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Abstract—In this paper, we present a real-time automatic
vision-based rail inspection system, which performs inspections
at 16 km/h with a frame rate of 20 fps. The system robustly
detects important rail components such as ties, tie plates and
anchors with high accuracy and efficiency. To achieve this goal,
we first develop a set of image and video analytics, then propose
a novel global optimization framework to combine evidence
from multiple cameras, GPS (Global Positioning System) and
DMI (Distance Measurement Instrument) to further improve the
detection performance. Moreover, as the anchor is an important
type of rail fastener, we have thus advanced the effort to
detect anchor exceptions, which includes assessing the anchor
conditions at tie level and identifying anchor pattern exceptions
at compliance level.

Quantitative analysis performed on a large video data set
captured with different track and lighting conditions as well as
on a real-time field test, have demonstrated very encouraging
performance on both rail component detection and anchor
exception detection. Specifically, an average of 94.67% precision
and 93% recall rate has been achieved on detecting all three
rail components, and a 100% detection rate is achieved for
compliance-level anchor exception with 3 false positives per hour.
To our best knowledge, our system is the first to address and
solve both component and exception detection problems in this
rail inspection area.

Index Terms—Railroad track inspection, rail component de-
tection, anchor exception detection, multi-sensor evidence inte-
gration, machine-vision technology

I. INTRODUCTION

To maintain safe and efficient operations, railroads must
inspect their tracks for physical defects on a regular basis. It
is not only required by Federal Railroad Administration (FRA
is a USA agency) regulations, but also enforced by individual
railroad companies, usually with more stringent requirements,
to maintain track health to a higher standard. Such track
inspection normally covers a wide spectrum, ranging from
detecting surface cracks in the rail, measuring rail profile and
gauge (or rail spacing), to monitoring the conditions of joint
bars, spikes and anchors. Figure 1 shows an illustration of a
rail fastening system containing components such as tie (aka
sleeper), tie plate, spike, joint bar and anchor. Specifically, Ties
are used as a base to support and fix railroad tracks, as well as
to transfer the load from rails to the underlying ballasts and
sub-grades. Tie plates are then placed on ties (one for each
rail), and held in place by steel spikes to prevent the rail from
latitudinal movements. Since each tie plate on a tie fastens

Manuscript received on xxx. All authors were with IBM T.J. Wat-
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{yingli,sharat}@us.ibm.com.

one rail, it forms two sides, namely, gauge side and field side.
To prevent the rail from longitudinal movements, anchors are
placed around each of the two rails, which wrap around the
bottom and sides of the rail base. Consequently, there are at
most 4 anchors for each tie, with 2 anchors on each side of
the tie (see Fig. 1 (a)).

Fig. 1. An illustration of (a) rail fastening system; and (b) targeted rail
components: Tie plate (in cyan), tie (in yellow) and anchor (in green). The
round objects on the tie plate are spikes that fasten it to the ground.

Some of the track inspections such as measuring the track’s
curvature and alignment, as well as the crosslevel of the two
rails, have already been automated using a track geometry
car, yet other inspections such as monitoring the spiking and
anchor patterns and detecting raised or missing spikes and
anchors, are still manually and visually conducted by railroad
track inspectors. It is thus of great interest to railroad compa-
nies to enhance the current manual inspection process using
machine vision technology for more efficient, effective and
objective inspections. It also helps them lower maintenance
costs and increase track capacity.

This paper describes our recent engagement with a railroad
company to develop a real-time automatic vision-based rail
inspection system. In particular, by taking into account the
lack of available technology and severity of defects, we jointly
identified the following two key tasks where our technologies
can provide the most value.

1) Tie-level exception detection, which refers to the detec-
tion of any shifted or spread anchors, raised spikes or
deadhead spikes.

2) Compliance-level exception detection, which refers to
the scenario where there are more than 15% of ties
having abnormal anchor patterns, or there are more
than 25% ties having abnormal spiking patterns, within
a 100-foot track segment. Operating trains over track
having non-compliant spiking or anchor patterns could
potentially lead to derailment.
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Fig. 2. Overall architecture of the proposed rail inspection system.

A. Proposed Solution

Figure 2 shows the overall architecture of our solution.
Specifically, the data acquisition module is responsible for
capturing videos using multiple cameras that are mounted on
a moving track inspection vehicle. It also records positioning
and speed information and synchronizes them with the video.
Various image and video analytics are then launched by the
rail component detection and optimization module to detect
important rail components such as tie plates, ties, spikes and
anchors. Next, exceptions at both tie-level and compliance-
level which warrant immediate reporting, are identified in the
exception detection module. Such exception information is
then stored and used to guide any maintenance planning and
scheduling. Finally, a comparative and trend analysis of track
component condition is performed in the long-term predictive
assessment module. This helps lead to more informed preven-
tative maintenance strategies and a greater understanding of
track structure degradation and failure modes.

