
RC25433 (IRE1312-005) December 14, 2013
Computer Science

IBM Research Report

Bursting the Cloud Data Bubble: Towards Transparent
Storage Elasticity in IaaS Clouds

Bodgan Nicolae
IBM Research

Smarter Cities Technology Centre
Mulhuddart

Dublin 15, Ireland

Pierre Riteau
University of Chicago

USA

Kate Keahey
Argonne National Laboratory

USA

Research Division
Almaden – Austin – Beijing – Cambridge – Dublin - Haifa – India – Melbourne - T.J. Watson – Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report for
early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After
outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties). Many reports are available at http://domino.watson.ibm.com/library/CyberDig.nsf/home.

Bursting the Cloud Data Bubble: Towards

Transparent Storage Elasticity in IaaS Clouds

Bogdan Nicolae

IBM Research, Ireland

bogdan.nicolae@ie.ibm.com

Pierre Riteau

University of Chicago, USA

priteau@uchicago.edu

Kate Keahey

Argonne National Laboratory, USA

keahey@mcs.anl.gov

Abstract—Storage elasticity on IaaS clouds is a particularly
important feature in the context of data-intensive workloads:
due to exploding data sizes and increasing scale and complexity,
storage requirements can vary greatly during application run-
time, making worst-case over-provisioning a poor choice that
leads to large waste and unnecessary extra costs. Thus, it is
imperative to adapt dynamically to the storage requirements.
However, how to leverage elasticity in this context is not well
understood. Current approaches simply rely on users to attach
and detach virtual disks to the VM instances and then manage
them manually, which greatly increases application complexity.
Unlike such approaches, this paper aims to provide a transparent
solution that presents a unified storage space to the VM in the
form of a regular POSIX file system that hides the details of
attaching and detaching virtual disks. The main difficulty in
this context is to understand the intent of the application in
order to pro-actively attach and detach virtual disks, such as

to avoid running out of space while minimizing performance
overhead of doing so. To this end, we propose a storage space
prediction scheme that analyzes multiple system parameters and
dynamically adapts monitoring based on intensity of I/O in order
to get as close as possible to the real usage. We show the value of
our proposal over static worst-case over-provisioning and simpler
elastic schemes that rely on a reactive model to attach and detach
virtual disks, using both synthetic benchmarks and real life data-
intensive applications.

Keywords-cloud computing; elastic storage; adaptive resizing;
I/O access pattern prediction

I. INTRODUCTION

Infrastructure clouds (Infrastructure-as-a-Service, or IaaS

clouds) [1] are increasingly gaining popularity over privately

owned and managed hardware, thanks to their easy and well-

established pay-as-you-go model that enables users to lease

computational and storage resources on short notice, for a

short amount of time and in large quantities, paying only for

what resources were actually consumed.

One of the key features that makes cloud computing so

appealing is elasticity, i.e. the ability to acquire and release re-

sources in response to dynamic workloads that have fluctuating

requirements over time. Thanks to elasticity, we are presented

with a new optimization problem: rather than molding a

problem to a fixed set of resources in the most efficient way, as

is the case in traditional high performance computing (HPC)

centers, a user can now go the other way around: fit resources

– from a flexible and extensible set – to the problem. While

providing an interesting alternative, elasticity is at the same

time challenging to exploit at its full potential.

To date, most of the efforts have been focusing on ex-

ploiting the elasticity of computational resources, ranging

from localized virtual clusters [2] to approaches that facilitate

elasticity across cloud federations [3], [4]. However, elasticity

of storage has gained comparatively little attention, despite

continuous explosion of data sizes and, as a response, the rise

of data-intensive paradigms and programming models (such as

MapReduce [5] and its vast ecosystem) that are highly scalable

and capable of processing massive amounts of data over short

periods of time.

In this context, storage costs are rapidly growing. While

this growth is naturally caused by the accumulation of data,

a growing gap is forming between the costs of actually used

data and the costs of provisioned storage. In many circum-

stances, data-intensive applications exhibit great variability in

storage requirements during runtime. However, traditionally,

IaaS clouds offer very little support to address such patterns:

users typically have to manually provision raw virtual disks

that are attached to their virtual machine (VM) instances. All

details related to the management of such raw disk, including

what size or type to pick, how to use it (e.g. what file system)

and when to attach/detach a disk increases the application

complexity to a point where the promised ease-of-use of

clouds is abused: users simply over-provision storage in order

to cover the worst-case scenario, which unsurprisingly leads

to a waste of resources and unnecessary extra costs.

As a consequence, there is an immediate need for an elastic

storage solution that bridges the gap mentioned above. For this

to be possible, there are three major requirements that need

to be addressed. First, in order to minimize wasted storage

space, elasticity needs to be implemented in a highly dynamic

fashion, such that it is able to adapt to large fluctuations over

short periods of time and match the provisioned storage space

to the instantaneous needs of the application as closely as

possible. Second, it must exhibit low performance overhead,

such that it does not lead to a significantly longer application

runtime that threatens performance requirements or incurs

extra costs that offset the savings due to smarter storage.

Finally, elasticity must be achieved in a transparent fashion,

such that it hides all details of raw virtual disk management

from the users and facilitates the ease-of-use promise.

This paper contributes with a transparent elastic storage

solution that presents a unified storage space to the VM in

the form of a regular POSIX file system that hides all details

of attaching and detaching virtual disks. Our approach is

specifically designed to deal with data-intensive workloads that

exhibit large fluctuations of storage space requirements over

short periods of time. In addition to technological choices, the

main difficulty in this context is to anticipate the application

intent and proactively attach and detach disks such as to

minimize the wasted storage without significant performance

overhead. To this end, we propose a prediction scheme that

correlates different I/O statistics in order to optimize the

moment when to attach and detach virtual disks without

compromising normal application functionality by prematurely

running out of space.

Our contributions can be summarized as follows:

• We present a series of design principles that facilitate

transparent elasticity for cloud storage. In particular, we

show how to leverage multi-disk aware file systems to

circumvent the difficulty of resizing virtual disks on the

fly, which is coupled with fine granularity-monitoring and

a predictive scheme that anticipates near-future storage

space requirements and other favorable circumstances.

