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Abstract. With stochastic integer programming as the motivating ap-
plication, we investigate techniques to use integrality information to ob-
tain improved cuts within a Benders decomposition algorithm. We con-
sider two options: (i) cut-and-project, where integrality information is
used to derive cuts in the extended variable space, and Benders cuts are
then used to project the resulting improved relaxation, and (ii) project-
and-cut, where integrality information is used to derive cuts directly in
the projected space defined by Benders cuts. We analyze the use of split
cuts in these two approaches, and demonstrate that although they yield
equivalent relaxations when considering a single split, cut-and-project
yields stronger relaxations in general when using multiple splits. Com-
putational results illustrate that the difference can be very large, and
demonstrate that using split cuts within the cut-and-project framework
can significantly outperform other general purpose methods.

1 Introduction

In this paper, we study large scale mixed-integer programs arising from two-
stage stochastic integer programs (SIP) and develop techniques that use inte-
grality constraints on the first stage variables to strengthen Benders inequalities
generated within the decomposition algorithm. The problems we are interested
have the following block-structure form

min cx+
∑
k∈K

pkd
kyk (1)

Ax ≥ b, x ∈ Zq
+ × Rn−q

+

T kx+W kyk ≥ hk, yk ∈ Rt
+ for all k ∈ K

where, K is a finite index set for scenarios, c ∈ Rn, b ∈ Rl, 0 ≤ q ≤ n, and for each
k ∈ K, pk > 0, hk ∈ Rm, dk ∈ Rt, and T k and W k are matrices of appropriate
size. In this formulation, variables x are called the first-stage variables and when
they are fixed, the problem decomposes into subproblems, one for each scenario
k ∈ K. Variables yk for k ∈ K, on the other hand, are referred to as recourse
variables. This formulation is also called the extensive formulation of the SIP.

When the set K is large, solving (1) directly may not be feasible due to its
size. As a result, the stochastic programming literature has focused on methods
for solving (1) via decomposition. Two common decomposition approaches are



dual decomposition [1, 2], and Benders decomposition, which is also called the L-
shaped method [3]. Both methods solve a relaxation of (1) to obtain lower bounds
and use these bounds in a branch-and-bound framework. Dual decomposition
yields stronger relaxations, but at the expense of solving integer programming
subproblems. In this work we explore techniques for improving the relaxations
obtained in Benders decomposition.

In Benders decomposition, the recourse variables yk are projected out and
replaced with a single variable per scenario, leading to a master problem in which
cuts are added to accomplish the projection. In other words, if

QLP
k = {(x, zk, yk) ∈ Rn

+ × R× Rt
+ : zk ≥ dkyk, T kx+W kyk ≥ hk},

then a Benders cut is an inequality valid for

Proj(x,zk)

(
QLP

k

)
= {(x, zk) ∈ Rn

+ × R : ∃yk such that (x, zk, y
k) ∈ QLP

k }

(here Proj(A)

(
S
)

stands for the orthogonal projection of set S in the space of A

variables). Letting X = {x ∈ Zq
+ × Rn−q

+ : Ax ≥ b}, the Benders decomposition
approach is a method for solving (1) by solving

min
{
cx+ pz : x ∈ X, (x, zk) ∈ Proj(x,zk)

(
QLP

k

)
for k ∈ K

}
. (2)

When |K| is large, this reformulation reduces the variable space significantly.
Although Proj(x,zk)

(
QLP

k

)
is a polyhedron, it is usually impractical to explicitly

compute it, and instead Benders decomposition implicitly approximates this
projection in an iterative fashion using Benders cuts.

We explore two different techniques for using integrality information to ob-
tain improved relaxations within Benders decomposition: (i) cut-and-project,
where integrality information is used to derive cuts in the (x, zk, y

k, ) space, and
Benders cuts are then used to project the resulting improved relaxation, and (ii)
project-and-cut, where integrality information is used to derive cuts directly for
the relaxation in the (x, zk) space defined by Benders cuts.

Specifically, in the cut-and-project approach, we replace QLP
k in (2) with a

tighter set QS
k which satisfies QIP

k ⊆ QS
k ⊆ QLP

k , where

QIP
k = conv

{
(x, zk, y

k) : x ∈ X, (x, zk, y
k) ∈ QLP

k

}
.

When we solve this new formulation via Benders decomposition, we obtain
stronger Benders cuts, i.e., cuts that are valid for Proj(x,zk)

(
QIP

k

)
but are po-

tentially not valid for Proj(x,zk)

(
QLP

k

)
. The set QS

k can possibly be obtained by
using problem specific structure as the deterministic version of most stochas-
tic optimization problems are also well-studied optimization problems. Alter-
natively, QS

k can also be obtained by strengthening QLP
k with general purpose

cutting-planes such as split cuts. Because of the importance of split cuts for solv-
ing deterministic integer programs [4–6], we focus on the second approach and
search for violated split cuts using a heuristic for identifying violated Gomory
mixed-integer (GMI) cuts.



In the project-and-cut approach, we directly search for valid inequalities for
the sets Proj(x,zk)

(
QIP

k

)
, k ∈ K. One difficulty for using split cuts in the project-

and-cut approach is that the set Proj(x,zk)

(
QLP

k

)
is not given explicitly, and

instead is approximated via Benders cuts. However, we show that we can still use
a linear program to generate split cuts for this set when the split is fixed. These
cuts tighten the formulation in the projected space directly whereas the cut-and-
project approach tightens the extended formulation and then projects it in the
space of the variables of the master problem. We show that when considering
multiple splits, using split cuts in the cut-and-project approach leads to stronger
relaxations than in the project-and-cut approach. We also present computational
experiments that demonstrate the strength of the cut-and-project approach on
two SIP examples from the literature.