Due to limited space, this paper will mainly focus on the
anchor-related component detection and exception recognition,
as anchor is a very important rail component. Fig. 3 shows
the block diagram of the overall data process. Specifically,
given four video streams captured by cameras focusing on
four different views of the rails, namely, left field view, left
gauge view, right gauge view and right field view (please
refer to Fig. 4 for the view illustration and Fig. 14 for images
of different views), we first detect all necessary components
from each of them by applying various image and video
analytics. Note that as the heads of anchors only appear in
gauge views, anchors are only detected from the gauge view
streams; yet both tie and tie plate will be detected from all
four video streams. Next, we integrate the evidence from
multiple information sources including cameras, GPS and
DMI, and apply a global optimization approach to further
improve the component detection accuracy. Both cross-object
spatial constraint as enforced by the sequential structure of rail
tracks, and cross-frame and cross-view constraints in camera
streams are applied during this optimization process. Finally,
anchor conditions are assessed and anchor pattern exceptions
are detected, with the assistance of geo-reference data.

B. Related Work

Applying machine vision technology to assist rail track
inspection has attracted much interest from the industry. So
far, various systems have been proposed, prototyped, and
even applied for various specific tasks. Examples include
the V isiRailTM Joint Bar Inspection System, developed by
ENSCO with high-resolution scan line cameras and laser
sensors [1]; the AURORA system, developed by Georgetown

  

         

                                                           

         

                                           

Left Field 

Left Gauge 

Right Gauge 

Right Field 
Rail Component Detection 

Tie Plate Tie 

Rail Component Detection 

Tie Plate Anchor Tie 

Rail Component Detection 

Tie Plate Tie 

Rail Component Detection 

Tie Plate Anchor Tie 

Component 

Detection 

Optimization 

Geo-reference 

Data 

DMI 
GPS 

Exception Detection 

Anchor Condition 

Assessment 

Anchor Pattern 

Exception Detection 

Fig. 3. Block diagram of the overall data process.

Rail, for inspecting wood ties, rail seat abrasion, tie plates,
anchors and spikes [2] (yet no technical details or performance
report are available about this system); the system developed
by MERMEC Group, for detecting track surface defects with
high-speed line-scan cameras [3], and the TrackVue system,
developed by RailVision, for measuring rail wear, track gauge,
curvature, rail cant and vegetation cover using an array of
cameras and laser equipment [4].

There are however, not many reported efforts on detecting
rail fastener components including anchors. In [5], the authors
applied some image processing approach to inspect elastic
rail clips. A recognition rate of 77% was reported for broken
clips on concrete track. Similar efforts were also reported in
[6] for finding broken and new clips using edge and color
information. The two most related work are perhaps from
[7] and [8]. Specifically, Babenko proposed to detect steel
fasteners, e-clips and fast clips, which are common on concrete
ties, using SIFT features and a correlation-based matching
approach [7]. Experiments conducted on 2436 fasteners have
achieved around 90% detection rate. However, that work did
not address the detection of other types of rail fasteners.
Another important work is from UIUC, which developed
a track inspection system to detect tie plates, spikes and
specific types of anchors in both lateral and over-the-rail views
of the track [8], [9]. Color, edge and Gabor features were
applied along with some heuristics to accomplish the task.
Nevertheless, the cart on which the cameras were mounted was
hand-pushed, thus traveling at a very low speed. Consequently,
such prototype system is not practical for a real deployment.
Moreover, the proposed algorithms have not been validated
by any quantitative experiments. In our previous work [10],
detections on various rail components including tie plate,
spike, spike hole and anchors, were described. Nevertheless,
no global optimization was performed to improve detection
accuracy by integrating multiple information sources. It also
did not discuss anchor exception detection.

Anchor is a very vital type of rail fastener component, con-
sequently, assessing its condition and detecting any exceptions
caused by non-functioning anchors (such as shifted, spread or
even missing) are very critical to maintain railroad safety. To
our best knowledge, the system proposed in this work is the
first one to address these important issues as well as to offer
practical solutions.

For the rest of paper, we present the camera setup in Section



3

II, and elaborate on the detection and optimization of various
rail components in Section III. In Section IV, we discuss
the anchor condition assessment as well as the compliance-
level anchor pattern exception detection. Performance of the
proposed system achieved at a real-time field test is reported
in Section V. We conclude the paper in Section VI with a
layout of future work.

II. CAMERA SETUP

The cameras chosen for this project are Point Grey Drag-
onfly2, which provide many flexibilities in terms of image
resolution, frame rate, color mode and the option of using
region-of-interest. Four cameras are used in total, imaging
lateral views of the gauge and field sides of both rails. We have
chosen the field of view to be 24 inches to obtain 50% overlap
of images when traveling at 10 miles per hour, thus ensuring
total coverage of the track elements we are inspecting.

