v, w)}.
Consider an arc (w̄, w), w̄ 6= v. We need two observations.
– w̄ /∈ V (C) \ {u, v, u′, v′}.

To see this assume that w̄ ∈ V (C) \ {u, v, u′, v′}. First notice that w̄ /∈ Ĉ,
because H1 would be present. Let P1 be the path in C from w̄ to v not
containing u. Let P2 be the path in C from w̄ to u not containing v. Let C1

be the cycle formed by P1, (v, w) and (w̄, w). Let C2 be the cycle formed
by P2, (w, u) and (w̄, w). Depending on the parity of P1, one of these two
cycles is a non-directed g-odd Y -cycle that leads to the violation of (C2).
See Figure 22 in the Appendix.

– w̄ = u′. In this case the nodes {u′, u, v, w} induce a g-odd Y -cycle. Then
condition (C2) implies that C is of size four and hence there is an arc in C
between u′ and v′.

∗ (u′, v′) ∈ A. To satisfy conditions (C1) and (C2) we must have
that G consist of the cycle C with the arcs (u′, w), (v, w), (w, u) and
eventually the arc (w, v′), and arcs incident to u′, (u′, s) and (t, u′)
with s, t /∈ {u, v, w, u′, v′}. Suppose that the arc (w, v′) exists. The
unique odd directed cycles are ∆ = {(u, v), (v, w), (w, u)} and ∆′ =
{(v, w), (w, v′), (v′, v)}. Moreover, the arcs (u, v), (w, u), (v′, v) and
(w, v′) are not tight, otherwise at least one of the inequalities associ-
ated with ∆ and ∆′ is violated. Therefore the labeling l in Figure 12 (a)
produces a solution zl that satisfies the same equation system satisfied
by z this contradicts the fact that z is an extreme point.
If the arc (w, v′) does not exist, then the unique odd directed cycle is
∆ and all its arcs are not tight. In this case we consider the labeling
shown in Figure 12 (b).

∗ (v′, u′) ∈ A. If we had the arc (w, v′), we would obtain H3 after remov-
ing (u, v) and (u′, u). Thus (w, v′) is not present, and to satisfy (C1)
and (C2), the only other possible arc is (u′, s) with s /∈ {u, v, w, u′, v′},
see Figure 12 (c). The same labeling as before leads to a contradiction.

– w̄ = v′. This case reduces to the previous one. We rename u′ by v′, v′ by
u′, v by w, w by u and u by v.

u
′ v′

u v

w

−

−

−

+

+

+

u
′ v′

u v

w

−

+

+

−

+

− +

−

u′ v
′

u v

w

−

−

−

+

+

+

(a) (b)

(
)

Figure 12. The different simple configurations of the graph G.

(ii) δ+(v) = {(v, w)}. We need several remarks.
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– If there is an arc (v, v̄), v̄ 6= w, condition (C1) implies v̄ = u′. This implies

u′ ∈ C̃, otherwise (C1) implies that (u′, v′) ∈ A(C) and the cycle C with the
arcs (v, u′) and (v, w) induces the forbidden configuration H3.

– If there is an arc (u, ū), then the cycle induced by {u′, u, v, w} with the arcs
(u, ū) and (u, v)) induce H3.

– If there is an arc (w, w̄), condition (C1) implies that w̄ = v′. Then the cycle
induced by {v′, v, u, w} with the arcs (v, u′) and (v, w) induce H3.

– Now assume that (u′, ū) ∈ A, ū 6= u. From (C1) we have ū = v′. Then the
cycle induced by {u′, v′, u, v} with the arcs (v, u′) and (v, w) induce H3.