There is a significant amount of recent work studying valid inequalities for
SIP with integer recourse variables [1, 7–13]. In contrast, we are focused on prob-
lems with integer first-stage variables, but continuous recourse variables. While
some of this work [9, 13] yields methods that can use integrality constraints on
the first-stage decision variables to obtain stronger cuts, it appears our work
is the first to consider using such an approach for a problem with continuous
recourse variables. While this problem class is certainly easier than the case with
integer recourse variables, we computationally show that strengthened Benders
cuts can still make the difference between being able to solve an instance or not.

2 Project-and-cut vs. Cut-and-project for Split Cuts

In this section we study some properties of split cuts for polyhedral sets in general
and then relate our observations to two-stage stochastic programming problems.
We start with comparing the effect of applying split cuts to a polyhedral set
in an extended space with that of applying split cuts to the projection of this
set in a lower dimensional space. More precisely, let P ⊆ Zn × Rq and Q ⊆
Zn × Rq × Rt be mixed integer sets, defined on variables (x, z) and (x, z, y)
respectively, and let PLP and QLP denote their linear relaxation. Also assume
that PLP = Proj(x,z)

(
QLP

)
and therefore P = Proj(x,z)

(
Q
)
.

Let π ∈ Zn be a row vector, γ ∈ Z and let

S = {(x, z) ∈ Rn+q : γ+1 > πx > γ} and S′ = {(x, z, y) ∈ Rn+q+t : γ+1 > πx > γ}

be split sets associated with (π, γ) in Rn+q and Rn+q+t, respectively.
Then, an inequality cx + dz ≥ f is called a split cut for PLP generated by

S if it is a valid inequality for conv(PLP \ S). In other words, cx + dz ≥ f is a
split cut if it is valid for both

PLP ∩{(x, z) ∈ Rn×Rq : πx ≤ γ} and PLP ∩{(x, z) ∈ Rn×Rq : πx ≥ γ+ 1}.

Split cuts for QLP generated by S′ are defined similarly. All points in P satisfy
every split cut for PLP and multiple split cuts can be generated using the same
split set. For a fixed split set a most violated split cut (if there is one) for a given



point (x̄, z̄), can be found by solving a linear program. Even though separation
is easy when the split set is fixed, it is NP-Hard to find a split set that leads to
a violated cut [14]. Some of the practical algorithms that are currently available
are heuristics that look for violated rank-1 Gomory mixed-integer (GMI) cuts
using different bases of the simplex tableau associated with PLP [15–17].

2.1 Projected split cuts

We next compare the effect of split cuts for PLP generated by S with that of
split cuts for QLP generated by S′.

Lemma 1. PLP \ S = Proj(x,z)

(
QLP \ S′

)
and consequently conv(PLP \ S) =

conv(Proj(x,z)

(
QLP \ S′

)
).

Proof. Let (x̂, ẑ) ∈ PLP \ S. As, (x̂, ẑ) ∈ PLP , there exists at least one point
(x̂, ẑ, ŷ) ∈ QLP . Furthermore, as (x̂, ẑ) 6∈ S, we have (x̂, ẑ, ŷ) 6∈ S′ and conse-
quently (x̂, ŷ, ẑ) ∈ QLP \S′ implying (x̂, ŷ) ∈ Proj(x,z)

(
QLP \S′

)
. This establishes

that PLP \ S ⊆ Proj(x,z)

(
QLP \ S′

)
.

Similarly, if (x̂, ẑ) ∈ Proj(x,z)

(
QLP \S′

)
, there is a point (x̂, ẑ, ŷ) ∈ QLP \S′.

Therefore (x̂, ẑ) ∈ PLP . In addition, as (x̂, ẑ, ŷ) 6∈ S′, we have (x̂, ẑ) 6∈ S and
therefore Proj(x,z)

(
QLP \ S′

)
⊆ PLP \ S. ut

In other words, in the projected space, split cuts generated by (essentially)
the same split set have the same effect whether or not they are applied before
or after the projection. This observation, however, does not hold when split cuts
generated by multiple split sets are considered simultaneously.

Lemma 2. Let S1, S2 be two split sets for P and let S′1, S
′
2 be the corresponding

split sets for Q. Then

conv(PLP \S1)∩conv(PLP \S2) ⊇ Proj(x,z)

(
conv(QLP \ S′1)∩conv(QLP \ S′2)

)
,

and the inclusion is strict in some cases.

Proof. We first show the inclusion ”⊇” and then present an example when
the inclusion is strict. Let (x̂, ẑ) ∈ Proj(x,z)

(
conv(QLP \ S′1) ∩ conv(QLP \ S′2)

)
,

then, there exists ŷ ∈ Rt such that (x̂, ẑ, ŷ) ∈ conv(QLP \ S′1) and (x̂, ẑ, ŷ) ∈
conv(QLP \ S′2). Therefore, by Lemma 1, we have (x̂, ẑ) ∈ conv(PLP \ S1) and
(x̂, ẑ) ∈ conv(PLP \ S2) and consequently, the inclusion holds.

To see that the inclusion is sometimes strict, consider the following example
where n = 2, q = 0 and t = 1. Let

PLP = conv {(1/2, 0), (1/2, 1), (0, 1/2), (1, 1/2)} ⊆ R2

and

QLP = conv {(1/2, 0, 0), (1/2, 1, 0), (0, 1/2, 1), (1, 1/2, 1)} ⊆ R3,



x1

z1

x2

x1

x2

Fig. 1. The set QLP and its projection PLP

(see Figure 1.) In addition, let S1 = {(x1, x2) ∈ R2 : 1 > x1 > 0} and S2 =
{(x1, x2) ∈ R2 : 1 > x2 > 0} be the split sets for P , and S′1 and S′2 be the
corresponding split sets for Q.