Fig. 4. The four cameras (indicated as rectangles in blue) mounted on a
hi-rail inspection vehicle, along with their field of view.

In Fig. 4, the four cameras, which are enclosed within steel
channels for rigidity and weatherproofness, are shown as blue
rectangles. All cameras are mounted on the rear bumper of a
hi-rail truck and connected to the same FireWire bus, which
controls the time synchronization between them with high
accuracy. When the truck travels on the rail, the four captured
video streams are first compressed, then written to the com-
puter, along with GPS and DMI information. The computer
we used is a x3650 Mark III with 12 Xeon processors (of 3.0
GHz), with each processor having 2 or 4GB of RAM. The
computer is placed along with a UPS and an inverter right
inside the truck. We have chosen to use an image resolution
of 640× 400 with 12 bits of monochrome intensity per pixel,
and a frame rate of 20 FPS. With such camera setup, at each
time instant, each side of each tie plate will be seen by only
one camera, and the anchors will be seen only by two gauge
view cameras.

III. RAIL COMPONENT DETECTION

Below we describe the detailed approaches on detecting rail
components including tie plate, tie and anchor.

A. Tie Plate Detection

Tie plate detection is the first step in our detection pipeline,
since it provides information to define the regions of interest
(ROI), in which other components can be located.

In our current imaging setup, the rail always occupies
the upper portion of the image, and presents a very distinct
horizontal dividing line from the rest (as shown in Fig. 1 (b)).
On the other hand, when a tie plate is present, its bottom edge
would present another approximately horizontal line. This
observations naturally inspire us to use a Hough transform to
detect these two lines. One such detection example is shown
in Fig. 5 (a).

       

Fig. 5. Illustration of the tie plate detection process.

We then find the tie plate’s vertical edges by distinguishing
its region from the ballast area, as follows.

1) For the image region between the two horizontal lines,
we first compute its edge map using the Sobel operator,
then sum up the edge magnitude for each column. One
such magnitude map is plotted in Fig. 5 (b).

2) For each column, sum up all magnitudes within a
window that is centered on it. The window size approx-
imately equals the width of a tie plate. Fig. 5 (c) shows
the summation result, from which we see that there is
a distinct local minimum, which exactly corresponds to
the midpoint of the tie plate (indicated by the red line).

3) Find the minimum in the above plot, and derive the
tie plate’s left and right edges based on the window
size. The final localization result is shown in Fig. 5 (a),
indicated by the rectangle (in cyan).

B. Tie Detection

The key to detecting a tie is to localize its vertical edges,
so our first step is to perform a Hough transform to detect
near-vertical lines. To speed up the detection, we only apply
the Hough transform in close proximity to the vertical edges
of the detected tie plates in the frame. But if no tie plate was
detected in the frame, we search the entire frame.

Next, considering the fact that for a real tie edge, its
immediate left and right regions would present very different
textures, as one contains wood with relatively smooth surface
(vertically) and the other contains ballast of irregular surface,
we measure the likelihood of being-a-tie-edge for each vertical
line (found by the Hough transform) in terms of pixel intensity
variation. Specifically, the intensities of pixels which lie on the
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vertical line going through the ballast tend to vary much due
to its changing brightness. In contrast, they vary very little
for the line going through the tie due to its smoothness. To
measure such likelihood for a line L0 (denote it as el0), we
first define two vertical lines L1 and L2 that are 5 pixels to
its left and right, respectively. Then for line Li (i = 1, 2), we
measure the intensity differences (absolute value) of pairs of
pixels which are 20 pixels apart vertically, and sum them over
the whole length of the line. We denote such measurement as
idi. Note that the parameter values used here (i.e. 5 and 20)
are empirically determined. Now, we calculate el0 as id1−id2
where, if it is positive, we consider L0 as a candidate for
the left tie edge, otherwise, a candidate for the right edge.
Moreover, the absolute value of el0 indicates its edge strength
or the likelihood of its being-a-tie-edge. Fig. 6 shows an
example of such edge candidates.

Once we obtain a set of candidates for both left and right tie
edges within a frame, we need to pair them to define the tie. To
accomplish this, each pair is scored based on both its edges’
strengths and the spacing between them (since ties generally
have a fixed width). Non-maximal suppression is then applied
to pick the pair with the highest score among overlapping left-
right candidate pairs.

Fig. 6. Candidates of left vertical edges (in red) and right vertical edges (in
green) of a tie. The thicker lines indicate the finally identified edges.

C. Anchor Detection

While an anchor can be seen from both gauge and field
sides, the head of anchor resides in the gauge side, which will
be our detection focus due to its larger size. Also, since an-
chors are supposed to be close to tie plates, searching anchors
within the entire image region would be very inefficient. It
would also increase false alarms as well. Consequently, we
have defined an image ROI as its search region, particularly,
the horizontal image stripe covering the base of the rail where
anchors should be installed (see Fig. 1 (b)).