(Section III-A)

• We show how to materialize these design principles in

practice through a series of building blocks (along with

their associated algorithmic description and implementa-

tion) that integrate with a typical IaaS cloud architecture.

(Sections III-B, III-C and III-D)

• We evaluate our approach in a series of experiments con-

ducted on dozens of nodes of the Shamrock experimental

testbed, using both synthetic benchmarks and real-life

applications. In this context, we demonstrate reduction in

waste of storage space of up to an order of magnitude, all

of which is possible with minimal performance overhead.

(Section IV)

II. RELATED WORK

Extensive work exists on elasticity of computational re-

sources, with focus on various aspects including: responsive-

ness to job submissions patterns and performance accelera-

tion [6], automated monitoring and workload adaptation for

OpenStack [7], elasticity of virtual clusters on top of IaaS

clouds [2] and wide area cloud federations [3], [4].

With respect to storage, compression [8] and other space

reduction techniques can be used to reduce associated costs.

However, such approaches deal with actually used data and do

not directly address the gap between actually used data and

provisioned space. Thus, building blocks that facilitate elas-

ticity of storage are crucial. Means to conveniently create and

discard virtual disks of fixed sizes that can be freely attached

and detached to running VM instances are supported by both

open-source platforms [9] and commercial IaaS clouds [10].

Disk arrays (in various RAID configurations) have long been

used by storage servers in order to aggregate the storage space

of multiple disks. Although growing and shrinking of RAID

volumes is possible, this is a lengthy and expensive operation

because it requires rebuilding the entire RAID. While there are

several efforts to improve this process [11], [12], [13], such

an approach is not feasible in our context where we need

to grow and shrink storage over short periods of time. On

the other hand, approaches that manage multiple disks at file

system level have demonstrated scalability and low resizing

overhead [14]. Worth mentioning in this context is also our

own previous work on multi-versioning [15], especially if

leveraged to reduce remove overhead: by writing into new

snapshots and serving reads from old snapshots that potentially

include the disk to be removed, blocking during reads can

be completely avoided until all content has been copied to

the remaining disks. At this point, a simple atomic switch

to the newest snapshot completes the remove operation in a

completely transparent fashion.

Approaches that aim at automated control of storage elas-

ticity have been proposed before. Lim et al. [16] address

elastic control for multi-tier application services that allocate

and release resources at coarse granularity, such as virtual

server instances of predetermined sizes. In this context, the

focus is on adding and removing entire storage nodes and

rebalancing data across remaining nodes in order to optimize

I/O bandwidth and CPU utilization.

Storage correlations have been explored before at various

granularity. Several efforts analyze correlations at file level

either in order to detect access locality and improve prefetch-

ing [17] or to conserve energy in a multi-disk system without

sacrificing performance [18]. Other efforts go one level below

and focus on smaller granularity (i.e. block-level), under the

assumption that it would enable additional disk-level optimiza-

tion opportunities in the area of storage caching, prefetching,

data layout, and disk scheduling [19]. Our approach on the

other hand focuses on correlations that help predict storage

utilization, without insisting on any particular storage unit.

Prediction of I/O and storage requirements have been at-

tempted both from the perspective of storage space utilization

and behavior anticipation. To this end, Stokely et al. have

developed forecasting methods to estimate storage needs in

Google datacenters [20]. In this context, the focus is long

term prediction in the order of months, which is insufficient

to adapt to short term fluctuations that can happen in as little

as the order of seconds. Anticipation of I/O behavior has

mainly been realized by identifying and leveraging I/O access

patterns [21], [22]. Such access pattern-based analysis could

be interesting to explore in our context, as a complement that

facilitates bandwidth-elastic capability in addition to storage

space elasticity.

Our own work focuses on a specific aspect of elasticity:

transparent provisioning that minimizes storage space waste

without sacrificing performance. To our best knowledge, we

are the first to explore the benefits of elasticity under such

circumstances.

III. SYSTEM DESIGN

This section presents the general design principles of our

approach, showing how it integrates in a typical cloud archi-

tecture and how it can be implemented in practice.

A. Design principles

Achieve transparent elasticity using a multi-disk aware

file system: Storage is typically provisioned on IaaS clouds

in the form of virtual disks that can be freely attached to and

detached from running VM instances. This model provides

low-level control over the storage resources, however, by itself

has limited potential for elasticity: a virtual disk is often

provisioned using a predefined initial size, with no capability

of online resizing (i.e. while being attached to a running VM

instance that potentially issues accesses to the disk during

the resize operation). Even if online resizing were possible,

a virtual disk is rarely used directly as a raw block device:

most of the time, a file system sits on top of it. Thus, in order

to accommodate the new size at file system level, a resize of

the file system is necessary as well. However, this operation

is usually not possible in an online fashion: the file system

needs to be unmounted, resized offline and then mounted

again. Since our goal is to achieve transparent elasticity, the

online capability is crucial in our context. Thus, attempting to

resize virtual disks themselves presents a problem both at the

level of the disk itself and at the level of the file system. To

address both issues simultaneously, we propose to leverage

a multi-disk aware file system that is able to aggregate the

storage space of multiple virtual disks into a single pool. Using

this approach, we can start with a small initial virtual disk of

fixed size and then add or remove additional fixed-sized virtual

disks (referred to as increments) as needed. While simple as

a principle, such an approach still presents the challenge of

adding and removing disks in an online fashion. There are

two main requirements in this context: (1) scalability with

respect to the number of disks (i.e. the file system should not

become slower as more disks are added); (2) minimal overhead

on application performance (i.e. adding and removing disk

should not slow down the file system). Luckily, as explained

in Section III-D, building blocks that fulfill these requirements

are readily available.

Dynamically adapt to space utilization through fine-

grained monitoring and preventive reserve: The capability

of adding and removing virtual disks to form an elastic pool

of raw storage space is by itself useful only as long as it is

leveraged in a meaningful way that closely matches application

requirements. However, this ability to dynamically adapt to

the application requirements is challenging, especially in the

context of data-intensive applications: they frequently exhibit

large fluctuations of storage space utilization over short periods

of time. Naturally, if there is not enough time to react and add

a new disk to the file system, the application will run out of

space and possibly fail or run in degraded mode. However,

this is a scenario that is not acceptable as a trade-off for

reducing the waste of storage space. Thus, we aim to guarantee

correctness for our approach, which in our context means that

the application should behave when using elastic storage in the

same way as it would when using an infinitely large storage.

