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Abstract—Predicting IT infrastructure performance under 
varying conditions, e.g., the addition of a new server or increased 
transaction loads, has become a typical IT management exercise. 
However, within a services delivery context, enterprise clients are 
demanding predictive analytics that outline future “costs” 
associated with changing conditions. The services delivery staffing 
costs incurred in addressing problems and requests (arriving in 
the form of incident and other problem tickets) in the managed 
environment is especially of high importance. This paper 
describes a framework and analytical study addressing such cost 
prediction. Specifically, a novel approach is described in which 
(1) a framework combining various analytical models is proposed 
to predict services delivery staffing requirements under changing 
IT infrastructure characteristics and conditions, and (2) machine 
learning techniques are used to predict service delivery 
workloads (measured by ticket volumes) based on managed 
server characteristics. Detailed descriptions of the workload 
prediction techniques, as well as an evaluation using data from 
an actual large service delivery engagement, are presented in this 
paper. 

Keywords—IT management costs, IT ticket analysis, prediction, 
services delivery.  

I. INTRODUCTION 
Technological advances, liberalization, and evolving 

business trends have resulted in an increasingly significant role 
for customers and users of information technology (IT) 
services. Customers, particularly corporate customers, for 
whom responsive and efficient IT capabilities are essential to 
their core businesses, are becoming more demanding and 
knowledgeable concerning the services they purchase. They 
must see the benefit of subscribing to a new service or to a new 
feature in an existing service, and it must be at the price that 
they are prepared to pay. At the same time more and more 
organizations are becoming more dependent on IT to run their 
core business. Enterprise customers expect a high level of 
convenience and dynamic response in services tailored to their 
specific requirements. There are not only more services to 
choose from, but also a greater variety, being of low-cost, high-
volume, as well as high quality customized services. In this 
competitive environment, customer requirements regarding the 
control that they have on the services they purchase may well 
influence the purchasing decision. A basic requirement is 
therefore access to status, performance, fault, and accounting 
statistics of these services. Some also want more active control 
over their services. They may wish to be able to change their 

service configurations easily and quickly. In order to keep 
costs within acceptable bounds, they may want to understand 
how changing such configurations would affect their costs 
going forward. This includes understanding not only cost of 
hardware and software, but also the cost of service 
management including staffing cost. Staffing cost management 
is of particular interest since among other costs, it is the most 
flexible, and hence can be an essential point of competitive 
differentiation among IT service providers. 

These more sophisticated IT customer expectations have 
also surfaced in a growing era of simplified “do it yourself” IT 
management. Specifically, enterprise customers have access to 
a growing array of (largely) cloud-based services (e.g., 
platform as a service, software as a service, etc.) that lower the 
barrier to adoption of new technologies, including greater in-
house management of such technologies and virtualized 
infrastructures. Within this new reality, it has become more 
important for IT service providers to address inquiries 
regarding innovation and value surrounding their service 
offerings. Increasingly, the solution has been to offer unique 
analytical capabilities within their IT service offerings. 

Many research activities have surfaced investigating the 
integration of analytical capabilities into services delivery 
solutions. Timely examples include the use of analytics to 
increase services delivery efficiency. Specific examples 
include extra cost and time avoidance tasks such as automating 
the detection of conflicting IT change plans [10] and 
automating the recommendation of best resolution actions for 
IT monitoring events [19]. Our own recent experiences with 
services delivery clients have revealed an increasing demand 
for predictive analytics for providing answers to various “what 
if” scenarios. An example scenario includes analyzing “what 
improvements in my infrastructure performance and costs will 
I gain if I invest in specific additions or enhancements.” 
Understanding answers to such questions before contracting 
related services delivery activities has become more important 
in the midst of increasing market competition and stagnant IT 
budgets. Related to previously stated comments, prediction of 
service delivery efforts and staffing costs has become essential. 
In services delivery, effort can be measured largely by 
analyzing properties of tickets submitted to a delivery 
workforce requesting resolution of some incident (e.g., a slow 
or unresponsive service). Such tickets drive a large share of a 
services delivery workforce’s activities, or effort. 