In this work, we developed a learning-based anchor detector
based on Adaboost discriminative classifier. Because anchor
appearance has a high variability due to the diversities in
anchor type, size, shape, camera view, occlusion and lighting
condition (see Fig. 7), a single cascade classifier, as introduced
in [11], will not be able to capture all in-class variability.
Consequently, we have chosen to apply multiple cascade
classifiers [12]. Specifically, as depicted in Fig. 8, we first train
multiple binary classifiers, each corresponding to a subclass
of anchors. Then, during the detection stage, we apply a

Fig. 7. Anchor appearance has a high variability due to the diversities in
anchor type, size, shape, camera view, occlusion and lighting condition.

model-switching mechanism to find the optimal output for
each sliding window within the search ROI. Particularly, while
we keep all classifiers running simultaneously at all times, at
any time instant we only return the detection results from one
of them, the one that has the highest number of detections in
the last 50 frames.

Fig. 8. Illustration of our model-switching mechanism for combining multiple
cascade classifiers.

D. Component Detection Optimization

So far, we have been describing the rail component detection
from a single camera view. Nevertheless, since we have video
streams from four different camera views at any time, and
since that each rail component can be seen from one or more
views, we could potentially improve the detection performance
by leveraging contextual information with cross-frame, cross-
view and cross-object constraints. They are discussed below.

• Cross-frame constraints: As the same object such as a
tie plate, might be observed in more than one consecutive
video frame, we apply temporal constraints on detections
between neighboring frames for each camera view.

• Cross-view constraints: As some rail object such as a
tie can be observed by multiple cameras simultaneously,
we exploit spatial constraints between camera views to
improve detection confidence.

• Cross-object constraints: Railroad tracks are sequential
structures formed by a sequence of objects, whose instal-
lation conforms to specific designs. Therefore, there are
certain spatial constraints across rail objects. For instance,
the spacing between consecutive ties in a railroad track is
close to a constant. Such a constraint makes the detection
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of rail components different from that of objects in a
general context [13], [14].

Following these ideas, we have developed a global opti-
mization approach to improve object detections for each frame
in the context of other detections in neighboring frames and
other camera views. Specifically, the inputs to the approach
include: 1) detections of a specific type of rail object (e.g. tie
plate) from each frame of each camera view, along with their
confidence scores; 2) DMI data; and 3) GPS data. We detail
this approach below.

1) Optimization Formulation: Assume that we have 4
streams of object states ({S1, .., S4}), where each stream
contains the detections of a specific type of rail object from
one camera view for a duration of T . For illustration purpose,
let us use Sk to indicate a sequence of object states

{
s1k, .., s

T
k

}
over duration T , where k is the index of camera view. Here,
an object state indicates the bounding box of a rail object
detected in Section III A-C, consisting of location and size.
Without loss of generality, we assume that there is only at most
1 object state per frame, although our approach can be directly
applied to the multi-object states case. Fig. 9 illustrates our
optimization problem in form of a graph. Here, each column
indicates a video frame, each row indicates a camera view,
and each round node indicates an object state. Note that the
detector may find multiple detections per frame, which results
in having multiple states per frame.

Fig. 9. Graphical representation of our detection optimization problem.

The goal here is to find a path from time 1 to time T ,
which consists of a set of object states S∗ =

{
s1∗, .., s

T
∗
}

and
optimizes the following energy function:

S∗ = argmax
S

E =
∏
t

ψ(stk)ϕ
(
stk, s

t+1
l

)
, (1)

where ψ(stk) is the potential function of an object state stk
and ϕ

(
stk, s

t+1
l

)
indicates the cross-frame spatial constraints.

stk is the object state at node (k, t), which is initially the input
object detection.

A. Applying the cross-view constraint. Let us first model
the spatial constraint of different object states across camera
views. Two assumptions are applied here: 1) all cameras’ cali-
bration parameters are fixed, which is indeed true in our case;
and 2) given an object state stk at view k, the state stl at view
l follows a Gaussian or Normal distribution. Subsequently, we
represent this cross-view constraint as follows:

χ(stk, s
t
l) = max

(
N (|stk − stl | ; θkl) ,
N (|stk − stl + ϵ| ; θkl)

)
(2)

where θkl = [µcv(k, l),Σcv(k, l)]. Here, µcv is a 4x4 matrix
of mean values and Σcv is a 4x4 covariance matrix. ϵ indicates
the tie spacing constant, which is needed in case that the two
object states stk and stl refer to adjacent objects in the sequence.
Note that θ and ϵ can all be learnt from labeled training data.

Now, function ψ(stk) in Equation 1 can be defined as:

ψ(stk) = f(stk)
∏
l ̸=k

χ(stk, s
t
l), (3)

where f(stk) is the confidence score of object state stk, which
is assigned to each object by respective detection module to
indicate the confidence level of detection.