To achieve this goal, one of the techniques we propose is fine-

grain monitoring, i.e. awareness of changes in the utilization at

fine granularity in order to be able to react in time. Although

such an approach helps alleviate the problem of fluctuations

over short periods of time, by itself it is not enough. This

happens because applications often check for free space and

change their behavior if their expectation is not met, even

before attempting an operation that risks failing due to running

out of space. In order to deal with this issue, we propose to

use a preventive reserve, i.e. keep an extra amount of storage

space available at all times, beyond the immediate needs. This

not only solves the expectation issue, but also helps with the

fluctuations, especially if there are dramatic changes between

two consecutive probings.

Minimize waste of storage space and performance

overhead by predicting future requirements and favorable

circumstances: A reserve that is large enough can guarantee

correctness, however letting it grow too much defeats the

purpose of being economical. Furthermore, even in an ideal

scenario where no storage space is wasted, if the moment when

to add and remove virtual disks is chosen poorly, this can lead

to performance degradation and longer application runtimes,

which in turn leads to an increase in operational costs. Thus,

it is important to take both aspects into consideration when

adapting to the space utilization. To address this issue, we

advocate for a predictive scheme that is able to anticipate near-

future space requirements and other favorable circumstances

that can be used to optimize the moment when to add and

remove disks, which ultimately helps our approach satisfy

correctness with a smaller reserve while minimizing the waste

and the performance overhead. More specifically, we propose

to go beyond just looking at the storage space utilization itself

and rather look at correlations between several I/O parameters.

One such correlation that we found particularly helpful is the

amount of written data in the near past: under high write

pressure, it is highly likely that the free space as reported

by the file system does not accurately reflect the real free

space, due to pending flushes that were not yet committed.

Thus, factoring the amount of written data into the prediction

helps avoid worst-case scenarios where the reported free space

suddenly jumps by an amount proportional to the written

amount. Furthermore, under high write pressure, fluctuations

in space utilization are more likely to exhibit larger variability

over short periods of time. To address this issue, we propose to

adapt the frequency of probing in order to increase reactivity:

we monitor parameters at finer granularity when the write

pressure grows higher and back off to coarser granularity when

the pressure falls lower. Finally, we also use I/O pressure (both

read and write) to decide when to remove a disk: under the

assumption that a high I/O pressure makes a removal expensive

in terms of performance overhead, we avoid this operation as

long as the pressure stays high (note that delaying a removal

does not affect correctness, unlike the case when a new disk

needs to be added). We detail all aspects mentioned above in

Section III-C.

Fig. 1. IaaS cloud architecture that integrates our approach (dark background).

B. Architecture

The simplified architecture of an IaaS cloud that integrates

our approach is depicted in Figure 1. We highlight the com-

ponents that are of interest with respect to our proposal using

a darker background. For the rest of this section, we explain

the components and the interactions between them.

Once deployed, the VM instance initializes a multi-disk

aware file system that is exposed to the users using a regular

POSIX mountpoint and implements the requirements men-

tioned in Section III-A. At the same time, it launches both

the predictor and the controller. The controller is responsible

for the monitoring part and the actionable part. The frequency

of probing depends on the intensity of I/O (as detailed in

Section III-C) and each probe collects information about free

space utilization and other parameters. This information is then

passed to the predictor, which, based on it, is responsible for

estimating near-future storage space utilization. Based on this

estimation, the controller decides its next action, which can

either be to request a new virtual disk and then add it to the

file system pool, or to remove a virtual from the pool and then

ask for it to be discarded.

All interactions with the outside of the VM happen through

the cloud middleware, which is responsible for materializing

the requests of the controller (i.e. to create a new virtual disk

and attach it to the VM instance and, respectively, to detach

a virtual disk from the VM instance and subsequently discard

it). At this point, the cloud middleware has a wide range of

choices with respect to how to provision a new virtual disk: (1)

virtual disk images of various formats (e.g. raw, QCOW2 [23])

stored either locally on the physical disks of the hosting node

or remotely through a shared repository; (2) dedicated physical

disks exported as block devices; (3) using specialized virtual

disk repositories [10], [24]. Note that for our approach to

work, the compute node must run a hypervisor that is capable

of dynamically attaching and detaching virtual disks to the

VM instances. Fortunately, this feature is available in most

production-ready hypervisors.

C. Zoom on the predictor and controller

Our approach works through the synergy of the predictor

and the controller, as mentioned in the previous section. In

this section, we introduce an algorithmic description of this

process.

By convention, identifiers in italic capitals represent con-

stants. These are as follows: INIT is the size of the initial

virtual disk; INC is the size of newly added virtual disks

(although more complex models are possible that enable

growing and shrinking in variable increments, for the purpose

of this work we consider the increment as a constant); TMAX
and TMIN represent the coarsest and, respectively, the finest

granularity at which the controller probes for I/O statistics of

the file system; R represents the reserve of space; AD (add

delay) represents the expected time to add a new virtual disk

(and is set to a conservative value); finally RD (remove delay)

represents the amount of time that the file system needs to

spend in a stable state in order to make a removal safe (the

notion of stable is explained below).

The main loop of the controller is listed in Algorithm 1.

The interactions with the multi-disk aware file system is done

through ADD DISK and REMOVE DISK, both of which are

blocking operations that return the new size of the disk pool.

In a nutshell, the controller constantly probes for new I/O

statistics since the last query (using GET FS STATS) and then

passes these statistics to the predictor in order to find out an

estimation of near-future usage (pred), after which it uses this

estimation to take action. Two additional variables aid the

prediction: the interval of probing (next) and the window,

which represents how much time into the past should the

predictor look in order to anticipate near-future usage. Under

high uncertainty (i.e. when the difference between prediction

and actual usage is large) or when the file system is close to

getting filled up, the intuition is that we need to be “more

careful” and thus we probe twice as frequently (but not at

finer granularity than TMIN) and we need to look more into

the past (window increases). When the opposite is true, the

interval of probing doubles (up to TMAX) and the window

decreases. Thus, the notion of “near-future” becomes more

concretely 2 · next+AD, because in the worst case, it might

happen that next halves and a new disk is added, causing

additional AD overhead.