Notice that conv(PLP \ S1) = conv{(1/2, 0), (1/2, 1)} and conv(PLP \ S2) =
conv{(0, 1/2), (1, 1/2)} and consequently, conv(PLP \ S1) ∩ conv(PLP \ S2) =
{(1/2, 1/2)}. However, conv(QLP \S′1) = conv{(1/2, 0, 0), (1/2, 1, 0)} and conv(QLP \
S′2) = conv{(0, 1/2, 1), (1, 1/2, 1)} and conv(QLP \S′1)∩ conv(QLP \S′2) = ∅. ut

We also note that the split closure of P is in fact equal to {(1/2, 1/2)} [18]
and Lemma 2 establishes that the split closure of Q is strictly contained in the
split closure of P even though PLP = Proj(x,z)

(
QLP

)
. We also note that a

similar observation is made by [19] in the context of mixed-integer nonlinear
programming.

2.2 Working in projected space

Let QLP , the extended formulation of PLP , be explicitly given as follows:

QLP = {(x, z, y) ∈ Rn × Rq × Rt : Hx+Kz + Ly ≥ g, x, y, z ≥ 0}.

Furthermore, let S′i = {(x, z, y) ∈ Rn+q+t : γi + 1 > πix > γi} for i ∈ I be a
given collection of split sets. Then, it is possible to generate cuts for

P̂ = Proj(x,z)

(⋂
i∈I

conv(QLP \ S′i)
)

(3)

using a single program.

Theorem 1. The inequality
cx+ dz ≥ f (4)

is valid for the set P̂ if and only if there exists a solution to the following set of
inequalities:



c =
∑
i∈I

ci, d =
∑
i∈I

di, 0 =
∑
i∈I

hi, f =
∑
i∈I

f i (5)

ci ≥ λi1H − µi
1π

i ci ≥ λi2H + µi
2π

i

di ≥ λi1K di ≥ λi2K
hi ≥ λi1L hi ≥ λi2L
f i ≤ λi1g − µi

1γ
i f i ≤ λi2g + µi

2(γi + 1)

λi1, λ
i
2 ≥ 0 µi

1, µ
i
2 ≥ 0, ci, di, f i free


∀i ∈ I (6)

where ci, di, λi1 and λi2 are row vectors of appropriate dimension, and f i, µi
1

and µi
2 are real numbers for all i ∈ I.

Proof. Let Q′i denote conv(QLP \S′i). Inequalities (6) ensure that for each i ∈ I
the inequality cix + diz + hiy ≥ f i is valid for Q′i. Consequently, by inequality

(5), cx+ dz ≥ f is valid for
⋂

i∈I Q
′
i and therefore valid for P̂ .

Conversely, assume that inequality (4) is valid for P̂ = Proj(x,y) (
⋂

i∈I Q
′
i)).

Thus, cx + dz ≥ f is valid for
⋂

i∈I Q
′
i and therefore it is a non-negative linear

combination of valid inequalities for
⋂

i∈I Q
′
i. As any valid inequality for

⋂
i∈I Q

′
i

is a non-negative linear combination of valid inequalities for Q′i, we have that
cx + dz ≥ f can be obtained by a non-negative linear combination of valid
inequalities for Q′i. Consequently, for each i ∈ I there exist a nonnegative weight
wi, and an inequality

cix+ diz + hiy ≥ f i (7)

valid for Q′i such that c =
∑

i∈I c
i, d =

∑
i∈I d

i, 0 =
∑

i∈I h
i, and, f =

∑
i∈I f

i.
Finally, note that if inequality (7) is valid for Q′i, there must exist λi1, λ

i
2, µ

i
1 and

µi
2 that satisfy inequalities (6). ut

Consequently, for a given point (x̄, z̄) 6∈ P̂ , a most violated valid inequality
can be found by solving the following linear program:

min z = cx̄+ dz̄ − f (8a)

subject to ||λ1||1 + |||λ2||1 + ||µ1||1 + ||µ2||1 ≤ 1 (8b)

inequalities (5), (6). (8c)

where inequality (8b) can be replaced with any other normalization constraint
that truncates the cone defined by inequalities (5), (6).

In the case of a single split set, an interesting consequence of Lemma 1 and
Theorem 1 is that, split cuts for the projected set PLP can be separated even
when an explicit characterization of this set is not available.

Corollary 1. Given a split set S, split cuts for PLP can be found by the Sepa-
ration LP (8) that uses inequalities defining QLP only.



Therefore, when PLP is defined as a projection of a higher dimensional set
(as it is the case in decomposition based approaches for stochastic programming)
it is still possible to generate split cuts for this set without an explicit knowledge
of the inequalities defining it. We next present an observation that shows that
only a subset of the split sets are needed when solving the Separation LP (8).

Lemma 3. Let (x̄, z̄) ∈ Rn+q be a given a point such that (x̄, z̄) ∈ Si for i ∈ Ī
and (x̄, z̄) 6∈ Si for i ∈ I \ Ī. If (x̄, z̄) 6∈ P̂ , then

(x̄, z̄) 6∈ Proj(x,z)

(∩i∈Ī conv(QLP \ S′i)
)
.