B. Applying the Cross-frame Constraint. Now, let us
model the temporal constraints of object states across consec-
utive frames. For both tie and tie plate detections, we assume
that the spacing between consecutive ties in the rail track is
relatively a constant. Now, for state stk at frame t and st+1

l at
frame t+1, where k and l may indicate different views, they
could either refer to the same physical object, or two different
yet adjacent physical objects. We represent the cross-frame
constraint for either case as follows.

ϕ
(
stk, s

t+1
l

)
= max

(
F
(∣∣stk, st+1

l

∣∣ ;λ) ,
F
(∣∣stk, st+1

l + ϵ
∣∣ ;λ)

)
(4)

where λ = [µcf , σcf , µcv,Σcv, τdmi], and cf and cv indicate
cross-frame and cross-view, respectively. ⟨µcf , σcf ⟩ models
the Gaussian distribution of the object state at the next frame
given its state at previous frame, and τdmi represents the DMI
data. Both µcf and σcf can be learnt from labeled training
data. F is a function of the distance between two object states
stk and st+1

l , and is defined as follows:

F (stk, s
t+1
l ) =

N (stk − stl ;µcv,Σcv)
×N

(
stl − st+1

l + τdmi;µcf , σcf
) (5)

As we can see, F becomes larger when the physical distance
between the 2 bounding boxes of stk and stl gets smaller. τdmi
indicates how much an object should have moved from time
t to time t + 1. In a summary, given stk, the observation of
an object at time t, and the parameter λ, F measures the
confidence score of observing the same object again at time
t+ 1 at the location of st+1

l .
Note that Equation 4 also handles cross-object constraints

by using the constant ϵ, in case that the two object states stk
and st+1

l do not indicate the same physical object.
2) Real-time Algorithm: We have developed a real-time al-

gorithm to implement the aforementioned global optimization
approach, which can perform at the inspection speed of 16
km/h, with frame rate of 20 fps. At each time instant t, the
real-time algorithm will compute the optimal path from time
1 up to the current time point t, given all object states from
the beginning up to t. The algorithm is described below.
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1) Compute a score for every node in the graph using dynamic programming:

x
1
k = ψ(s

1
k). (6)

x
t
k = ψ(s

t
k)max

j

(
x
t−1
j ϕ

(
s
t
k, s

t−1
j

))
. (7)

2) At each time point t, select the optimal object state stv , where

v = argmax
k

(
x
t
k

)
.

3) Use the selected object states to infer/update suboptimal object states in
other camera views at time t.

4) If no object detection is found at time t, restart the algorithm at time
t+ 1.

3) Batch Algorithm: We have also developed a batch al-
gorithm to compute the optimal path from the beginning (i.e.
time 1) all the way up to the end (i.e. time T ) in one shot.
Specifically, given a set of object states from time 1 to time
T , the batch algorithm works as follows.

1) Compute a score for each node in the graph using dynamic programming
(same as the real-time algorithm).

2) For each node, store the predecessor with which it obtains the optimal
score.

3) At time T , select the optimal object state.
4) Use the selected object state to infer/update detections in other camera

views at time T .
5) Backtrack the stored predecessors at each time point to obtain the full

path.

As we see, compared to the real-time algorithm, the batch
algorithm takes into account all available detection information
from the beginning to end, therefore it tends to achieve a better
prediction than the real-time algorithm, which operates in a
more greedy fashion.

IV. ANCHOR-RELATED EXCEPTION DETECTION

There are two levels of anchor-related exceptions. At tie
level, the exception refers to any shifted or spread anchors, as
both conditions could indicate that the rail at that particular
location is running (thus unstable). At compliance level, the
exception refers to the scenario where there are more than 15%
of ties having abnormal anchor patterns within a 100-foot track
segment. Both of them are elaborated below.

A. Anchor Condition Assessment

Figure 10 shows two examples of shifted and spread an-
chors, respectively, along with the definition. Specifically, an
anchor is considered shifted if it is more than 1 inch away
from its associated tie horizontally (Fig. 10 (a)). On the other
hand, a spread occurs when the horizontal distance between
two anchors of the same tie is 4 inches more than the tie
width (Fig. 10 (b)), i.e. D1 + D2 = D − W ≥ 4 inches.
Consequently, the spread condition of an anchor pair can be
readily assessed once we obtain the shift value of each anchor.

Now that both shift and spread conditions are defined in
inches, yet the anchor-to-tie distance can only be measured
in pixels from the image, we need find a way to reliably
convert distances from pixels to inches. Unfortunately, due to
the wide angle fisheye distortion, the inch-to-pixel mapping
is not uniform for all columns in the image. On the other

(a)                                    

  

                                                             (b) 

 

Fig. 10. Example and definition of: (a) shifted anchor, and (b) spread anchor.

hand, in the interest of easing the operational process of video
inspection, we do not want to introduce complicated camera
calibration. What we need is therefore, an approach which will
associate the inch-to-pixel mapping with specific (horizontal)
position within an image.