– Based on all remarks above, and (i), we apply Lemma 13, where the graph
induced by {u, v, w, t} in the lemma is exactly the graph induced by the
nodes {u′, w, v, u}. It is easy to see that the graphs G∗

1 and G∗
2 defined

in Lemma 13, satisfy (C1) and (C2). From the induction hypothesis we
have that both PCp+1(G

∗
1) and PCp(G

∗
2) are integral and hence Lemma 13

applies, but z is an extreme point of PCp(G) that contradicts this lemma.
(iii) δ+(w) = {(w, u)}. If there is an arc (w, w̄), w̄ 6= u, we must have w̄ = v′, because

of (C1). Then using (i) and (ii) Lemma 19 applies. �

Lemma 25. In case (a1) we have

(i) δ−(u) = {(w, u)},
(ii) δ+(w) = {(w, u)},
(iii) δ−(w) = {(v, w)}.
(iv) The only common neighbor of u and v is w.

Proof. (i) δ−(u) = {(w, u)}.
Assume that there is an arc (ū, u), ū 6= w. Then (C1) implies ū = v′. The

cycle induced by {u, v, v′, w} with the arcs (u, v) and (u, u′) induce H3.
(ii) δ+(w) = {(w, u)}.

If there is an arc (w, w̄), with w̄ 6= u, then (C2) implies w̄ ∈ V (C). This arc
creates one or two new non-directed g-odd Y -cycles that together with (C2) lead
to one of the following.

– either a violation of (C2),
– or a contradiction on the parity of C,
– or to the conclusion that |V (C)| = 4, see Figure 23 in the Appendix.
If |V (C)| = 4, then we must have (u′, v′) or (v′, u′) in A(C). If (u′, v′) exists,

to avoid H2 we must have that w̄ = u′. Since C is a Y -cycle we must have an arc
(v′, v̄). Since the cycle induced by {u, v, w, u′} is a g-odd Y -cycle, (C2) implies
that v̄ = w but then H1 is present. Now if (v′, u′) exists, we must have w̄ = v′

and again since C is a Y -cycle there is an arc (u′, ū). We cannot have ū = v,
otherwise H1 is present, and since {u, v, w, v′} induces a g-odd Y -cycle condition
(C2) implies that ū = w. Now the cycle induces by {u, v, w, u′} with the arcs
(w, u) and (w, v′) induce H3.

(iii) δ−(w) = {(v, w)}.
If there is an arc (w̄, w), with w̄ 6= v, then (C1) implies w̄ = u′. Then because

of (i) and (ii) we can apply Lemma 19.
(iv) Assume that s is a common neighbor of u and v, s 6= w. It follows from (i) that

(u, s) ∈ A. We have two cases.
– If (v, s) ∈ A, we have an undirected g-odd Y -cycle C ′ induced by {u, v, w, s}.

If s /∈ V (C), then there is at least one arc a of C in the path joining u′ with
v′ that does not contain nor u nor v. This arc a together with C ′ would
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violate (C2). If s = v′, then the cycle induce by {u, v, w, v′} is a g-odd
Y -cycle which implies that C is of size four and from (C1) we must have

the arc (v′, u′) in C. So u′ ∈ Ĉ and it must exists an arc (u′, ū). From (iii)
and (C2) we must have ū = v; but then H1 is present. In the case s = u′,
(C2) would lead to a contradiction. If s ∈ V (C) and s 6= u′, v′, since C ′ is
a g-odd Y -cycle condition (C2) implies that both arcs (s, v′) and (s, u′) are

in C. We have v′ ∈ Ĉ and there is an arc (v′, t) from (i) and (iii), t 6= u,w.
Hence C ′ with the arc (v′, t) violates (C2).

– If (s, v) ∈ A, then to avoid H1 the arc (v′, s) is in A. Then the arcs
(v′, s), (u, s), (s, v) and (v, w) form H1. �

u1

u2

u3

Figure 13

Lemma 26. G does no contain a triangle ∆ = {(u1, u2), (u2, u3), (u3, u1)}, with

(i) δ+(u3) = δ−(u1) = {(u3, u1)},
(ii) δ−(u3) = {(u2, u3)},
(iii) u1 and u2 have only u3 as a common neighbor.

See Figure 13.

Proof. Conditions (C1) and (C2) hold for G(u1, u2) and G(u2, u3). Both graphs satisfy
the induction hypothesis, so PCp+1(G(u1, u2)) and PCp+1(G(u2, u3)) are integral.

Now we need the remarks below.