This paper addresses the aforementioned client demands by 
introducing a framework for predicting services delivery 
staffing requirements (largely dependent on required effort) 
given IT infrastructure characteristics and projected 
transformations. Given financial characteristics about a specific 
services delivery workforce and client engagement agreements 
(e.g., costs of staffing and service level agreement penalties), 
such requirements and efforts can then be used to predict 
services delivery costs. Our contribution is two-fold. One, we 
present a comprehensive framework for predicting services 
delivery staffing requirements based on IT infrastructure loads 
using a combination of different predictive analytical models. 
Two, and the greater focus of the paper, we conduct a deep 
analysis of services delivery effort prediction, specifically 
using support vector regression to model the correlation 
between IT infrastructure characteristics and incident ticket 
volumes and properties. We show through experimentation 
using real-world data that such an approach to effort 
prediction, as required by the overall solution framework we 
present, is quite promising. To the best of our knowledge, both 
the proposed solution framework and study of effort prediction 
using regression are novel contributions to the literature and IT 
services delivery practitioner community. 

The remainder of the paper is organized as follows. Section 
II compares our work to prior art. Section III describes the 
overall solution framework. Section IV describes details of our 
approach to services delivery effort prediction. Section V 
provides an evaluation of our approach and Section VI 
concludes the paper with a statement of future work. 

II. RELATED WORKS 
As will be described in Section III, our overall prediction 

framework is based on IT performance prediction, service 
delivery effort prediction, and staffing modeling and 
optimization components. The study of various subjects in IT 
performance prediction is quite mature, and much of it can be 
traced back to fundamental queuing theory concepts [4]. More 
recent investigations have contributed a keener understanding 
of what affects performance in increasingly complex and 
customized IT infrastructures. For instance, [20] describes the 
use of profit-based performance criteria to model how 
workload variations and other resource management policies 
affect application response times in cloud environments. In 
[21], the distributed key-value storage system of the Spotify® 
infrastructure is analyzed for performing response time 
prediction. Insight from such empirical studies can benefit our 
work in the future. However, such studies do not extend into 
the prediction of service delivery staffing workloads, which is 
a central focus of our overall research agenda. 

There also exists work in specifically predicting and 
classifying aspects of IT management tickets. For example, 
earlier work described in [14] addressed the classification of 
maintenance request tickets for automated dispatch to the 
appropriate service delivery personnel. Various techniques 
(e.g., support vector machines, classification trees, etc.) were 
used with encouraging results. A different approach was 
proposed in [7], which proposed a crowd-sourcing based 
approach to ticket classification. We do not focus on ticket 
classification, but it can be used in our solution framework 

since one cannot always expect essential ticket data (e.g., 
severity and complexity attributes) to be supplied. Similarly 
beneficial is the work described in [18]. There, the authors 
analyze the relationship between IT agent monitoring policies 
and the volume and types of tickets produced, with the aim of 
reducing the amount of non-actionable tickets resulting from 
overly-sensitive monitoring policies. Most recently, the authors 
of [3] studied the correlation between various server properties 
and ticket volumes to understand how modernizing specific 
server attributes (e.g., operating systems) can reduce error-
prone operation. Our works are similar, though the goals differ, 
and the authors employ random forest techniques for binary 
classification, whereas we require regression analysis for our 
framework. To the best of our knowledge, the only (recent) 
prior work addressing service delivery cost prediction is 
described in [6]. However, the authors focus on IT project 
management costs as opposed to service delivery staffing costs 
associated with incidents and service level agreements. 

Regarding service delivery workforce modeling, 
simulation-based approaches are usually preferred which 
suggest optimal staffing solutions after considering the 
complexities of the real-world system such as the non-
stationarities in the arrival rates and the interactions between 
decisions made in different periods. [1] considers a multi-
period problem of determining optimal staffing levels while 
meeting service level requirements. The authors solve a sample 
mean approximation of the problem using a simulation-based 
analytic center cutting plane method and assuming that the 
service level functions are pseudo-concave. [9] uses stochastic 
approximation to determine optimal staffing levels, assuming 
that the service level functions are convex. [16] considers a two 
stage approach for determining optimal staffing levels in a call 
center environment. In the first stage they solve for the staffing 
levels by using per period attainment as an approximation for 
the true service level attainment. In the second stage, the 
simulation is used to evaluate true system performance and 
service level attainment. [8] uses a simulation-optimization 
approach to minimize the total staffing related variable cost 
while considering the contractual service level constraints, the 
skills required to respond to different types of service requests, 
and the shift schedules that the service agents must follow. We 
specifically plan to leverage the contributions described in [8] 
in our overall solution framework. 