Fig. 11. Plot of tie plates’ X-positions against their widths (in pixels), which
is fitted by a curve (in dark red).

To accomplish this, we annotated roughly 3000 tie plates
detected in videos from both gauge-view cameras, and plotted
their X-positions against their width (measured in pixels) in
Fig. 11. There we see that the tie plate’s measured width
varies with its horizontal position in the image due to the
fisheye distortion. The closer the tie plate is to the image
boundaries, the narrower it appears to be. To ease the mapping,
we first quantize the tie plate X-coordinates into 20 different
bins, then fit a conversion curve by performing an averaging
operation for each bin, followed by a linear interpolation.
The conversion curve is shown in Fig. 11 (in dark red),
which roughly approximates a quadratic function. The red
crosses indicate the average tie plate width of each bin. Now,
considering that a physical tie plate’s width is 7.5 inches, given
an image position x, we can calculate its specific inch-to-pixel
mapping as: 7.5

y(x) , where y(x) indicates the projected tie plate
width given x, following the conversion curve.

Once the anchor-to-tie distance is obtained in pixels, we
can calculate its specific inch-to-pixel mapping based on its X-
coordinate, and subsequently convert such distance into inches.
The anchor condition can then be properly assessed.

B. Compliance-level Exception Detection

To ensure safety, railroad companies require different anchor
patterns for different rail types. For instance, for jointed rail
there should be 8 boxed ties per 39-foot rail segment, while
for continuously welded rail, only alternate boxed ties are
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required. By boxed tie, we mean a tie with all 4 anchors in
good condition, as illustrated in Fig. 1 (a). To obtain these
pattern requirements for real railroad tracks, we used the geo-
reference data provided by the partnering railroad company.
Specifically, for each geo-location indexed by milepost and
footage, or GPS latitude and longitude, it tells us the required
anchor pattern for that particular spot. We then use this
information to detect the compliance-level exceptions for any
100-foot track segment.

In particular, we first count the total number of boxed ties
contained within a 100-foot segment which is measured based
on GPS information, and denote it by C. Then we compare
the tie count C with the required number of boxed ties R
enforced by the targeted anchor pattern. If C is smaller than
85% of R, i.e. (R−C)/R >= 15%, then a compliance-level
exception is declared.

Note that since we process the video frame by frame,
we need to constantly check if we have covered a 100-foot
track segment. If yes, we perform the number comparison
and identify any exception; otherwise, we update the counter
C and read in the next tie. A confidence score will also be
measured for every detected exception based on the confidence
of anchor detection. The complete algorithm is illustrated in
Fig. 12. Note that we continuously perform this inspection for
every possible 100-foot segment, thus when a new tie moves
into this 100-foot segment window, the earliest tie will move
out and the inspection will be kicked off again.

Fig. 12. Flow chart of detecting compliance-level anchor pattern exception.

We have developed an exception visualization tool to vi-
sualize or validate each detected exception at both tie and
compliance level. As shown in Fig. 13, images from both
gauge-view cameras are shown side by side, along with the
list of detected compliance-level exceptions on the right. The
object detections for each frame are overlayed on top of the
images, along with indications of shifted or spread anchors,
if any. The bottom portion of the GUI displays the detected
ties within the vicinity of the current frame, where a black tie
indicates a boxed tie with all 4 anchors, a red tie indicates a
tie with 1-3 anchors, and a white tie with 0 anchor.

Fig. 13. Exception visualization tool.

V. PERFORMANCE EVALUATION

A. Data Collection

Our partnering company has dedicated a track inspection
vehicle (as shown in Fig. 4) to this project from the very be-
ginning. Since then, we have installed our cameras, computer,
GPS and DMI in the vehicle, and made trips to some nearby
tracks to adjust the imaging setup and test the video capture
tool. Many issues were discovered and resolved during this test
phase including motion blur, under- and over-exposed images,
shadow effect, as well as the challenge of high data volume.
Once all these problems were addressed, we made additional
trips to main line tracks which generally experience the highest
traffic densities. For each capture session, the hi-rail vehicle
was run between 0.4 km to 2.5 km at up to 16 km/h, then it
was backed up to let us capture another session. We were able
to capture videos while driving in reverse.

We have thus collected video data under different weather
conditions (bright sun, partly cloudy and overcast), at dif-
ferent times of day (morning, noon and afternoon) and on
different days, as well as with different track alignments
(tangent/straight and curved). The collected data also imaged
a large variety of fastener types: regular tie plates, mountain
tie plates (extra large), different spiking and anchor patterns,
and anchors in different conditions. Consequently, we were
able to test our system using a very rich and diverse data set.