Using the prediction, if the current size of the disk pool is

not enough to cover the near-future utilization (size < pred+

Algorithm 1 Main controller loop

1: size← ADD DISK(INIT)
2: next← TMAX
3: window ← 2 · TMAX
4: while true do

5: stats←GET FS STATS()
6: pred← PREDICT(stats, window, 2 · next+AD)
7: if pred− used > R or size < pred+ R then

8: ts← CURRENT TIMESTAMP()

9: if next > TMIN then

10: next← next/2
11: window ← window + TMAX
12: end if

13: if size < pred+R then

14: size← ADD DISK(INC)
15: end if

16: else

17: if next < TMAX then

18: next← 2 · next
19: window ← window − TMAX
20: end if

21: ct← CURRENT TIMESTAMP()

22: if size > pred + INC + R and ct > ts + RD
and not under I/O pressure then

23: size← REMOVE DISK(INC)
24: end if

25: end if

26: SLEEP(next)
27: end while

R), then a new disk is added. Conversely, if the size is large

enough to cover a removal of an increment (size > pred +
INC+R), then there is potential to remove a disk. However,

we set two additional conditions for actual disk removal: (1)

there is no I/O pressure (such that a removal does slow down

the application); and (2) the file system has spent enough time

(RD) in a non-uncertain state to make a removal safe.

The predictor is listed in Algorithm 2. It is centered around

the idea of keeping a history of recent statistics labeled with

the corresponding timestamp (History) that gets updated

according to the utilization. More specifically, if there is no

change in utilization, then we assume the worst case (i.e. all

written data to the disk might represent new data that was

not flushed yet) and keep accumulating statistics. Otherwise,

if we see an increase in utilization, then we assume that

write operations were at least partially flushed, so we discard

all entries in the history that are older than the window.

Finally, if we observe a decrease in utilization, we assume

it is safe to discard the whole history, under the intuition that

the application will move on to a new phase and thus change

its behavior.

Once the history was updated as described above, the pre-

dictor proceeds to calculate the estimated utilization in the near

future (extra). In this context, the most relevant parameter to

consider is the amount of written data (wb). The calculation

Algorithm 2 Predictor

1: function PREDICT(stats, window, future)

2: t← CURRENT TIMESTAMP()
3: if stats.used > (tmax, s.used) ∈ History then

4: for all (ti, si) ∈ History|ti + window < t do

5: History ← History \ {(ti, si)}
6: end for

7: else if stats.used < (tmax, s.used) ∈ History then

8: (lt, lstats)← (tmax, s) ∈ History
9: History ← ∅

10: end if

11: History ← History ∪ {(t, stats)}
12: if |History| > 1 then

13: (ti, si)← (tmax, s) ∈ History
14: (tj , sj)← (tmax, s) ∈ History \ {(ti, si)}
15: extra← future · (ti − tj)/(si.wb − sj .wb)
16: (a, b)←LINREGRESS((t, s.wb) ∈ History)
17: extra← max(extra, a · future+ b)
18: else

19: extra← future · (t− lt)/(stats.wb− lstats.wb)
20: end if

21: return stats.used+ s.wbmax − s.wbmin + extra
22: end function

relies on a conservative approach that takes the maximum of

two evaluations: (1) what is the most probable evolution based

on the whole history of writes (entries denotes (t, s.wb)); (2)

what is a possible short term evolution based only on the

latest entries in the history ((ti, si.wb) and (tj , sj.wb)). The

reasoning behind (2) is the fact that (1) alone might not capture

write-intensive bursts that follow right after a period of write

inactivity, which presents the risk of unexpectedly running

out of space. To calculate (1), we use linear regression [25].

As mentioned in the previous paragraph, the amount of free

space might not accurately reflect all previous writes due to

pending flushes. Thus, as a final step, we take an additional

measure of caution and increase our prediction by the number

of written bytes starting from the earliest moment recorded in

the history up to the present (smax.wb−smin.wb), in order to

cover the worst case where all written data corresponds to new

data. Once all steps have finished, the final predicted value is

returned.

D. Implementation

In this section, we briefly introduce a prototype that imple-

ments the components presented in Section III-B.

We rely on Btrfs [14] to fulfill the role of the multi-disk

aware file system. Our choice was motivated by several factors.

First, Btrfs implicitly supports online add and remove of new

disks and can do so in a scalable fashion. Second, thanks to its

B-Tree centered design, it can efficiently mask the overhead of

adding and removing disks asynchronously in the background,

causing minimal performance degradation for the application.

Finally, Btrfs is part of the official Linux kernel and is widely

accepted as a viable candidate to replace the current generation

of file systems (such as ext4).

The predictor and the controller were implemented as a

Python daemon. We found the rich ecosystem of libraries

around Python to be particularly helpful: the psutil package

offers out of the box support to get per-disk I/O statistics, while

the scipy package implements several optimized numerical

algorithms and techniques, including linear regression.

Interesting to note are also certain non-trivial aspects related

to the attaching of virtual disks, in particular how to detect

inside the guest when the disk is recognized by the kernel. To

this end, we rely on pyudev, which implements an accessible

interface to libudev, including asynchronous monitoring of

devices in a dedicated background thread.

IV. EVALUATION

After briefly describing the experimental setup and method-

ology, we evaluate in this section our approach both in

synthetic and real life settings.

A. Experimental setup

Our experiments were performed using Shamrock, an ex-

perimental testbed of the Exascale Systems group of IBM

Research in Dublin, Ireland. It consists of 160 nodes inter-

connected with Gigabit Ethernet, each of which features an

Intel Xeon X5670 CPU (6 cores, 12 hardware threads), HDD

local storage of 1 TB and 128 GB of RAM. For the purpose

of this work, we used 30 nodes.

All nodes run the RedHat 6.3 Enterprise Edition Linux dis-

tribution. We simulate a cloud environment using QEMU/KVM

1.6 [26], [27] as the hypervisor. On each node, we deploy a

VM that is allocated two cores and 8 GB of RAM. Each VM

instance uses a locally stored QCOW2 file as the root partition,

with all QCOW2 instances sharing the same backing file

through a NFS server. The guest operating system is a recent

Debian Sid running the 3.10 Linux kernel. Both the root disk

and any other virtual disks that are added or removed dynam-

ically, use the virtio driver for best performance. The process

of adding and removing virtual disks from VM instances is

handled directly through the hypervisor monitor, using the

device add and, respectively, the device remove command.