III. SERVICES DELIVERY EFFORT AND STAFFING 
REQUIREMENTS PREDICTION FRAMEWORK 

The overall solution framework we propose facilitates the 
prediction of IT services delivery effort and staffing 
requirements based on the analysis of IT infrastructure 
characteristics, current behavior, and predicted behavior. Given 
our experience, the prediction we focus on can proceed from 
multiple aspects of IT infrastructure analysis. Here, we explain 
our view of a comprehensive solution framework and identify 
its optional and required components. Error! Reference 
source not found. illustrates this framework which consists of 
the following several components: server performance 
prediction, services delivery effort (or workload) prediction, 
and service delivery staffing requirements prediction. As a 
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Fig. 1. Overall service delivery effort and staffing requirements prediction framework. 

note, we will use the terms effort and workload 
interchangeably for the remainder of the paper. 

The first starting point for overall prediction is the analysis 
of server behavior and connectivity and understanding how 
they affect server performance. This is because IT system 
performance has a significant affect on the volume of workload 
submitted to a services delivery staff. For example, monitoring 
agents observing high CPU utilization often automatically 
generate associated incident tickets. The server performance 
prediction component implements techniques for the prediction 
of IT performance metrics. As shown in Error! Reference 
source not found., this component’s inputs include IT 
infrastructure configuration data, server load measurements, 
and server performance measurements. IT infrastructure 
configuration data describes machines’ resources (e.g., CPU 
speed and memory) and properties of their connectivity (e.g., 
network architecture and link speeds). Server load and 
performance measurements are correlated with each other and 
may include measurements such as user transaction rates and 
CPU utilization, respectively. The combination of such inputs 
naturally attracts the application of queuing network analysis 
[4] to build a prediction model, especially if the prediction of 
performance is based on altering a network of dependent 
machines. This applies in our case since our work is motivated 
by “what if” scenarios that serve to analyze efforts and costs 
based on adding additional IT assets and services. However, 
modeling a specific IT system for accurate performance 
analysis using queuing models can be overwhelming, hence 
impeding the large-scale deployment of such a solution. Hence, 
we propose the use of various queuing parameter estimation 
techniques, designed specifically for modeling tiered IT 
systems, which are described in [13] and [18]. The remaining 
inputs to this component, projected IT infrastructure 
configuration and projected server load, are then used as 
inputs into the model to predict performance (the output of this 
component) in the “what if” scenario. 

We frame server performance prediction as optional mainly 
because of data availability challenges. In a growing number of 
strategic outsourcing engagements, multiple vendors may be 

responsible for different aspects of system and services 
management, thereby splintering data governance. Therefore, a 
vendor charged with service delivery effort prediction may not 
have access to details such as network topologies and 
transaction activities. We did not have access to such data for 
this publication; hence, we reserve the detailed integration of 
IT performance prediction into our framework and analysis for 
future investigations. 

The second starting point for effort prediction (the one on 
which we focus in this work) is the analysis of the relationship 
between managed server properties and submitted tickets. The 
premise here is that problematic IT system behavior is not 
always solely dependent on load-based metrics, but also on 
static properties of IT systems. For example, the currency of a 
server’s operating system might be a dominant factor in the 
occurrence of problematic operation, and hence might affect 
the generation of tickets. The service delivery workload 
prediction component is responsible for such analysis. As 
shown in Error! Reference source not found., inputs here 
include server properties and ticket properties. The former 
includes typical static properties of a server (e.g., operating 
system, CPU speed, etc.) as well as properties of applications 
that the server hosts. Ticket properties, the requirements of 
which are largely driven by service delivery workforce 
optimization, may include items such as incident severity and 
ticket submission time. As will be explained in detail later, we 
use support vector regression to implement service delivery 
workload prediction, since the problem can be mapped to one 
of regression. As shown in Fig. 1, the predicted performance of 
one or more servers associated with the other inputs for this 
component can also be used as an input into the (regression) 
model, providing more insight into the overall prediction. 
Prediction based solely on server and ticket properties, 
however, remains quite useful since one can still analyze effort 
and staffing costs if similar new servers are added to the IT 
infrastructure. 