Towards the end of project, we conducted a 3-day real-time
field test by running an inspection on mainline tracks selected
by the partnering company. Specifically, the test consisted of
inspecting 3 segments of 1.6-km track sections for presence
and absence of tie plates, ties, anchors, anchor shifts and
spreads, as well as compliance-level anchor pattern exceptions.
To fully test the capability of the system, these tests were
conducted on different days and at different times of the day,
with changing lighting conditions (cloud cover and sun angle).
In total, this field test covered 8820 ties, 35280 anchors and
17640 tie plates. Note that since a tie plate is visible in both
gauge and field view, it is equivalent to 2 tie plate objects that
the system shall detect. Performance evaluation on this field
test data set will be mainly reported here.
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B. Rail Component Detection

Let us first define the concept of correct match between an
annotation and a detection. Specifically, denote their bounding
boxes as Abb and Dbb, respectively, we require a correct match
to meet three criteria as stated in Table I.

TABLE I
THREE CRITERIA TO DEFINE A CORRECT MATCH.

1. The intersection ratio Abb∩Dbb
Abb

≥ 60%,

2. The non-intersection ratio Dbb−(Abb∩Dbb)
Abb

≤ 30%,

3. The entity types of the two objects match with each other.

The detection performance is measured by precision and
recall, where precision is the fraction of detected objects that
are correct, while recall is the fraction of matched objects that
are detected.

1) Tie Plate Detection: The low in-class variability of tie
plates make tie plate detection the most reliable part of our
system. As tabulated in Table II, we have achieved very
good performance with 100% recall and 99.3% precision
rates, on the field test data. The F1 score, which is defined
as the harmonic mean of precision and recall (i.e. F1 =
2× (precision×recallprecision+recall )), is also calculated.

TABLE II
SYSTEM PERFORMANCE EVALUATION ON RAIL COMPONENT DETECTION

USING REAL-TIME FIELD TEST DATA.

Component Groundtruth Precision Recall F1 Score
Tie plate 35280 99.3% 100% 99.6%
Tie 8820 88.2% 82.3% 85.1%
Anchor 35280 96.5% 96.7% 96.6%

We would also like to report a comparative performance
study on tie plate detection, in terms of using and not using
the global optimization approach as proposed in Section III-D.
Since the railroad tracks that we covered in the field test were
in very good condition, the benefit of applying component
optimization is not obvious. Consequently, we have chosen
a different test data set which includes challenging issues
such as heavy occlusion (due to debris) and constantly-present
shadows (see Fig. 14 for some examples). To study the
performance, we annotated tie plates on 6000 video frames
(including all 4 camera views).

TABLE III
COMPARATIVE PERFORMANCE EVALUATION OF TIE PLATE DETECTION

USING TEST DATA WITH HEAVY OCCLUSIONS AND SHADOWS.

Approach Precision Recall F1 Score
Batch Algorithm 84% 92% 88%
Real-time Algorithm 79% 92% 85%
Single-view detection [15] 83% 84% 84%

Table III tabulates the performances of three different
approaches, where we see that both of our batch and real-
time optimization algorithms have outperformed our previous
approach that only relies on visual cues from a single camera

view [15]. Moreover, the batch algorithm has achieved the best
performance, with 84% precision and 92% recall rates.

Fig. 14. Selected frames showing all 4 camera views, with the original
detections in red, corrected detections in blue and inserted detections in green.

Fig. 14 illustrates some detection examples which show that
our optimization algorithm has successfully inserted missing
detections (LF of frame 428 and LG of frame 429) and
corrected wrong detections (RG of all three frames). As we
can see, due to the heavy debris, sometimes the tie plates are
completely occluded in certain camera views (e.g. the LG view
of frame 429), consequently, it is literally impossible to detect
them based on the visual cues of a single camera view. In
contrast, by leveraging the temporal and spatial constraints of
the object w.r.t. nearby detections, our approach can effectively
predict the correct object location in spite of insufficient visual
information.

2) Tie Detection: Tie detection is mostly needed for anchor
condition assessment as both shift and spread conditions are
defined based on anchor-to-tie distance. Referring to Table II,
we see that the tie detector is not as reliable as the tie plate
detector, achieving 82.3% recall and 88.2% precision rates.

TABLE IV
COMPARATIVE PERFORMANCE EVALUATION OF ANCHOR DETECTION

USING REAL-TIME FIELD TEST DATA.

Approach Precision Recall
Multiple classifiers with model-switching 96.5% 96.7%
Standard single Adaboost classifier 95.6% 93%
Edge-based approach [10] 83.3% 91%

3) Anchor Detection: We have applied three different ap-
proaches for anchor detection, specifically, the proposed one
using multiple cascade classifiers with the model-switching
mechanism, the standard single Adaboost classifier and the
edge-based anchor detector proposed in [10]. Their perfor-
mances are reported in Table IV. As we can see, the anchor
detector with multiple classifiers has achieved the best result
with both precision and recall being above 96%.
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From gap analysis, we observe that anchor false positives
are mainly caused by sharp shadows or debris on the rail, while
false negatives (i.e. missed detections) are mainly caused by
either extreme lighting conditions (e.g. too dark or too bright),
or occlusions. Fig. 15 shows some examples of false positives
and false negatives.