Each virtual disk that is part of the Btrfs pool is hosted as a

RAW file on the local HDD. To avoid unnecessary caching

on both the host and the guest, any newly added virtual disk

has host-side caching disabled (cache=none). Furthermore,

the network interface of each VM uses the virtio driver and

is bridged on the host with the physical interface in order

to enable point-to-point communication between any pair of

VMs.

B. Methodology

We compare four approaches throughout our evaluation:

1) Static worst-case pre-allocation: In this setting, a large,

fixed-sized virtual disk is attached to each VM instance from

the beginning, in order to cover all storage requirements

throughout the runtime of the VM. Inside the guest, a Btrfs

file system is created and mounted on this single large virtual

disk. This setting corresponds to a typical static worst-case

pre-allocation that is the most widely used on IaaS clouds.

We denote this setting as prealloc and use it as a baseline for

our comparisons.

2) Incremental additive using free space reserve: In this

setting, a small 1 GB virtual disk is initially attached to the

VM instance and used as a Btrfs file system, same as in the

previous setting. The file system usage is monitored using

a fixed window of 5 seconds throughout the runtime of the

VM and whenever the remaining free space is smaller than

a predefined fixed amount, a new virtual disk is attached to

the VM instance and added to the Btrfs pool. This predefined

fixed amount corresponds to the reserve, as explained in Sec-

tion III-A. Throughout our experiments, we pick the reserve

such that it corresponds to the minimal amount that it satisfies

correctness (i.e. leads to failure-free execution that does not

generate out-of-space and other related errors). The size of

each new virtual disk (which we denote increment) is fixed at

2 GB. We denote this setting as reactive−additive.

3) Incremental add-remove using free space reserve: This

setting is highly similar to the previous setting, except that it

also removes the last added virtual disk from the Btrfs pool

whenever the free space grows higher than the reserve and

the increment size (in order for the free space not to shrink

below the reserve size after removal). We denote this setting

as reactive−addrm. Both this setting and the previous setting

were chosen in order to underline the importance of prediction

(as featured by our approach) in minimizing the wasted space

throughout the application runtime.

4) Incremental add-remove using our approach: We start

in this setting from the same initial Btrfs configuration (1 GB

large virtual disk) and use the same increment size (i.e.

2 GB). However, the monitoring granularity and decision

when to attach/detach a virtual disk is based on our adaptive

predictor, as detailed in Section III-C. We fix TMIN = 1s,

TMAX = 5s, AD = 10s, RD = 60s. We denote this setting

as predictive−addrm.

These approaches are compared based on the following

metrics:

• Impact on application performance: is the difference in

performance observed due to the overhead of attaching

and detaching virtual disks dynamically compared to the

baseline, i.e. prealloc. Ultimately, this metric reveals how

much longer the VMs need to stay up and running (and

thus generate extra costs) as a compensation for reducing

storage costs. This metric is based on application com-

pletion time and lower values are better.

• Allocated and used space: is the total allocated/used space

to/of the Btrfs pools of all VM instances at a given time.

They are relevant in order to determine how much storage

space is wasted (see below).

• Cumulated waste: is the accumulation of the difference

between the allocated and the used space, as the appli-

cation progresses in time. This metric is expressed in

GB × hours (GBh) and is calculated in the following

fashion: the runtime is divided at fine granularity in 5

second intervals, in order to accurately capture fluctua-

tions over short periods. Then, for each interval, the sum

of all space differences corresponding to the participating

VM instances is calculated and converted to GBh. Finally,

the sums are accumulated as the application progresses

from one interval to the next. This metric is relevant

because it directly corresponds to the extra unnecessary

costs incurred by provisioning unused storage space. A

lower value is better.

• Expected utilization: is the expected storage space uti-

lization in the near future (based on the previous expe-

rience), including the reserve. For reactive−addrm and

reactive−additive it simply represents the used space

plus the reserve. For predictive−addrm, it represents the

predicted utilization based on our approach plus the

reserve. In order to calculate it for a set of multiple VMs,

we divide the runtime in 5 second intervals and sum up

all differences for each interval. This metric is relevant

because it impacts the decision of when to add/remove

virtual disks and shows how close each approach can get

to the actual utilization while being able to react in time

if more space is needed.

C. Microbenchmarks

Our first series of experiments aims to push all approaches

to the limits in order to better understand the trade-offs

involved in attaching and detaching virtual disks dynamically.

To this end, we implemented a benchmark that generates a

large amount of data over a short period of time, waits for

this data to be flushed to the file system and then scans

through the generated dataset while keeping a predefined

amount of it and discarding the rest. This is a common pattern

encountered in data-intensive applications, especially those

of iterative nature that refine a dataset until a termination

condition is reached [28]. More specifically, the benchmark

works as follows: we use dd to continuously generate files

of 128 MB until we reach more than 6.5 GB (which ideally

should trigger an addition of 3 virtual disks of 2 GB in addition

to the initial disk of 1 GB). After the data is flushed (using

sync), we proceed to read all generated data while at the same

time removing files for a total of 4 GB, which makes the

remaining data fit into the initial disk plus an additional 2 GB

disk.

For this set of experiments we deploy a single VM and

run the benchmark three times for each of the approaches.

An important condition that we set is to achieve failure-free

execution on all three attempts using a minimal reserve of

space. In this case, our finding are as follows: both reactive

approaches require a reserve of 2 GB to survive the initial write

pressure, while our approach accurately predicts near-future

requirements and is able to achieve failure-free execution with

a reserve of 0. For prealloc, we fix the initial disk size at 8 GB,

enough to fit any additional space requirements beyond useful

data (e.g. system reserved space, metadata, etc.).