• Since ∆ is the only directed cycle that contains (u1, u2), Lemma 16 and the fact
that PCp+1(G(u1, u2)) is integral imply

(22) z(u1, u2) = z(u2).

• Let z′ ∈ PCp+1(G(u1, u2)) be defined as z′(u1, u
′
2) = z(u1, u2), z′(u′2) = 1,

z′(u, v) = z(u, v), z′(v) = z(v) for every other arc and node of G(u1, u2). Since
PCp+1(G(u1, u2) is integral, z′ is a convex combination of 0 − 1 vectors in
PCp+1(G(u1, u2) that satisfy with equation every constraint that z′ does.

Among these vectors there is one, z∗, with z∗(u2, u3) = 1. This implies
z∗(u3) = 1, z(u3, u1) = 0. From this vector we define z̄ ∈ PCp(G), as follows:

– if z∗(u1, u
′
2) = 0, define z̄(u1, u2) = 0, z̄(u1) = z∗(u1),

– if z∗(u1, u
′
2) = 1, define z̄(u1, u2) = 0, z̄(u1) = 1,

– z̄(u, v) = z∗(u, v), z̄(v) = z∗(v), for all other arcs and nodes of G.
If z(u3, u1) < z(u1) then z̄ satisfies with equation every constraint that z does,

we have a contradiction, so we must assume that

(23) z(u3, u1) = z(u1).
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• Since all arc variables have a nonzero value, and z(∆) ≤ 1, we should have

(24) z(u2, u3) < z(u3).

• Now we have to prove that z(∆) = 1. Notice that |δ+(u2)| ≥ 2, otherwise (22)
and z(∆) ≤ 1 imply z(u3, u1) = 0. So assume that (u2, v) ∈ A, v 6= u3. Consider
the vector z′ ∈ PCp+1(u1, u2) defined above. Then z′ is convex combination of
0 − 1 vectors in PCp+1(u1, u2) that satisfy with equation every constraint that
z′ does. Among them there is one, z∗ say, with z∗(u2, v) = 1. This implies
z∗(u2) = z∗(u2, u3) = 0. From z∗ we define z̄ as follows.

– If z∗(u3) = 1, z∗(u3, u1) = z∗(u1) = 0, we have two cases:
∗ If z∗(u1, u

′
2) = 1, then set z̄(u1, u2) = 0, z̄(u1) = z̄(u3, u1) = 1,

z̄(u3) = 0; z̄(u, v) = z∗(u, v), z̄(v) = z∗(v), for all other arcs and
nodes of G. Notice that in this case any odd directed cycle containing
(u2, u3) and (u3, u1) and different from ∆ is not tight for z.

∗ If z∗(u1, u
′
2) = 0, then set z̄(u1, u2) = 0, and z̄(u, v) = z∗(u, v), z̄(v) =

z∗(v), for all other arcs and nodes of G.
– If z∗(u3) = 0, z∗(u3, u1) = z∗(u1) = 1, z∗(u1, u

′
2) = 0, then set z̄(u1, u2) = 0

and z̄(u, v) = z∗(u, v), z̄(v) = z∗(v), for all other arcs and nodes of G.
It is easy to see that z̄ ∈ PCp(G). If z(∆) < 1 then each inequality that is

tight for z is also tight for z̄, and we have a contradiction. So we have to assume
that

(25) z(∆) = 1.

• If (u2, u3) does not belong to an odd directed cycle other than ∆, then (24) and
Lemma 16 contradict the fact that PCp+1(G(u2, u3)) is integral. So we assume
that (u2, u3) belongs to an odd directed cycle C ′, different from ∆. Furthermore

(26) z(A(C ′)) =
|C ′| − 1

2
.

Now we discuss some properties of C ′.
– Let P ′ be the directed path in C ′ from u1 to u2, not containing u3. Then

P ′ together with the arc (u1, u2) form a non-directed g-odd Y -cycle C ′′.
Condition (C2) implies that every arc in A has at least one endnode in
V (C ′′).

– Let (s, t) ∈ A, with t ∈ V (C ′′), then in order to avoid H1, we should have
s ∈ V (C ′′).