The third component in this framework, service delivery 
staff requirements prediction, estimates various requirements, 
namely labor costs, based on predicted service delivery 



TABLE I.  SERVER PROPERTIES USED FOR PREDICTIVE MODELING 

Attribute Description 
Classification Describes the server’s operating system. 
Manufacturer Describes the server’s manufacturer. 
Architecture Describes the high-level architecture of the CPU 

(e.g., Intel®, Sun®, PowerPC®). 
CPU type Describes the specific type/model of the CPU (e.g., 

Intel® Xeon®, UltraSPARC, Quad-Core AMD® 
Opteron®). 

CPU speed CPU’s speed expressed in hertz (Hz). 
Memory size Memory size expressed in bytes (B). 
Application 

codes 
Unique identifiers for business applications hosted 
on the server. 

TABLE II.  TICKET PROPERTIES USED FOR PREDICTIVE MODELING 

Attribute Description 
Severity A rating of the ticket’s importance; values include 

low, normal, and critical. 
Complexity Describes the difficulty of problem described in 

the ticket; values include easy, normal, and hard. 
Creation time Time and date when the ticket was created. 

Completion time Time and date when the ticket when work on the 
ticket commenced. 

 

workloads using a simulation-optimization approach [8]. 
Particularly, a discrete event simulation model is used to model 
the complex service delivery environment in detail. This 
includes (1) service requests as characterized by arrival time, 
customer, work type, tooling, severity, complexity, and service 
time, (2) service delivery units as characterized by number of 
agents, shift schedule, skill level, customer familiarity, and tool 
familiarity, and (3) dispatching engine that specifies the order 
of which the arrived service request will be processed by the 
service agent. Based on the simulation model, the staffing 
optimization method minimizes the staffing cost subject to two 
types of constraints: service level constraints and staffing 
coverage constraints. Service level constraints represent the 
service attainment as computed by the simulation model 
described above and the service level objectives that must be 
satisfied. In a service delivery environment, the service level 
objectives typically takes on a form such as “no more than 5% 
of priority 1 incidents reported each month can be resolved in 
more than 2 calendar hours.” Staffing coverage constraints 
represent the restrictions on the staffing assignment. This 
includes restrictions on the number of agents within each 
service delivery unit and constraints on the number of agents 
that must work in a given shift. Section IV will describe the 
exact input required from the services delivery effort prediction 
component. All remaining inputs are constraints of a service 
delivery organization that do not need to be predicted, but are 
assumed. 

IV. SERVICE DELIVERY EFFORT PREDICTION 
As mentioned in Section I, the analytical focus of this paper 

entails an investigation of the ability to predict services 
delivery effort, as characterized by various ticket properties. 
Furthermore, given the type of data that was available for this 
investigation, we focus on workload prediction irrespective of 
server performance. This section describes details of our 
analytical approach. The actual results of our evaluation follow 
in Section V. 

A. Server and Ticket Data 
The server and ticket data we used for this investigation 

was obtained from a services delivery engagement involving at 
least 11,000 managed servers (known at publication time) from 
a large financial services company. The server data describes 
configurations of production open system (as opposed to 
midrange and mainframe) physical and virtual machines. The 
server attributes we used (and the ones to which we had access) 
are listed in Error! Reference source not found.The CPU 
speed and memory size are both continuous attributes; all 
others are nominal. The cardinality of the domain of the 
nominal attributes varies (between approximately 4 and 30 
unique values) depending on the time frame of ticket data we 
use in our analysis. The application codes were obtained from 
tickets associated with a server, i.e., they identify what 
application is exhibiting the non-ideal behavior described in 
the ticket. Using this approach to map applications to servers 
may not produce a complete list of a server’s applications. 
However, since we used four continuous months of ticket data, 
the approach should produce a sufficient list of the problematic 
applications, which is our focus anyway. 