Results are depicted in Figure 2. First, we focus on comple-

tion time (left hand side of Figure 2(a)). As can be observed,

 186

 188

 190

 192

 194

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

T
im

e
 (

s
)

W
a
s
te

 (
G

B
h
)

prealloc
reactive-additive

reactive-addrm

predictive-addrm

Cumulated wasteCompletion time

(a) Completion time and cumulated waste (lower is better)

 0

 2

 4

 6

 8

 10

 12

 0 50 100 150 200 250 300 350 400

S
p
a
c
e
 (

G
B

)

Time (s)

prealloc
reactive-additive

reactive-addrm
predictive-addrm

actually-used

(b) Allocated space (lower is better)

Fig. 2. Benchmark: single VM writes 6.5 GB worth of data in files of
128 MB, waits for the data to be flushed, then reads it back while deleting
4 GB of it

all approaches perform very closely to the baseline (prealloc):

an increase of less than 2% in completion time is observable,

which leads to the conclusion that the process of attaching

and detaching virtual disks can be efficiently masked in the

background by Btrfs. These results are consistent throughout

all three runs: the error bars show a difference of less than

1% in both directions. As expected, prealloc is the fastest,

followed by reactive−additive. Although minimal, a wider gap

is observable between reactive−additive and reactive−addrm,

hinting at larger disk remove overhead.

Figure 2(b) helps understand these results better by depict-

ing the variation of allocated space in time. This variation

directly corresponds to adds (rise) and removes (fall) and also

shows their overhead (sudden rise/fall means low overhead,

gentle rise/fall means higher overhead). As can be observed,

our approach is more aggressive in predicting future storage

space requirements, since it relies on information about past

written data, which in this case amounts to large quantities.

Thus, it decides to add virtual disks earlier to the Btrfs pool,

which enables it to behave correctly without a reserve. This is

noticeable due to a higher slope for additions and the presence

of flat regions that approximate the used space much better

as opposed to the reactive approaches, where a flat region is

missing completely between the addition of the third and forth

disk. We suspect the gentle slope exhibited by the reactive

approaches is caused by spending more time in a state where

the file system is close to being full, explaining the high add

overhead and thus the need for a high reserve. Ultimately, this

effect combined with a delayed removal of virtual disks enable

predictive−addrm to finish slightly faster than reactive−addrm,

despite adding more disks overall.

The benefits of eliminating the need for a reserve thanks

to prediction are especially visible when observing the cumu-

lated waste (right hand side of Figure 2(a)). The cumulated

waste is calculated for the duration of the benchmark plus

a “cool-down” period, to enable the file system to stabilize

and complete all pending asynchronous operations (removes

in particular; total duration is 400s). As expected, prealloc

generates the largest waste of space at almost 0.6 GBh.

Next is reactive−additive, which manages to save almost

0.17 GBh. It is followed by reactive−addrm, which thanks

to its last removal saves an additional 0.1 GBh. The win-

ner is predictive−addrm: due to accurate prediction and

lack of reserve, it manages to remove all extra allocated

disks. This amounts to an additional 0.1 GBh compared to

reactive−addrm, which represents a relative reduction of 33%

and brings the total reduction compared to prealloc to 66%.

D. Case study: MapReduce K-Means

Our next series of experiments focuses on real life data-

intensive scenarios. As an illustrative application, we use K-

Means [29], which is widely used in a multitude of contexts:

vector quantization in signal processing, cluster analysis in

data mining, pattern classification and feature extraction for

machine learning, etc. It aims to partition a set of multi-

dimensional vectors into k sets, such that the sum of squares of

distances between all vectors from the same set and their mean

is minimized. This is typically done using iterative refinement:

at each step the new means are calculated based on the results

from the previous iteration, up until they remain unchanged

(with respect to a small epsilon). K-Means was shown to be ef-

ficiently parallelizable and scales well using MapReduce [30],

which makes it a popular tool to analyze large quantities of

data at large scale. Furthermore, due to its iterative nature,

it generates fluctuating storage space utilization. This fact,

combined with the inherent scalability, makes K-Means a good

candidate to illustrate the benefits of our proposal.

For the purpose of this work, we use the K-Means im-

plementation of the PUMA set of Hadoop benchmarks [31],

which applies K-Means on a real-life problem: clustering

movies according to their ratings from users. The experiment

consists in deploying a Hadoop cluster (Hadoop version 1.2.1)

of 30 VMs (1 jobtracker/namenode and 29 tasktrackers/datan-

odes), each on a dedicated node. All Hadoop data (both HDFS

data and intermediate data) is configured to be stored on a Btrfs

file system that we use to compare each of the four approaches

mentioned in Section IV-B. Once the Btrfs file system is

mounted, in the first phase the input data (standard 30 GB

large movie database that is part of the PUMA benchmarks)

is copied into HDFS. Then, 5 iterations are computed starting

from this input data. Each iteration consists of two parts:

the K-Means computation itself and the extraction of the

new centroids at the end of the computation for the next

iteration. To speed up the extraction, which in the original

implementation is done in a serial fashion on the master (and

thus doesn’t scale for our purposes), we expressed this process

itself as MapReduce grep job.

 0

 0.5

 1

 1.5

 2

 1 2 3 4 5

C
o
m

p
le

ti
o
n
 t
im

e
 (

h
)

Iteration #

prealloc
reactive-additive

reactive-addrm
predictive-addrm

(a) Completion time (lower is better)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 1000 2000 3000 4000 5000 6000 7000 8000

W
a
s
te

 (
G

B
h
)

Time (s)

prealloc
reactive-additive

reactive-addrm
predictive-addrm

(b) Cumulated waste (lower is better)

Fig. 3. K-Means: trade-off between achieved performance and waste of
storage space for a Hadoop cluster made out of 30 VMs

The experiment is repeated three times for each of the four

approaches and the results are averaged. As in the case of the

microbenchmarks, we first established the minimal reserve of

space necessary to achieve a failure-free execution an all three

runs. Both reactive approaches require a reserve of 4 GB, while

our approach can handle a 1.5 GB reserve thanks to prediction.

For prealloc, we fix the initial disk size at 32 GB, which is

the maximum observed throughout the lifetime of any of the

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 1000 2000 3000 4000 5000 6000 7000 8000

S
p
a
c
e
 (

G
B

)

Time (s)

Used
Expected
Allocated

(a) Reactive incremental add-remove (reactive−addrm) with a preven-
tive reserve of 4 GB

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 1000 2000 3000 4000 5000 6000 7000 8000

S
p
a
c
e
 (

G
B

)

Time (s)

Used
Expected
Allocated

(b) Predictive incremental add-remove (predictive−addrm) with a pre-
ventive reserve of 1.5 GB

Fig. 4. K-Means: aggregated evolution of used, expected and allocated storage space for a Hadoop cluster made out of 30 VMs

VM instances and is required to avoid failures.