– For the arc (s, t) mentioned above, let (t, u), (u, s) be the two arcs in the
path from t to s in C ′. If we remove (t, u) and (u, s) from C ′ and add
(s, t) we obtain a non-directed g-odd Y -cycle D that intersects the triangle
∆′ = {(s, t), (t, u), (u, s)} as in case (c1), and Lemma 23 applies.

– This implies that any other directed cycle is a triangle, and it intersects C ′′

as in (c1). Therefore Lemma 23 applies.
• Now consider a graph G′ obtained by shrinking ∆. That is we remove the nodes
u1, u2, u3 and add a node ū that is incident to the arcs in G that were incident
to u1 and u2, except the arc (u1, u2). Because of hypothesis (iii), we obtain an
oriented graph with no multiple arcs. Since δ−(u1) = {(u3, u1)}, condition (C1)
is satisfied. It is also easy to see that condition (C2) remains satisfied. Let z′ be
the restriction of z to G′ and z′(ū) = z(u2).
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Now we prove that z′(ū) + z′(δ+(ū)) = 1 and
∑

z′(u) = p− 1. We have

z(u3) + z(u3, u1) = 1(27)

z(u1) + z(u1, u2) + z(δ+(u1) \ {(u1, u2)}) = 1(28)

z(u2) + z(u2, u3) + z(δ+(u2) \ {(u2, u3)}) = 1.(29)

To see that
∑

z′(u) = p− 1 we combine (27) and (23).
We have

z′(ū) + z′(δ+(ū)) = z(u2) + z(δ+(u1) \ {(u1, u2)}) + z(δ+(u2) \ {(u2, u3)}),

then the combination of (28), (29), (23) and (25) gives z′(ū) + z′(δ+(ū)) = 1.
• In the graph G′ the cycle C ′ is transformed into an odd directed cycle C̄, where
A(C̄) = A(C ′) \ {(u2, u3), (u3, u1)}. Since z(u2, u3) + z(u3, u1) < 1, then (26)
implies

(30) z′(A(C̄)) >
|C̄| − 1

2
.

We conclude that z′ /∈ PCp−1(G
′) and z′ ∈ Pp−1(G

′). Since all triangles satisfy
the Lemma hypothesis, we can repeat this procedure k times, where k is the
number of triangles. Then we obtain a graph G∗ with no triangles, and and a
vector z∗ with z∗ /∈ PCp−k(G

∗) and z∗ ∈ Pp−k(G
∗). The graph G∗ does not

contain an odd directed cycle other than C̄. If condition (ii) of Theorem 9 was
violated by C̄ and some arc, then condition (C2) would be violated by this same
arc and the cycle C ′′ defined above. Thus we have a contradiction, because it
follows from Theorem 9 that Pp−k(G

∗) is integral and therefore PCp−k(G
∗) =

Pp−k(G
∗). �

3.3. Final part in the proof of Theorem 5. If there is a triangle, condition (C2)
implies that it should intersect C. Now we consider the different intersection cases.

• In Case (a1) we use Lemmas 25 and 26.
• In Case (b1) Lemmas 20 and 24 give a contradiction.
• In Case (c1) Lemmas 23 and 26 give a contradiction.
• In Case (d1), to avoid H1 we should have u′ = v′, but in this case C has size
three.

• In Case (d2), to avoid H1 we should have u′ = v′. This implies that C is not a
Y -cycle, otherwise H3 is present.

• In Case (c2) consider the cycle C ′ obtained from C by removing (v, w), (w, u)
and adding (u, v). Then C ′ is also a g-odd Y -cycle and is treated as in Case (c1).

Now it remains the Cases (a2) and (b2).

3.3.1. Treatment of Case (a2). We need several remarks.

(1) We should have δ−(u) = {(w, u)}. Otherwise if there is an arc (ū, u), we should
have ū = v′, to avoid H1. But then H3 is present.