We used ticket data, which was generated in response to 
server-specific behavior, over a four month period. The ticket 
properties we used are described in TABLE II. The ticket data 
set did not originally include the complexity attribute. We 
derived this attribute value using historical data (from past 
IBM® service delivery engagements) containing correlations 
between ticket service times and complexities. We calculated 
service times using the creation and completion times from the 
tickets. We note that this may be an imperfect way of 
calculating actual time worked on a ticket, but more fine-
grained data is rarely available and we believe the estimation is 
sufficient for our studies. 

B. Regression Modeling Overview 
For analyzing the correlations between server properties 

and services delivery workloads, we used support vector 
machine based regression (SVR), which is associated with the 
class of kernel-based learning techniques [2][5]. Kernel-based 
learning techniques have several notable advantages. Perhaps 
the most notable benefit is that they have an ability to generate 
non-linear decision boundaries using techniques originally 
designed for linear classifiers. This is advantageous for us since 
given the combination of nominal and continuous server 
configuration properties, clear linear relationships with 
workload, or ticket, data cannot be expected.   

We present a simplified explanation of support vector 
regression here and refer the reader to works such as [5] for an 
exhaustive explanation. To start, consider a simple two-class 
classification problem using linear models of the following 
form: 

by += )()( T xwx φ ,                           (1) 



Fig. 2. Skewed distribution of number of normal-easy tickets among all
data points. 

TABLE III.       SUPPORT VECTOR REGRESSION TRAINING PARAMETERS  

Parameter Value 
Kernel type Radial basis function (RBF), Gausian 

SMO 
parameters 

ε (from (6)) 0.001 
Tolerance 
used for 
checking 
stopping 
criterion 

0.001 

Grid search 
SVR 

parameter 
optimization 
parameters 

C (from (7) 
and (8)) 

search set 

20, 40, 60, 80, 100, 120 

γ (from (10)) 
search set 

0.1, 0.3, 0.5 

Optimization 
criterion 

(1-abs(correlation_coefficient)) + 
root_relative_squared_error + 
root_absolute_error 

Testing method 10-fold cross-validation 
 

where Φ(x) is a fixed feature-space transformation, b is a bias 
parameter, and w is a normal vector to a hyper-plane (or 
decision boundary) dividing data points of the different classes. 
Support vector machines attempt to find the maximum margin 
around the boundary separating points of different classes. The 
maximum margin solution is found by solving the following: 
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where tn is a data point of either class. Largely through the use 
of Lagrange multipliers, the following dual representation, also 
to be maximized, of (1) can be formulated as follows: 
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where an is a Lagrange multiplier and a=(a1,…,aN)T. For the 
linear case, the kernel function is defined by k(x,x')= 
Φ(x)TΦ(x'). The use of kernels in the dual representation of the 
problem is what enables the classifier to be applied efficiently 
to features spaces with dimensionality exceeding the number of 
data points. 

 As with any regression problem, we must consider 
minimization of an error function. Similar to the previous 
explanation of support vector classification, SVR employs the 
use of Lagrange multipliers to formulate regression as 
maximizing the dual formulation of an error function: 
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subject to constraints, 

,0 Can ≤≤               (7) 
,ˆ0 Can ≤≤          (8) 

where ε controls sensitivity to error (i.e., zero error is given if 
absolute difference between target and predicted variables is 
less than ε and ε > 0) and C is the soft margin constant. Using 
operations on the Lagrangian, the regression model can then be 
represented as follows: 
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Further explanation of how we perform regression 
modeling given our data set is presented in Section V. 

V. EVALUATION 

A. Approach 
The goal of our evaluation was to asses if, under certain 

conditions, service delivery workload is correlated with server 
properties given real world information. If so, it means that 
prediction of service delivery workload is in fact feasible, 
supporting the usefulness of the framework presented in 
Section III. 