Proof. Let Q′i denote conv(QLP \ S′i) and assume that there exists a point
(x̄, z̄) ∈ Proj(x,z)

(⋂
i∈Ī Q

′
i

)
. Then, by definition, there exist a point (x̄, z̄, ȳ) ∈(⋂

i∈Ī Q
′
i)
)
. As (x̄, z̄, ȳ) ∈ QLP and (x̄, z̄) 6∈ Si for i ∈ I \ Ī, we have (x̄, z̄, ȳ) ∈ Q′i

for i ∈ I \ Ī. Therefore, (x̄, z̄, ȳ) ∈
(⋂

i∈I Q
′
i)
)

and consequently, (x̄, z̄) ∈ P̂ . ut

Corollary 2. It suffices to solve the Separation LP (8) with variables and con-
straints associated with i ∈ Ī only.

2.3 Benders decomposition and integrality-based cuts

We first describe how Benders decomposition is used within a branch-and-cut
algorithm for solving (2). To simplify exposition we assume that {x ∈ Rn

+ :
Ax ≥ b} ⊇ Proj(x)

(
QLP

k

)
for all k ∈ K (see [11]). We also define PLP

k :=

Proj(x,zk)

(
QLP

k

)
for k ∈ K.

The algorithm is a standard enumeration algorithm where node relaxations
consist of the first-stage variables x and z, together with inequalities Ax ≤ b and
globally valid Benders cuts that have been already generated. Let Bk ⊇ PLP

k

represent the polyhedron defined by the Benders cuts currently in the master LP
relaxation for scenario k. Given a node relaxation solution (x̄, z̄), we determine
if (x̄, z̄k) ∈ PLP

k for k ∈ K by solving the linear program:

fk(x̄) = min {z : z ≥ dky, W ky ≥ hk − T kx̄, y ≥ 0}. (9)

If z̄k ≥ fk(x̄) then (x̄, ȳ) ∈ PLP
k . Otherwise, if π̄ is an optimal dual solution to

the linear program (9), then (x̄, z̄) violates the Benders cut zk ≥ π̄hk − π̄T kx,
and so this cut is added to the description of Bk.

Note that for the purpose of obtaining a valid lower bound at a node of the
enumeration tree, it is not necessary for the current solution of the LP relax-
ation to satisfy all Benders cuts. For computational efficiency, it is sometimes
preferable not to generate all Benders cuts at all tree nodes. If the solution is
integral, however, one has to make sure that it satisfies all Benders cuts.

Cut-and-project. In this approach, we identify valid inequalities for the set
QIP

k , leading to an approximation QS
k which satisfies QIP

k ⊆ QS
k ⊆ QLP

k . To
implement this approach, suppose we having solved a subproblem (9) for a sce-
nario k ∈ K and obtained a solution (z∗, y∗). We then attempt to find one or



more valid inequalities for the set QIP
k that cut off the solution (x̄, z∗, y∗). If cuts

are found, they are added to the LP (9) (i.e. T k, W k and hk are updated) and
the LP is re-solved. This process can be repeated. At the end, a Benders cut,
zk ≥ π̄hk − π̄T kx, is formed and added to the master LP relaxation.

One important advantage of this approach when using split cuts is that the
node LP relaxations can be superior to those obtained using project-and-cut
instead. In addition, moving beyond split cuts, inequalities derived based on the
structure of the set QIP

k can easily be integrated into the algorithm. In this way,
the proposed framework can take advantage of any polyhedral results known
for the deterministic version of a problem to help solve the stochastic version.
Finally, in contrast to the dual decomposition, the subproblems remain LPs.

Project-and-cut. Given a solution (x̄, z̄k) of the master LP relaxation, this
option searches for valid inequalities for the set Proj(x,zk)

(
QIP

k

)
that cut off this

solution, and adds such inequalities to the master LP relaxation. A primary
disadvantage of this approach is that the set QIP

k may have structure that is
amenable to the use of certain classes of valid inequalities, which may be “hid-
den” in the projected space.

Another disadvantage of this approach is that the strength of the cuts is
limited by the cuts used in the current approximation Bk of PLP

k . However, for
the case of split cuts defined by a split S, an inequality valid for conv(PLP

k \S) can
be found using S as the only split in the LP (8), thus overcoming this limitation.
The resulting LP simultaneously identifies valid inequalities in the extended
space and projects this to the space of master problem variables. A potential
advantage of this approach is that it does not require an iterative procedure
for generating split cuts in the extended space before projecting, or storing a
list of valid split cuts in the extended space for each scenario. Unfortunately, as
demonstrated in Lemma 2, this approach can yield weaker relaxations if we solve
(8) for a single split at a time. While considering multiple splits simultaneously
can overcome this weakness, this does not appear to be a computationally viable
option due the large size of the resulting LP.

3 Numerical illustration

We used two problem sets from the literature in our computational experiments.
Detailed description of these problems are provided in the appendix.

Our first test problem, ‘CAP’, is a stochastic version of the capacitated fa-
cility location problem, as described by Louveaux [20]. In this problem, binary
facility opening decisions must be made before observing the realizations of ran-
dom customer demands. Then, in the second stage the customer demands are
fractionally allocated to the facilities. Data for this test problem is obtained
by starting with deterministic ‘CAP’ instances from the OR-Library [21] that
have 50 customers and 25-50 potential facilities. We construct the demands of
the stochastic instances by sampling either 250 or 500 scenarios from a normal
distribution with mean taken from the corresponding deterministic instance.