(2) Also we have δ−(w) = {(v, w)}. Otherwise consider an arc (w̄, w). To avoid H1

we should have u′ = w̄. It follows from (1) and Lemma 19 that there is an arc
(w, w̄), with w̄ 6= u. But then H3 is present.

(3) Now we study δ−(v).
– Assume that δ−(v) = {(u, v)}. From (1) and (2) we have δ−({u, v, w}) =

∅. To apply Lemma 22 assume first that two nodes in {u, v, w} have a
common neighbor p /∈ {u, v, w}. Since p is not pendent, there is an arc
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(p, q), q /∈ {u, v, w}. Thus {p, u, v, w} induces an undirected g-odd Y -cycle.
If p /∈ {u′, v′}, condition (C2) implies that p is a neighbor of u′ and v′ in C.

And condition (C1) implies that p ∈ Ċ. This implies that C is g-even. Thus
we should have p ∈ {u′, v′}. In this case since δ−({u, v, w}) = ∅, H1 must
be present.
Thus Lemma 22 implies that at least one of the arcs in the triangle ∆,
induced by {u, v, w} is not tight. Denote by (s, t) this arc. Let us see that
G(s, t) satisfies the induction hypothesis. Obviously, it satisfies (C1) and
has less triangles than G. Now we need three remarks to discuss (C2).

∗ If t has no neighbor outside the triangle then t = w, and (C2) follows
easily.

∗ If there is a node r in ∆ with no neighbor in V \ {u, v, w} then r =
w, and the arc (v, w) must be non tight, otherwise the inequality
associated with ∆ is violated. Then the remark above applies.

∗ It remains the case when the three nodes in ∆ have a neighbor in
V \{u, v, w}. Then Lemma 21 implies that (C2) is satisfied by G(s, t).

Thus the induction hypothesis implies that PCp+1(G(s, t)) is integral. Since
(s, t) does not belong to another directed cycle, Lemma 16 implies that
PCp+1(G(s, t)) is not integral, a contradiction.

– Assume now that δ−(v) 6= {(u, v)}. So there is an arc (v̄, v), v̄ 6= u. In order
to avoid H1 and because of (1), there is a unique arc leaving v′, this is (v′, v̄).
If v̄ is not in C, then the cycle C and the triangle induced by {v′, v̄, v}
correspond to the case (c1) already treated. Thus now we assume that
v̄ ∈ C. We have to study δ+(w).

∗ Assume that δ+(w) = {(w, u)}. To apply Lemma 26, first we have
to show that the unique common neighbor of u and v is w. Suppose
that s is another common neighbor. From (1) we have that (u, s) ∈ A.
Here we have two cases:

• If (s, v) ∈ A, to avoid H2 we should have v̄ = s. Then the graph
H1 is given by (v′, v̄), (u, v̄), (v̄, v) and (v, w).

• If (v, s) ∈ A then the nodes {u, v, w, s} induces a g-odd Y -
cycle C ′.
If s is not in C then (v′, v̄) and C ′ violate (C2).
If s is in C, then we have two more cases. If s 6= v′ then (v′, v̄)
and C ′ violate (C2). If s = v′, then (C2) implies v̄ = u and C is
g-even.

We have shown that the unique common neighbor of u and v is w,
then Lemma 26 gives a contradiction.

∗ Now we assume that δ+(w) 6= {(w, u)}. Then (w, w̄) ∈ A, with w̄ 6= u.
To avoid H1 we should have w̄ = v̄. Then the arcs (v, v′), (v′, v̄), (v, w)
and (w, v̄) form a g-odd cycle C ′. Since there are already two arcs
entering v̄, and in order to avoid H2 there are no more arcs entering
v̄. Since v̄ is in C, there is an arc, other than (v̄, v), leaving v̄. Thus
C ′ is a Y -cycle, and since it is g-odd the arc (u, u′) violates (C2).

3.3.2. Treatment of Case (b2). We need several remarks.

(1) We should assume that δ+(w) = {(w, u)}.
Assume the opposite, i.e., (w, w̄) ∈ A, with w̄ 6= u. In order to avoid H1, we

need w̄ = v′. If v′ ∈ Ċ then the cycle C together with the triangle induced by
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{v′, v, w} correspond to the Case (a2) already treated. If v′ ∈ C̃ we have the
Case (c2).