Our evaluation first required some data pre-processing 
operations in order to perform more efficient and meaningful 
regression modeling. Specifically, we cleaned the server 
attribute data to reduce the occurrence of largely redundant 
feature values. For example, CPU types of servers reported as 
“Intel® Xeon®” or “Intel® Xeon® 2.33GHz” were simply 
replaced by “Intel® Xeon®,” especially since CPU speed is a 



TABLE III.  SUPPORT VECTOR REGRESSION TRAINING PARAMETERS  

Parameter Value 
Kernel type Radial basis function (RBF), 

Gaussian 
SMO 

parameters 
γ (from (6)) 0.001 
Tolerance 
used for 
checking 
stopping 
criterion 

0.001 

Grid search 
SVR 

parameter 
optimization 
parameters 

C (from (7) 
and (8)) 

search set 

20, 40, 60, 80, 100, 120 

γ (from (10)) 
search set 

0.1, 0.3, 0.5 

Optimization 
criterion 

(1-abs(correlation_coefficient)) + 
root_relative_squared_error + 
root_absolute_error 

Testing method 10-fold cross-validation 

TABLE IV.  REGRESSION MODEL TRAINING RESULTS FOR TICKET VOLUMES (4 MONTHS) BASED ON TICKET SEVERITY AND COMPLEXITY 

Ticket 
severity-

complexity 
combination 

Training set 
size 

SVM soft 
margin 

constant (C) 

RBF kernel γ Correlation 
coefficient 

Mean 
absolute 

error (MAE) 

Root mean 
squared 

error 
(RMSE) 

Relative 
absolute 

error (RAE) 

Root relative 
squared 

error 
(RRSE) 

Low-easy 531 80 0.5 0.937 0.357 1.155 15.703% 36.240% 

Normal-easy 
(64 < vol. <= 

200) 

1080 80 0.5 0.820 9.912 2.921 29.112% 58.28% 

Normal-easy 
(vol. > 200) 

1394 100 0.5 0.685 153.587 357.489 41.201% 74.471% 

Critical-easy 735 120 0.5 0.709 74.325 224.587 40.529% 70.894% 

TABLE V.  REGRESSION MODEL TRAINING RESULTS FOR MEAN SERVICE TIMES (4 MONTHS) BASED ON TICKET SEVERITY AND COMPLEXITY 

Ticket 
severity-

complexity 
combination 

Training set 
size 

SVM soft 
margin 

constant (C) 

RBF kernel γ Correlation 
coefficient 

Mean 
absolute 

error (MAE) 

Root mean 
squared 

error 
(RMSE) 

Relative 
absolute 

error (RAE) 

Root relative 
squared 

error 
(RRSE) 

Low-easy 531 60 0.5 0.837 0.821 2.861 25.016% 56.945% 

Normal-easy 
(0 < s.t. < = 

0.52) 

1454 40 0.5 0.720 0.057 0.104 45.098% 70.494% 

Normal-easy 
(0.52 < s.t. <= 

1.35) 

1629 20 0.5 0.662 0.111 0.190 52.144% 76.524% 

Normal-easy 
(1.35 < s.t. <= 

3.80) 

1781 60 0.5 0.784 0.250 0.458 40.700% 63.346% 

Normal-easy 
(s.t. > 3.80) 

1584 80 0.5 0.706 0.892 1.912 42.775% 73.566% 

Critical-easy 735 40 0.5 0.603 1.867 4.408 43.850% 87.6233% 

 

 

Fig. 3. SVR training performance comparison for dependent variable
total ticket volume for January (C=20.0, γ=0.5). 

separate attribute. Such variations can be attributed to the fact 
that different operating systems uniquely report their hardware 
specifications to IBM® TADDM. For some training exercises, 
we also pruned data instances in order to avoid affects of 
severe data skew as well as speed up the training process. For 
instance, as illustrated in Fig. 2, in the data set for tickets with 
normal-easy severity-complexity combinations, nearly 4000 of 
the 6677 total data points (nearly two-thirds) map to no more 
than 64 tickets each. Since the remainder of the data exhibits 
less dominance around any given volume range and also maps 
to greater ticket volumes (which is of greater interest for 

predicting workloads upon service delivery staff), we simply 
pruned the data points in question. We also pruned data points 
associated with servers that produced an anomalous number of 
tickets. Specifically, we omitted any server with a total volume 
of tickets greater than 2σ+med, where σ and med are the 
standard deviation and median values, respectfully of total 
ticket volume value for data set. 