The second test problem is the stochastic network interdiction problem (SNIP)
described in [22]. All instances have 456 scenarios that contain 320 binary first-
stage decision variables, corresponding to which arc to interdict subject to a
budget constraint. The second-stage problems are network-structured LPs with
5290 constraints and 830 decision variables each. We focused our experiments on
the more difficult instances which we call snipno=3 and snipno=4. These are the
instances reported in Tables 3 and 4 in [22] where time is measured in minutes.

3.1 Computational Environment and Implementation Details.

We implemented all algorithms in C++ and solved all LPs and IPs using IBM
ILOG CPLEX 12.4. All experiments were run using a single thread on a Linux
workstation with 2.33 GHz Intel Xeon CPUs and 32 GB memory. We used a
time limit of 4 hours. The extensive formulation was solved with default Cplex
settings, and presolve features were turned off for the Benders algorithms. Rank-
1 GMI cuts were obtained using the FEAS heuristic of Dash and Goycoolea [15].

3.2 Computational experiments with the root bound

We first investigate the root relaxation gap given by standard Benders decom-
position and three different methods that improve the relaxation with split cuts:

– CGLP: Use the CGLP (8) with a single split at a time to separate cuts di-
rectly in the (x, zk) space for each scenario k, and only use simple splits sets
of the form S = {γ < xj < γ + 1} that involve a single variable.

– CGLPSP: Use a standard CGLP to add split cuts in the extended space, as in
the cut-and-project approach, and limit to simple split sets.

– GMISP: Use the Rank-1 GMI heuristic to add split cuts in the extended space.

For CGLP and CGLPSP we continue to violated add cuts as long as we
can find them and therefore we optimize over the closure of simple disjunctions.
Table 1 reports the average percentage root gap (defined in the usual way)
obtained by each of these methods over sets of CAP and SNIP instances having
similar properties. We find that for the CAP instances, CGLP yields a modest
improvement in gap over standard Benders. On the other hand, CGLPSP yields
a dramatic improvement over CGLP, indicating that the difference in strength of
the relaxations suggested by Lemma 2 can sometimes be very large. Finally, the
GMI heuristic closes a similar amount of gap as the CGLPSP simple split closure.
For the SNIP instances, we were not able to compute the CGLPSP gap within a
day of computation time, and so we only report the gaps obtained by Benders,
CGLP, and GMISP. We observe in this case that both CGLP and GMISP yield
significantly smaller gaps than Benders, but GMISP does not close as much
gap as on the CAP instances. In addition, in this case, the difference between
working in the projected space (CGLP) and the extended space (GMISP) is
not so significant. In both instances, the solution times for obtaining the CGLP



and CGLPSP gaps were not practical because no early termination criterion
was applied for these. On the other hand, the Benders and GMISP times were
reasonable (29 sec. and 310 sec. on average for the CAP instances, respectively).

Table 1. Average % root gap obtained by different methods.

CAP# Ben CGLP CGLPSP GMISP SNIP Budget Ben CGLP GMISP

101-104 22.4 18.0 0.11 0.07 30 22.5 5.8 7.8
111-114 8.7 7.8 0.22 0.39 50 27.5 10.4 12.0
121-124 18.9 16.3 1.15 0.99 70 28.9 14.8 12.5
131-134 25.2 21.6 1.46 0.30 90 33.1 18.8 17.6

3.3 Computational experiments with the branch-and-bound tree

We next explore the use of GMI cuts in the cut-and-project approach within
Benders decomposition. We refer to this method as Ben+GMI. We compare
Ben+GMI to two alternative general-purpose approaches. The first method
(Ext) is to solve the extensive formulation using default Cplex, and the sec-
ond method (Ben) is to use a pure Benders decomposition algorithm. Details of
the implementation will be provided in the full version of the paper.

Table 2. Comparison of algorithms for CAP instances. None of the instances were
solved by Benders within the time limit, so those times are not reported. Nearly all
instances were solved with Ben+GMI, so the Avg Gap is not reported for that method.

Avg Time (# unsolved) Avg Gap (%) Avg # Nodes

K CAP # Ext +GMI Ext Ben Ext Ben +GMI

250 101-104 258.1 56.2 0.00 14.08 0 7863.5 17.5
111-114 2359.0 644.0 0.00 6.94 0 4640.1 1028.0
121-124 3252.3 (2) 1223.4 0.43 15.62 0 4383.3 984.8
131-134 4150.8 (1) 294.8 0.19 22.23 0 5653.2 164.2

500 101-104 1170.5 113.4 0.00 15.69 0 3975.0 16.9
111-114 10787.1 (3) 1994.2 (1) 2.00 7.54 0 1853.7 969.0
121-124 10935.4 (3) 2420.0 3.12 15.89 0 1913.6 583.9
131-134 9512.0 (3) 737.3 1.44 23.09 0 2539.7 157.6

Tables 2 and 3 present a summary of the results obtained by the three meth-
ods on the CAP and SNIP instances, respectively. Each row is the average of
several instances having similar characteristics. For solution time and nodes, the
geometric mean is reported, where the times used in the average were truncated
at the four hour time limit. The number of instances that are not solved by a



method is reported in parentheses in the time column. Thus, if not all instances
in a set were solved all within the time limit, the reported mean time and nodes
are lower bounds on what would be required to solve the instances to optimality.
We also report the arithmetic average optimality gap over the instances after
the time limit, where gap is calculated as (UB-LB)×100/UB where UB and
LB are the upper and lower bound, respectively. Instances that were solved to
optimality are included as a zero in calculating this average.

Table 3. Comparison of algorithms for SNIP instances. None of the instances were
solved by Ext in the time limit, so those times are not reported.