(2) We should assume that δ+(v) = {(v, w)}.
If there is an arc (v, v̄), to avoid H1 we should have v̄ = u′. If u′ ∈ Ċ then

to avoid H1 we should have that (u′, v′) ∈ C, but then C would be g-even. If

u′ ∈ C̃, then the path in C between u′ and v containing v′, and the arc (v, u′)
form a g-odd Y -cycle C ′. The cycle C ′ and the arc (w, u) violate (C2).

(3) If δ−(w) = {(v, w)}, then Lemma 20 gives a contradiction.
(4) Assume that δ−(w) 6= {(v, w)}. So there is an arc (w̄, w) with w̄ 6= v. Below we

give some observations about this arc.
• If w̄ ∈ {u′, v′} there is a g-odd Y -cycle C ′ that together with condition (C2)
forces C to be g-even.

• If w̄ is adjacent to either u′ or v′, there is g-odd Y -cycle C ′ that intersects
the triangle ∆ as in (b1).

• If w̄ ∈ V (C) \ {u, v, u′, v′}, we should have w̄ /∈ Ĉ, otherwise H1 is present.
This creates a new non-directed g-odd Y -cycle that leads to a violation of
(C2) or to a contradiction on the parity of C. See Figure 24 in the Appendix.

• If w̄ is adjacent to a node in V (C) \ {u, v, u′, v′}, we should have w̄ /∈ Ĉ,
otherwise (C1) is violated. This creates a new non-directed g-odd Y -cycle
that leads to a violation of (C2), see Figures 25 and 26 in the Appendix; or
we could have one of the configurations in Figure 14.
To treat these four cases we need the following remarks.

∗ There is no arc (u, ū) with ū 6= v. Otherwise, the only possibility to
avoid H1 is ū = w̄, but then the cycle C with the triangle induced by
{u, w̄, w} correspond to the case (b1) treated before. With this remark
and because of (1) and (2), we can assume that the arcs in the triangle
do not belong to any other directed cycle and none of them is tight.

∗ Let R = {r, s, t} be the set of nodes in C not in ∆. If there is any
other directed cycle D, it follows from (C2) that every arc in D should
be incident to at least one node in R. Thus D has size at most five. If
D has size five, one arc in C creates a triangle with two arcs of D that
intersects C as in one of the cases already treated. If D is a triangle,
it also intersects C as in one of the cases already treated.

∗ Thus we can assume that the only directed odd cycle is the triangle ∆.
Also condition (C1) implies that there is no other arc entering a node
that has a non-zero label in the figure. Thus the labels in the figure
give a new vector that satisfies with equation the same constraints as
z, and we have a contradiction.

• We cannot have the arcs (u, w̄), (w̄, u), (w̄, v) and (v, w̄). From the discussion
above we may assume that w̄ /∈ V (C). Obviously the arcs (w̄, u) and (w̄, v)
cannot exist otherwiseH2 is present. If (u, w̄) exists we would have a triangle
that intersects C as in (b1). If (v, w̄) exists, the graph H1 would be present.

Thus we have that w̄ is not in V (C) and is only adjacent to w. To avoid H1

we should have δ+(u) = {(u, v)}.
Condition (C2) implies that any non-directed g-odd Y -cycle should contain w,

and therefore it should contain (u′, u) and (v′, v). Thus the graphs G(u′, u) and
G(v′, v) do not contain a non-directed g-odd Y -cycle, and satisfy (C1). Theorem 3
implies that PCp+1(G(u′, u)) and PCp+1(G(v′, v)) are integral. Moreover, the
arcs (u′, u) and (v′, v) do not belong to any odd directed cycle, then Lemma 16
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implies that z(u′, u) = z(u) and z(v′, v) = z(v). These are the only inequalities
containing z(u′, u) and z(v′, v) in the definition of PCp(G) that are satisfied with
equation by z. Lemma 14 implies that z(u′, u) = z(u) = 1/2 and z(v′, v) = z(v) =
1/2. Thus z(u, v) = z(v, w) = 1/2, and since z(∆) ≤ 1 we have z(w, u) = 0, a
contradiction.
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4. Concluding remarks

We have completed the characterization of the oriented graphs for which PCp(G)
defines the p-median polytope. This was done in two parts: In [2] we treated graphs
without a non-directed g-odd Y -cycle, and graphs with no triangle. In this second paper
we treated graphs with a non-directed g-odd Y -cycle and with triangles. Here we had to
use induction on the number of triangles.