Fig. 15. Examples of anchor false positives (top row) and anchor false
negatives (bottom row).

C. Anchor Condition Assessment

As described in Section IV-A, an anchor is considered
shifted if it is more than τ = 1 inch away from the associated
tie. Nevertheless in practice, τ could take various slightly
different values. Applying different values would result in
detecting anchor shifts of different severity. Consequently, it
would be helpful if we grant users the flexibility of deciding
τ ’s value, based on their own individual needs.

Fig. 16. Anchor shift detection ROC w.r.t. the shift threshold τ , with and
without applying the inch-to-pixel calibration. The curves are plotted with τ
ranging from 0 to 2.5 inches.

For this reason, we have evaluated the anchor shift detection
performance with different values of τ , based on which
we generated an ROC (Receiver Operating Characteristic)
curve by computing an ROC point for each specific value.
Fig. 16 plots two such ROC curves, with one applying the
proposed/customized inch-to-pixel calibration and the other
not (or rather, a fixed inch-to-pixel mapping). The value of
τ ranges from 0 to 2.5 inches in this case. For each ROC
point, we use F1 score to indicate its overall performance.
The point that has the best F1 score is highlighted by a circle
in the figure. As we see, this point has a precision of 47%, a

recall of 40% and an F1 score of 44%. The corresponding τ
used for this point is 1.3 inches.

While this figure shows that by applying the customized
inch-to-pixel mapping, the shift detection performance has
been improved, we also admit that our current shift detection
performance requires further improvement. From gap analysis,
we realize that the low precision and recall rates are mainly
caused by imprecise localization of ties and anchors. To
achieve a reliable shift detector, we need to keep improving
the localization accuracy.

As for the spread anchor detection, neither the real-time
field test data nor our offline test data contain any instances
of this condition; consequently, we can not report the perfor-
mance here. Nevertheless, as we illustrated earlier, the spread
condition of an anchor pair can be readily assessed once
we obtain the shift value of each anchor. Consequently, its
detection performance can be theoretically derived from that
of anchor shift detection.

D. Compliance-level Anchor Pattern Exception Detection

Since a compliance-level anchor pattern exception severely
affects the railroad safety, failure to detect it can potentially
lead to grave consequences. On the other hand, if the system
produces too many false positives, it would be labor-intensive
for railroad companies to send crews to visually inspect all re-
ported track segments. Consequently, the partnering company
is requesting an anchor pattern exception detector with a high
detection rate and a low false positive rate. More specifically,
a 95% detection rate with not more than 1 false positive per
inspection hour.

Because the 3-mile track of the real-time field test did not
contain any anchor pattern exceptions, we performed such an
evaluation on an 1-hour video captured from a different track.
In this video, there were 3 true anchor pattern exceptions, and
our system was able to detect all of them, thus achieving a
100% detection rate. On the other hand, it also generated 3
false positives during the 1 hour period. While this is still not
up to the bar set by the partnering company, it is nevertheless
quite encouraging. Note that the numbers of true positives and
false positives are theoretically independent of each other, thus
the absolute number of false positives is more of our concern.

VI. CONCLUSION

This paper describes our recent engagement with a railroad
company to develop a real-time automatic vision-based rail
inspection system. Specifically, the system is able to robustly
detect important rail components with high accuracy and
efficiency based on visual, location, DMI and contextual infor-
mation. We have further discussed anchor exception detection
at both tie and compliance levels. Quantitative analysis per-
formed on a large video data set captured with different track
and lighting conditions has demonstrated very encouraging
performance.

The main challenge for us in the near future is to handle
scenarios where heavy shadows and light overexposure exist
in the videos. Also, we believe that our current tie detection
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approach needs to be further improved, and the global com-
ponent optimization approach needs to be evaluated on other
rail objects besides the tie plate. Thirdly, we shall conduct
more extensive testing covering longer railroad tracks with
varying defect conditions. Inspection for other rail objects such
as spikes, spike holes and joint bar need to be developed as
well. Finally, we need enhance our algorithms with potentially
modified imaging system to accommodate a faster and more
desirable inspection speed (e.g. 40 km/h). Controlled illumi-
nation of the rail infrastructure will also be explored to avoid
ambient lighting artifacts.

Finally, we would like to point out that: 1) the object
detection and optimization approaches that we proposed here
can be either readily applied or with minor tunings to other
rail fastening systems; 2) while the vision algorithms that
we developed are finely tuned towards rail track structure
and components, the encouraging results we achieved have
demonstrated the applicability of machine vision technology
to real applications in the general transportation domain (such
as the advanced driver assistance system (ADAS)).
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