We used the WEKA data mining software toolkit to 
facilitate our evaluations [11]. As previously mentioned, we 
used SVR for our modeling. We chose the radial basis function 
(RBF), a Gaussian non-linear kernel for our SVM, which 
assumes the following definition: 

( ) .0for,exp),( 2 >−−= γγ mnmnk xxxx          (10) 

After preliminary trials, we found the RBF kernel to yield 
better results than that of a linear (or polynomial) kernel. This 
is not too surprising given the combination of fairly high 
dimensionality and nominal features in our data set. 

 Further training details are as follows. The sequential 
minimal optimization (SMO) method was used to train the 
SVM for regression purposes [15]. The parameters used in the 
SMO-based training are listed in TABLE III. Also, we used a 
grid-based search technique for optimizing parameter values 
for the SVM and RBF kernel per evaluation experiment. The 



TABLE VI.  REGRESSION MODEL TRAINING RESULTS FOR MONTHLY TICKET VOLUMES FOR CRITICAL-EASY TICKETS 

Month Training set 
size 

SVM soft 
margin 

constant (C) 

RBF kernel γ Correlation 
coefficient 

Mean 
absolute 

error (MAE) 

Root mean 
squared 

error 
(RMSE) 

Relative 
absolute 

error (RAE) 

Root relative 
squared 

error 
(RRSE) 

January 264 100 0.5 0.811 19.638 59.935 25.815% 59.283% 

February 322 100 0.5 0.794 14.062 59.172 18.403% 62.313% 

March 288 100 0.5 0.761 21.756 70.589 29.170% 67.049% 

April 175 20 0.5 0.560 1.949 5.619 43.471% 88.750% 

parameter value ranges used in the grid search are listed in 
TABLE III. Last, training results were evaluated using 10-fold 
cross validation. 

For SVR training, we use the server properties in TABLE I 
as the independent variables. The dependent variables reflect 
the “non-assumed” requirements for service delivery 
workforce optimization. Hence, the ticket attributes in TABLE 
II are used to define the following dependent variables: 

• Ticket volume for severity i and complexity j, 
• Mean ticket service time (days) for severity i and 

complexity j. 
 

Initially, we investigated service delivery effort prediction 
without considering application code data. This scenario did 
not yield favorable results, as illustrated in Fig. 3, which 
compares correlation coefficients for a case of SVR training 
with and without the application code attribute. Here, the 
inclusion of the application code yields a nearly 6-fold increase 
in the correlation coefficient. This justifies the inclusion of 
application code as an attribute, at least for our particular data 
set. After considering numerous unsuccessful options for 
incorporating application codes into the data set (which lead to 
huge increases in dimensionality), we decided on the following 
simple approach. For each application code associated with a 
given server, we copied the server’s data point and appended 
the application code. 

B. Results 
The results of SVR training are shown in TABLE IV and 

TABLE V. Results are shown for various combinations of 
ticket severity and complexity, as required by staffing 
optimization analysis. Unfortunately, for our study, our data set 
did not contain significant numbers of tickets of normal or 
hard complexity. The data set size encountered while 
performing SVR training for the normal-easy combination was 
relatively large, and dramatically elongated the running time of 
the training process. Therefore, individual regression models 
were formulated over separate regions of the data set. For 
example, rows 3 and 4 of TABLE IV describe results for data 
points mapping to ticket volumes greater than 64 and up to 200 
and greater than 200 tickets, respectively. Considering both the 
correlation coefficient as well as the error values, the majority 
of the results show that there are medium to strong 
relationships between server configurations (and hosted 
applications) and various ticket properties required for 

optimizing service delivery staffing requirements. This is 
especially true in predicting ticket service times (see TABLE 
V), where correlation coefficients ranged between 0.603 and 
0.837, and all error-related statistics were kept at reasonable 
values. Furthermore, there was no apparent correlation between 
training quality and ticket severity, which is good since, given 
this data, prediction quality can be expected to remain 
satisfactory over other data. 