As can be observed in Figure 3(a), the completion times

for all four approaches are again very close, hinting at the fact

that Btrfs efficiently handles attaching and detaching of virtual

disks in an asynchronous fashion. More specifically, the per-

formance overhead of reactive−addrm and predictive−addrm

is 6.3% and 5.5% respectively when compared to prealloc,

which is a small price to pay when considering the large

reduction in cumulated waste: at the extreme, reactive−addrm

manages a five-fold reduction, while predictive−addrm almost

manages a ten-fold reduction (which itself is 42% relative to

reactive−addrm). Interesting to note is also the relatively small

difference between reactive−additive and reactive−addrm,

which can be traced back to the fact that a large reserve limits

the opportunities of disk removal.

To understand why our approach reduces the waste almost

twice as much as reactive−addrm, we depict in Figure 4 the

evolution of used, expected and allocated storage space for

both approaches. As can be observed, both approaches have a

similar effective storage space utilization that clearly delimits

the initial phase where the input data is copied into HDFS

(steady growth in the beginning) and the K-Means phase with

its 5 iterations (a “bump” for each iteration). Thanks to the

accuracy of our prediction scheme and the resulting small

required reserve, the expected utilization (Figure 4(b)) is much

closer to the real utilization than in the case of reactive−addrm

(Figure 4(a)). Notice the amplified effect of accumulating

a large reserve for reactive−addrm: the difference between

expected and used space grows up to 100GB, which for

our approach stays well below 50 GB. Ultimately, this large

difference in expected utilization enables a much more flexible

allocation and removal of virtual disks for predictive−addrm:

the allocated space stays throughout the application runtime

much closer to the expected utilization and exhibits steeper

fluctuations compared to reactive−addrm, which in turn ex-

plains the reduction in cumulated waste.

V. CONCLUSIONS

Elasticity on IaaS clouds is a key feature that makes the pay-

as-you-go model attractive. While extensively studied in the

context of computational resources, storage elasticity received

comparatively little attention. However, due to exploding data

sizes and increasing demand to run data-intensive workloads of

increasing scale and complexity (that are capable of processing

such massive data sizes), storage elasticity becomes a critical

selling point of IaaS clouds.

One particularly difficult problem in this context is the

growing gap between actually used storage and provisioned

storage: due to lack of transparency and automated control

of provisioned storage resources, users often over-provision

storage to accommodate the worst-case scenario, which leads

to waste of storage space and unnecessary extra costs. Thus,

a solution that adapts to data-intensive workloads and handles

growing and shrinking of storage transparently such as to

minimize wasted space while causing minimal performance

overhead is an important step towards abridging this gap.

In this paper we have proposed a potential solution to the

aforementioned problem in the form of regular POSIX file

system that operates with virtual disks of small fixed sizes,

while hiding all details of attaching and detaching such disks

from VM instances. Our approach is specifically designed to

deal with fluctuations of space requirements over short periods

of time: rather than relying solely on a reactive model, it

introduces a prediction scheme that correlates different I/O

statistics in order to optimize the moment when to attach

and detach virtual disks, which lowers wasted storage space

without compromising normal application functionality by

prematurely running out of space.

We demonstrated the benefits of our approach through

experiments that involve dozens of nodes, using both mi-

crobenchmarks and a widely used real life data-intensive

MapReduce application: K-Means. Compared to traditional

static approaches that over-provision storage in order to

accommodate the worst-case scenario, we show reduction

of cumulative waste (i.e. wasted storage space over time)

that ranges from 66% for microbenchmarks up to 90% for

K-Means. We also underline the importance of prediction:

compared to a simple reactive scheme, our approach reduces

cumulative waste by 33% for microbenchmarks and 42% in

real-life for K-Means. All these benefits are possible with

minimal performance overhead: compared to static worst-case

over-provisioning, we show a performance overhead of less

than 2% for microbenchmarks and around 5% for K-Means.

Encouraged by these results, we plan to broaden the scope

of our work in several directions. One direction that has

promising near-future potential concerns our predictor: we

plan to investigate how leveraging additional correlations and

access patterns can further improve the accuracy of our near-

future predictions. Another direction we plan to explore is

bandwidth elasticity, i.e. how to allocate more/less I/O band-

width according to workload requirements in such way as to

get away with as little bandwidth consumption as possible.

Such an approach has potential especially in the context

of multi-tenancy, enabling for example a cloud provider to

oversubscribe available I/O bandwidth without violating QoS

constraints.

ACKNOWLEDGMENTS

The experiments presented in this paper were carried out

using the Shamrock cluster of IBM Research, Ireland. This

material is based in part on work supported in part by the

Office of Science, U.S. Department of Energy, under Contract

DE-AC02-06CH11357.

REFERENCES

[1] L. M. Vaquero, L. Rodero-Merino, J. Caceres, and M. Lindner, “A Break
in the Clouds: Towards a Cloud Definition,” ACM SIGCOMM Computer

Communication Review, vol. 39, no. 1, pp. 50–55, Jan. 2009.
[2] M. Caballer, C. De Alfonso, F. Alvarruiz, and G. Moltó, “EC3: Elastic

Cloud Computing Cluster,” J. Comput. Syst. Sci., vol. 79, no. 8, pp.
1341–1351, Dec. 2013.

[3] K. Keahey, P. Armstrong, J. Bresnahan, D. LaBissoniere, and
P. Riteau, “Infrastructure outsourcing in multi-cloud environment,” in
FederatedClouds ’12: Proceedings of the 2012 workshop on Cloud

services, federation, and the 8th open cirrus summit, San Jose, USA,
2012, pp. 33–38.

[4] R. N. Calheiros, A. N. Toosi, C. Vecchiola, and R. Buyya, “A
coordinator for scaling elastic applications across multiple clouds,”
Future Gener. Comput. Syst., vol. 28, no. 8, pp. 1350–1362, Oct. 2012.