Odd cycle inequalities are among the simplest classes of inequalities that one can use
to improve a linear relaxation of the p-median problem. Their separation problem can
be easily reduced to a shortest path problem. Here we identified the oriented graphs for
which these are the only extra inequalities needed.
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5. Appendix

Lemma 27. Consider a triangle ∆ = {(u, v), (v, w), (w, u)}, and a non-directed g-odd
Y -cycle C. If none of the arcs of ∆ is in C, but its three nodes are in C, then either the
graph H1 is present, or there is another non-directed g-odd Y -cycle containing one arc
of ∆.

Proof. If w ∈ C̃ either the graph H1 is present, or there is another non-directed g-odd
Y -cycle containing one arc of ∆. See Figure 15.

If w ∈ Ċ, either H1 is present or there is another non-directed g-odd Y -cycle of smaller
size, containing one arc of ∆. See Figure 16.

�
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H1 H1

H1

H1

H1

Figure 15

H1 H1

Figure 16

Lemma 28. Consider a triangle ∆ = {(u, v), (v, w), (w, u)}, and a non-directed g-odd
Y -cycle C. If none of the arcs of ∆ is in C, and the nodes u and w are in C, then either
the graph H1 is present, or there is another non-directed g-odd Y -cycle containing one
or two arcs of ∆.

Proof. If w ∈ C̃ either the graph H1 is present, or there is another non-directed g-odd
Y -cycle containing one arc of ∆. See Figure 17.

If w ∈ Ċ, then there is another non-directed g-odd Y -cycle containing two arcs of ∆.
See Figure 18.

H1

H1

H1

Figure 17

Lemma 29. Consider a triangle ∆ = {(u, v), (v, w), (w, u)}. If ∆ intersects a non-
directed g-odd Y -cycle C in the arc (u, v), and the node w is in C, then either condition
(C1) is violated, or there is another non-directed g-odd Y -cycle that either intersects ∆
in two arcs, or in one arc and no other node.

Proof. The proof consists of two parts.
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Figure 18

• Suppose that w ∈ C̃. Then either the graph H1 or H3 is present, or there is a
non-directed g-odd Y -cycle that intersects ∆ in one arc and no other node. In
Figures 19 and 20 we show the possible configurations.

H1 H1 H1

Figure 19

H1H1 H3

Figure 20

• Suppose that w ∈ Ċ. Then either we have H1 or there is another non-directed
g-odd Y -cycle that either intersects ∆ in two arcs, or in one arc and no other
node. In Figure 21 we show the possible configurations.

H1H1

Figure 21

�
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g-odd

g-odd

e

o

Figure 22. Case (b1). The labels ”o” or ”e” refer to the parity of a path.

o

e

(C2) implies a parity 
ontradi
tion

(C2) implies |V (C)| = 4(C2) violated

(C2) implies |V (C)| = 4(C2) violated

e

o

(C2) violated

e

o

Figure 23. Case (a1). The labels ”o” or ”e” refer to the parity of a
path. Non-directed g-odd Y -cycles are depicted with dashed lines.
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Parity
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tion

Figure 24. Case (b2). The labels ”o” or ”e” refer to the parity of a path.

e

o

e

o

Figure 25. Case (b2). The labels ”o” or ”e” refer to the parity of a
path. Non-directed g-odd Y -cycles are depicted with dashed lines.
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o

e

o

e

Figure 26. Case (b2). The labels ”o” or ”e” refer to the parity of a
path. Non-directed g-odd Y -cycles are depicted with dashed lines.