The prediction quality for ticket volumes is not as 
consistently strong. Both the prediction quality for the normal-
easy (for servers with greater than 200 tickets) and critical-easy 
scenarios exhibit substantial error rates. In investigating the 
potential reasons for such performance, we inspected the 
regression performance for individual months over the same 
data. For example, TABLE VI shows the training results for 
critical-easy tickets for four individual months. Compared to 
regression results for the same type of tickets over an 
aggregated four month period, these results for separate months 
are much better on average, with mostly better correlation 
coefficients and markedly better error statistics. For example, 
root mean squared error decreased by an average of 175.75 
while the correlation coefficient increased by an average of 
0.023. This suggests that trends in critical ticket generation are 
based on underlying monthly (or perhaps other cyclic) 
activities in an IT environment. A likely hypothesis is that such 
activities are related to server workloads (e.g., transaction rates 
and volumes) and maintenance tasks. In the case of the data we 
analyzed, from a financial services company, a significant 
share of IT workloads is related to cyclic financial market 
trends. Regarding maintenance activities, our experience has 
been that re-occurring “change freeze” periods (during which 
updates to servers and other components are banned due to 
auditing and other management tasks) often occur during the 
beginning of the calendar year. Again, this can affect periodic 
ticket generation rates (especially of the critical sort) and might 
account for the improved prediction quality over a narrower 
time windows, as shown in TABLE VI. 

There are a couple of insights we gain from this evaluation. 
First, we observe that reasonable to strong prediction of service 
delivery effort using server and ticket properties is quite 
possible, especially if application data is available. Second, and 
what is particularly beneficial for service delivery workforce 
optimization, is that some of the prediction is valid over multi-
month time periods (referring to TABLE IV and TABLE V). 
This is good since it gives an IT services provider sufficient 



time to reconfigure a service delivery workforce after 
predicting service delivery workloads in the form of tickets. 

VI. CONCLUSION 
This paper described an overall framework for predicting 

services delivery workforce requirements for efficiently 
resolving IT incidents given projected changes in system loads 
and infrastructure changes. The major analytical focus entailed 
modeling the correlation between infrastructure characteristics 
and ticket properties required for workforce staffing 
optimization. Given data from a real services delivery 
engagement and the use of support vector regression modeling, 
we showed that developing such accurate correlation models is 
quite feasible under certain circumstances (e.g., dependent on 
the temporal extent of prediction) and highlights the potential 
usefulness of the overall prediction framework. 

Fully developing and evaluating the overall solution 
framework will require some future investigation. For instance, 
further experiments must be conducted using IT performance 
data (e.g., CPU utilization or application response times) which 
we did not have access to for this study. Identifying accurate 
correlation models using such data will enable us to develop a 
more detailed integration of queuing analysis (described in 
Section III) into our framework, further helping us understand 
how infrastructure changes affect delivery effort. Next, 
evaluation should be done using more data, especially related 
to different time periods of the year and even different services 
delivery engagements. In general, predictive modeling always 
benefits from more training data. However, given our services 
delivery focus, data from different parts of the year, and hence 
associated with varying workloads and potential IT 
transformations, will be especially helping in assessing the 
possible limits of services delivery effort prediction. Also, 
sophisticated data pruning techniques should be evaluated to 
potentially improve the regression models. For example, when 
considering performance measurements as independent feature 
variables in prediction analysis, one should ensure that the 
(dependent) ticket data is associated with performance-related 
incidents and requests. As previously mentioned, we expect 
that previous work in ticket classification such as that 
described in [7] can be leveraged for this task. Previous work 
in identifying non-actionable tickets may be potentially used in 
a similar manner [18]. In moving beyond the framework 
presented in this paper, we are also investigating the prediction 
of IT-centric activities based on environmental activities that 
are external to the confines of an IT infrastructure. This may be 
beneficial for proactively managing IT systems supporting 
more pervasive and mobile computing applications such as 
those dealing with city automation or social media. 
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