[5] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing on
Large Clusters,” in 6th Symposium on Operating Systems Design and

Implementation, 2004, pp. 137–149.
[6] P. Marshall, K. Keahey, and T. Freeman, “Elastic Site: Using Clouds to

Elastically Extend Site Resources,” in CCGrid’10: Proceedings of the

10th IEEE/ACM International Symposium on Cluster, Cloud and Grid

Computing, Melbourne, Australia, 2010, pp. 43–52.
[7] L. Beernaert, M. Matos, R. Vilaça, and R. Oliveira, “Automatic elasticity

in OpenStack,” in SDMCMM ’12: Proceedings of the Workshop on

Secure and Dependable Middleware for Cloud Monitoring and

Management. Montreal, Quebec, Canada: ACM, 2012, pp. 2:1–2:6.
[8] B. Nicolae, “On the Benefits of Transparent Compression for Cost-

Effective Cloud Data Storage,” Transactions on Large-Scale Data- and

Knowledge-Centered Systems, vol. 3, pp. 167–184, 2011.
[9] S. A. Baset, “Open source cloud technologies,” in SoCC ’12:

Proceedings of the 3rd ACM Symposium on Cloud Computing, San
Jose, USA, 2012, pp. 28:1–28:2.

[10] “Amazon Elastic Block Storage (EBS),” http://aws.amazon.com/ebs/.
[11] J. L. Gonzalez and T. Cortes, “Increasing the capacity of RAID5

by online gradual assimilation,” in SNAPI ’04: Proceedings of the

international workshop on Storage network architecture and parallel

I/Os, Antibes Juan-les-Pins, France, 2004, pp. 17–24.
[12] W. Zheng and G. Zhang, “FastScale: Accelerate RAID Scaling by Min-

imizing Data Migration,” in FAST’11: Proceedings of the 9th USENIX

conference on File and Storage Technologies, San Jose, USA, 2011.
[13] C. Wu and X. He, “GSR: A Global Stripe-Based Redistribution Ap-

proach to Accelerate RAID-5 Scaling,” in ICPP ’12: Proceedings of the

41st International Conference on Parallel Processing, Pittsburgh, USA,
2012, pp. 460–469.

[14] O. Rodeh, J. Bacik, and C. Mason, “BTRFS: The Linux B-Tree
Filesystem,” Trans. Storage, vol. 9, no. 3, pp. 9:1–9:32, Aug. 2013.

[15] B. Nicolae, G. Antoniu, L. Bougé, D. Moise, and A. Carpen-
Amarie, “BlobSeer: Next-generation data management for large scale
infrastructures,” Journal of Parallel and Distributed Computing, vol. 71,
no. 2, pp. 169–184, Feb. 2011.

[16] H. C. Lim, S. Babu, and J. S. Chase, “Automated control for elastic
storage,” in ICAC ’10: Proceedings of the 7th international conference

on Autonomic computing, Washington DC, USA, 2010, pp. 1–10.
[17] P. Xia, D. Feng, H. Jiang, L. Tian, and F. Wang, “FARMER: a novel

approach to file access correlation mining and evaluation reference
model for optimizing peta-scale file system performance,” in HPDC ’08:

Proceedings of the 17th international symposium on High performance

distributed computing, Boston, MA, USA, 2008, pp. 185–196.
[18] M. Iritani and H. Yokota, “Effects on performance and energy reduction

by file relocation based on file-access correlations,” in EDBT-ICDT

’12: Proceedings of the 2012 Joint EDBT/ICDT Workshops. Berlin,
Germany: ACM, 2012, pp. 79–86.

[19] Z. Li, Z. Chen, and Y. Zhou, “Mining Block Correlations to Improve
Storage Performance,” Trans. Storage, vol. 1, no. 2, pp. 213–245, May
2005.

[20] M. Stokely, A. Mehrabian, C. Albrecht, F. Labelle, and A. Merchant,
“Projecting Disk Usage Based on Historical Trends in a Cloud Envi-
ronment,” in ScienceCloud ’12: Proceedings of the 3rd International

Workshop on Scientific Cloud Computing, Delft, The Netherlands, 2012,
pp. 63–70.

[21] J. He, J. Bent, A. Torres, G. Grider, G. Gibson, C. Maltzahn, and
X.-H. Sun, “I/O Acceleration with Pattern Detection,” in HPDC ’13:

Proceedings of the 22nd International Symposium on High-Performance

Parallel and Distributed Computing, New York, USA, 2013, pp. 25–36.
[22] J. Oly and D. A. Reed, “Markov model prediction of I/O requests for

scientific applications,” in ICS ’02: Proceedings of the 16th international

conference on Supercomputing, New York, USA, 2002, pp. 147–155.
[23] “The QCOW2 Image Format,” https://people.gnome.org/∼markmc/

qcow-image-format.html.
[24] B. Nicolae, J. Bresnahan, K. Keahey, and G. Antoniu, “Going

Back and Forth: Efficient Multi-Deployment and Multi-Snapshotting
on Clouds,” in HPDC ’11: 20th International ACM Symposium on

High-Performance Parallel and Distributed Computing, San José, USA,
2011, pp. 147–158.

[25] N. Draper and H. Smith, Applied regression analysis, ser. Probability
and mathematical statistics. New York: Wiley, 1966.

[26] F. Bellard, “Qemu, a fast and portable dynamic translator,” in ATEC

’05: Proceedings of the 2005 USENIX Annual Technical Conference,
Anaheim, USA, 2005, pp. 41–46.

[27] “KVM: Kernel Based Virtual Machine,” http://www.linux-kvm.org/.
[28] Y. Bu, B. Howe, M. Balazinska, and M. D. Ernst, “The haloop

approach to large-scale iterative data analysis,” The VLDB Journal,
vol. 21, no. 2, pp. 169–190, Apr. 2012.

[29] H.-H. Bock, “Clustering methods: A history of k-means algorithms,” in
Selected Contributions in Data Analysis and Classification, ser. Studies
in Classification, Data Analysis, and Knowledge Organization. Springer
Berlin Heidelberg, 2007, pp. 161–172.

[30] W. Zhao, H. Ma, and Q. He, “Parallel K-Means Clustering Based on
MapReduce,” in CloudCom ’09: Proceedings of the 1st International

Conference on Cloud Computing, Beijing, China, 2009, pp. 674–679.
[31] “PUMA: Purdue MapReduce Benchmarks Suite,” http://web.ics.purdue.

edu/∼fahmad/benchmarks.htm.