Avg Time (# unsolved) Avg Gap (%) Avg # Nodes

snipno Budget Ben +GMI Ext Ben +GMI Ext Ben +GMI

3 30 1139 426 18.0 0.00 0.00 0 394343 15346
50 11838 (3) 2158 26.1 1.95 0.00 0 2695041 209329
70 14400 (5) 8242 (1) 27.1 3.25 0.08 0 2747827 989760
90 14400 (5) 13425 (3) 30.7 6.40 1.50 0 2456388 1627738

4 30 695 412 22.4 0.00 0.00 0 161141 7764
50 4966 (1) 1107 29.1 0.88 0.00 0 866078 60123
70 9554 (2) 1597 39.0 0.34 0.00 0 1137123 69672
90 9641 (3) 1475 58.7 0.82 0.00 0 794407 63824

For the CAP instances, we find that the extensive formulation is able to
solve many of the instances with 250 scenarios, but fails frequently with 500
scenarios. On the other hand, Benders decomposition fails to solve any of the
instances, and yields large optimality gaps after the time limit. This is not sur-
prising given the results in Table 1 which indicate that Benders yields weak LP
relaxations. Finally, we observe that the Ben+GMI algorithm is able to solve
nearly all of these instances in the time limit, and does so significantly faster
than the extensive formulation. For the SNIP instances, the role of the exten-
sive formulation and Benders algorithm is reversed: the extensive formulation is
unable to solve any of the instances, and yields a very large average optimality
gap after the time limit, whereas Benders decomposition is able to solve some
of the instances. This is caused by the relatively larger size of these instances,
which prevents the extensive formulation from even being able to finish process-
ing the root node within the time limit, whereas Benders decomposition is able
to process a large number of nodes. Once again, we find that Ben+GMI yields
the best performance by far, which is attributed to the significant reduction in
the number of nodes processed. Finally, we remark that the results obtained
with this general purpose method are comparable to those obtained in [22] using
problem-specific valid inequalities.
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Appendix

Detailed description of test problems

We first describe the details of the capacitated facility location (‘CAP’) test
problem. Let I be the set of potential facilities, J be the set of customers and
K be the set of scenarios. For the cardinalities of the sets, we use |I| = I, |J | =
J, |K| = K. The first stage facility opening decision variables are denoted by x,
while second stage flow variables are denoted by y. The parameter f corresponds
to facility opening cost, q corresponds to allocation cost, and s corresponds to
facility capacity. The demand of customer j under scenario k is represented by
λkj . We use the following formulation for this problem:

min
∑
i∈I

fixi +
1

K

∑
k∈K

∑
i∈I

∑
j∈J

qijy
k
ij (10a)

s.t.
∑
i∈I

ykij ≥ λkj , j ∈ J , k ∈ K (10b)∑
j∈J

ykij ≤ sixi , i ∈ I, k ∈ K (10c)

∑
i∈I

sixi ≥ max
k∈K

∑
j∈J

λkj (10d)

x ∈ {0, 1}I , y ∈ RIJK
+ (10e)

This formulations differ slightly from the “standard formulation” from [20]. In
this formulation the recourse variables assign flows from facilities to customers,
whereas the the formulation in [20] uses decision variables ȳkij = ykij/λ

k
j to rep-

resent fraction of a customer’s demand served by a facility. We use the above
formulation because it results in a problem with no uncertainty in the technol-
ogy matrix (the coefficients multiplying xi in the second-stage constraints). Also,
we introduce constraint (10d) in order to have relatively complete recourse. In
other words, it makes the second stage feasible for each fixed feasible first stage
solution.

For the deterministic data, we use CAP instances from J E Beasley’s OR-
Library [21]. Let λ̄j be the deterministic demand of customer j in the data. Since
we reformulated constraints (10b) and (10c), we first scale allocation costs with
the reciprocal of provided demand values. We use normal distribution to generate
stochastic demands λj ∼ N(µj , σj) where we take for each j ∈ J , µj = λ̄j and
σj ∈ U(0.1λ̄j , 0.3λ̄j), where U represents uniform distribution.

We next describe the stochastic network interdiction problem (SNIP) test
problem, which is based on [22]. In this problem, the interdictor selects the arcs
to install sensors on subject to a capacity constraint among a given subset of arcs
in the network. Then, the evader selects a maximum-reliability path. However,
the evader’s origin-destination pair is known to the interdictor only through a
probability distribution.



Let N and A represent the set of nodes and the set of arcs in a given directed
network, respectively.D is defined as the subset of A on which sensors are allowed
to be replaced. b is total budget for installations. cij is cost of installing a sensor
on arc (i, j) ∈ D. rij is the probability that the evader traverses uninterdicted
arc (i, j) undetected, whereas qij is the undetection probability of traversing
interdicted arc (i, j). Scenario k is represented by origin-destination pair (sk, tk)
whose realization probability is denoted by pk. Lastly, ψk

j is used for the value of

a maximum-reliability path from j to tk in the case that no sensors are placed.
Note that ψk

j can be calculated by solving a shortest path problem.
First stage binary variable xij is 1 if a sensor is installed on arc (i, j). Second

stage variable πi corresponds to the conditional probability that evader can travel
from i to tk undetected. We directly describe the formulation in terms of the
master and subproblem. The master problem is

min {pz : cx ≤ b, zk ≥ fk(x), k ∈ K, x ∈ {0, 1}|D|}

where for each k ∈ K

fk(x) = min πsk

s.t. πtk = 1

πi − qijπj ≥ 0 , (i, j) ∈ D
πi − rijπj ≥ 0 , (i, j) ∈ A \D
πi − rijπj ≥ −(rij − qij)ψk

j xij , (i, j) ∈ D
πi ≥ 0, (i, j) ∈ A

Detailed Computational Results

Table 4 provides the gap closed by the different methods for all 250 scenario
CAP instances in our test set. These results are summarized in Table 1 in the
main paper. Table 5 provides the relaxation gaps for all the SNIP instances we
have this data for, those with snipno=3 (corresponding to the instances in Table
3 of [22]). The results from this table for budget levels of 30,50,70,and 90 are
summarized in Table 1 of the main paper.

Table 6 presents the results for solving each individual instance of the CAP
test set with the different methods. These results are summarized in Table 2 in
the main paper. In the columns under the Time(sec)/Gap heading, if the instance
is solved within the time limit the time in seconds is reported. Otherwise, the
endinging optimality gap is reported in bold.

We have a couple of outliers, such as CAP114 for 250 scenarios, in which the
Benders+GMI implementation processes many more branch-and-bound nodes
than the other algorithms. The reason for this behavior is our choice of imple-
mentation setting. Specifically, we have some settings that attempt to pick a
subset of scenarios on which to attempt to generate cuts, which go into effect
after a certain warm-up phase. In these outlier cases, the setting switches to the



Table 4. Relaxation gap (%) for CAP instances with 250 scenarios.

CAP# Ben CGLP CGLPSP GMISP

101 17.45 13.64 0.00 0.03
102 21.88 17.49 0.00 0.11
103 24.45 20.01 0.11 0.10
104 25.81 20.86 0.33 0.04
111 9.02 8.06 0.05 0.04
112 8.98 8.04 0.20 0.33
113 8.50 7.52 0.11 0.36
114 8.38 7.54 0.53 0.81
121 15.89 13.65 0.03 0.18
122 19.03 16.47 0.60 0.78
123 20.14 17.32 1.38 1.11
124 20.64 17.84 2.59 1.89
131 20.55 17.35 0.01 0.02
132 25.22 21.65 0.94 0.22
133 27.13 23.22 1.87 0.36
134 28.03 24.04 3.03 0.60

reduced effort setting too quickly, and so the algorithm becomes much less ag-
gressive in generating cuts at that point. As a result, the GMI version reaches less
that one percent optimality gap very quickly (e.g. in CAP114 for 250 scenarios
in less than 160 seconds) but then switches to the less aggressive cut generation
scheme. At that point, it solves far fewer subproblems and is able to quickly ex-
plore many branch-and-bound nodes. Unfortunately, it has a hard time to find
integer solutions, and therefore it explores many nodes. On the other hand, in
these instances, pure Benders version takes a very long time to switch to the less
aggressive cut generation setting and thus spends a lot of time adding cuts to
the master problem. As a result, the pure Benders method explores many fewer
nodes than the method with GMI cuts for these outlier instances.

Tables 7 and 8 present the results for solving each individual instance of
the SNIP test set with snipno=3 and snipno=4, respectively. These results are
partially summarized in Table 3 of the main paper, which includes only summary
results for budget levels 30,50,70 and 90.



Table 5. Relaxation gap (%) for SNIP instances with snipno=3.

Budget Instance Ben CGLP GMISP

30 0 22.27 5.69 7.99
1 22.10 5.61 7.92
2 22.48 5.36 7.00
3 22.63 6.28 8.11
4 22.88 6.03 7.81

40 0 25.25 8.38 10.98
1 26.74 9.85 12.25
2 25.45 8.14 9.80
3 26.65 9.44 11.20
4 27.01 9.73 12.10

50 0 26.86 9.81 11.96
1 28.53 11.99 13.52
2 27.02 9.62 11.07
3 25.85 8.27 9.64
4 29.42 12.42 13.70

60 0 26.90 9.63 11.42
1 28.59 15.30 13.24
2 28.63 15.79 12.30
3 27.15 12.91 11.73
4 29.56 15.70 13.50

70 0 29.02 16.48 12.65
1 28.60 14.35 12.39
2 28.81 14.86 12.15
3 28.38 12.87 11.94
4 29.72 15.29 13.59

80 0 28.90 12.85 12.07
1 31.35 13.81 14.31
2 30.90 14.54 14.92
3 31.67 13.77 15.27
4 31.54 14.58 15.57

90 0 31.04 15.81 14.95
1 34.15 18.40 18.54
2 33.00 19.44 18.43
3 33.40 19.33 17.33
4 33.78 20.79 18.65



Table 6. Comparison of algorithms to solve stochastic capacitated facility location
problem.

Time(sec) / Gap(%) # Nodes

K CAP # Ext Ben +GMI Ext Ben +GMI

250 101 104.2 10.39% 48.9 0 6539 14
102 246.7 12.80% 63.1 0 6820 18
103 358.3 16.88% 55.4 0 9602 17
104 481.9 16.26% 58.6 0 8929 22
111 1003.5 8.31% 196.3 0 4410 30
112 2869.2 6.65% 311.7 0 4200 484
113 3320.1 5.92% 481.0 0 4800 1322
114 3239.6 6.88% 5842.4 0 5214 58191
121 624.7 15.11% 264.3 0 4695 43
122 3824.4 15.76% 881.2 0 4680 803
123 0.88% 16.39% 1371.5 0 4000 1796
124 0.85% 15.20% 7012.7 0 4200 15170
131 631.0 21.82% 207.4 0 6836 38
132 3221.1 23.74% 289.6 2 5800 263
133 10142.5 22.82% 380.7 78 5200 322
134 0.76% 20.54% 330.1 7 4954 226

500 101 431.7 13.56% 94.1 0 3949 16
102 1082.3 14.51% 120.8 0 2733 26
103 1837.4 17.63% 115.6 0 5064 18
104 2186.5 17.06% 126.0 0 4568 11
111 4534.5 9.22% 455.2 0 1668 33
112 0.12% 7.53% 792.1 0 1703 403
113 3.38% 6.63% 0.24% 0 1920 32800
114 4.49% 6.77% 3045.8 0 2165 2021
121 4789.1 15.39% 633.5 0 2075 59
122 1.73% 16.81% 2512.4 0 1951 869
123 4.93% 16.37% 3741.6 0 1880 1569
124 5.82% 15.01% 5759.2 0 1762 1445
131 2741.6 22.23% 460.3 0 3327 42
132 0.12% 25.52% 670.3 0 2600 133
133 1.70% 23.04% 1215.7 0 2186 913
134 3.95% 21.56% 787.7 0 2200 121



Table 7. Comparison of algorithms to solve stochastic network interdiction problem
for snipno=3.

Time(sec) / Gap(%) # Nodes

Budget Instance Ext Ben +GMI Ext Ben +GMI

30 0 18.21 701.4 358.2 0 235235 9260
1 17.24 1154.6 410.0 0 346106 9720
2 18.75 1098.0 472.6 0 401498 57307
3 16.37 1613.0 480.0 0 599573 13970
4 19.35 1335.3 421.3 0 486556 11812

40 0 21.29 3253.9 562.4 0 1099438 23292
1 22.45 1.90 2795.5 0 3025236 354326
2 20.95 1.50 2961.9 0 5196073 605957
3 23.94 12693.7 6457.3 0 6755231 1299021
4 36.56 13604.9 1774.6 0 4666531 172624

50 0 23.54 10207.5 798.0 0 2259458 41493
1 20.55 3.25 5701.8 0 2571959 600973
2 23.02 3.18 2993.5 0 3811724 449364
3 25.96 7628.9 643.1 0 2209044 59091
4 37.65 3.30 5347.2 0 2905580 607007

60 0 24.39 7572.4 887.1 0 1461985 60200
1 19.13 2.38 2759.5 0 2316265 255021
2 25.47 3.58 1.14 0 3494470 2049624
3 25.02 3.44 2520.6 0 3678437 318494
4 24.66 1.48 2185.8 0 2526100 147437

70 0 23.02 3.81 7585.1 0 2434317 981786
1 20.30 2.97 11723.7 0 2641550 1407500
2 26.87 4.45 0.42 0 3076319 2145250
3 29.29 4.28 3544.8 0 3050410 401734
4 36.04 0.73 8381.1 0 2596101 797565

80 0 25.12 0.68 2757.3 0 2672975 289731
1 26.33 4.29 0.28 0 2452384 1359834
2 30.95 5.73 1.25 0 2348300 2209948
3 23.59 6.26 0.75 0 1657439 2060831
4 38.39 2.17 5175.5 0 4489205 577516

90 0 25.77 3.63 13884.7 0 2337641 1780947
1 26.97 8.84 4.56 0 1927200 1680441
2 32.93 7.93 2.09 0 2339400 2045585
3 27.75 6.42 10517.7 0 2522921 1268873
4 40.20 5.18 0.83 0 3363349 1471001



Table 8. Comparison of algorithms to solve stochastic network interdiction problem
for snipno=4

Time(sec) / Gap(%) # Nodes

Budget Instance Ext Ben +GMI Ext Ben +GMI

30 0 19.44 486.3 327.0 0 112618 2997
1 20.05 770.4 375.0 0 156449 5497
2 24.88 1201.7 548.3 0 368805 44408
3 26.09 695.7 417.5 0 147239 6505
4 21.74 518.2 420.7 0 113560 5928

40 0 22.57 653.6 410.8 0 116204 6374
1 26.51 4040.4 702.6 0 937433 32904
2 22.89 5192.8 1295.2 0 1453346 252051
3 29.41 4035.5 1485.0 0 955481 150434
4 27.22 3886.0 944.4 0 859117 63763

50 0 26.65 1563.5 798.4 0 222326 51085
1 26.72 5234.9 927.1 0 886194 25801
2 28.91 4.42 5109.5 0 3236377 717781
3 30.81 3641.8 445.1 0 713954 21950
4 32.15 7035.8 989.7 0 1070376 37831

60 0 29.34 6689.7 1915.8 0 893467 121026
1 25.93 8391.6 1396.4 0 1247026 78818
2 31.50 3.11 5695.5 0 2843086 576198
3 33.31 2079.4 698.2 0 327560 36760
4 31.54 1.26 1481.9 0 1980090 57193

70 0 43.35 5854.2 922.4 0 609612 23398
1 31.64 6081.8 837.8 0 687282 44647
2 44.28 1.40 4989.8 0 1990577 424925
3 32.13 10784.9 1386.6 0 1390593 46720
4 43.68 0.27 1941.8 0 1639345 79158

80 0 40.99 6160.8 1165.0 0 611669 44207
1 35.29 2605.7 553.3 0 208022 12637
2 39.96 7809.5 1243.5 0 1013707 59022
3 31.78 2239.0 680.0 0 190454 4332
4 100.00 3236.0 712.4 0 296933 23032

90 0 46.86 4904.8 554.1 0 367686 12991
1 48.88 5686.4 973.6 0 414750 46672
2 50.27 0.58 2337.1 0 1507747 133492
3 47.68 1.54 1398.6 0 1164660 57569
4 100.00 1.99 3963.4 0 1181471 227296


