RC25437 (WAT 1401-009) January 2, 2014
Computer Science

|BM Research Report

An Ontology-Based Framework for Model-Driven Analysis of
Situationsin Data Centers

Yu Deng, Ronnie Sarkar, Harigovind Ramasamy,
Rafah Hosn, Ruchi M ahindru
IBM Research Division
Thomas J. Watson Research Center
PO. Box 218
Yorktown Heights, NY 10598
USA

Research Division
Almaden —Austin — Beijing — Cambridge — Dublin - Haifa — India— Melbourne - T.J. Watson — Tokyo - Zurich

e
—

LIMITED DISTRIBUTION NOTICE: Thisreport has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report for
early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After
outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties). Many reports are available at http://domino.watson.ibm.convlibrary/CyberDig.nsf/home.

An Ontology-Based Framework for Model-Driven Analysis of Situations in Data
Centers

Yu Deng, Ronnie Sarkar, Harigovind Ramasamy, Rafah Hosn, Ruchi Mahindru
IBM T.J. Watson Research Center, P.O. Box 704, Yorktown Heights, NY 10598 USA

{dengy, sarkar, hvramasa, rhosn, rmahindr}@us.ibm.com

Abstract—The capability to analyze systems and applications
is commonly needed in data centers to address diverse problems
such as root cause analysis of performance problems and
failures, investigation of security attack propagation, and prob-
lem determination for predictive maintenance. Such analysis is
typically automated using a hodgepodge of procedural code and
scripts representing heuristics to be applied, and configuration
databases representing state. As entities in the data center and
relationships among them change, it is a challenge to keep the
analysis tools up-to-date. Typically, such changes are reflected
by adhoc extensions to the code and state or not reflected at
all. There is a strong need for a structured, knowledge-based
approach to performing such analyses where updates to entities
and their relationships in the data center are reflected easily,
and preferably with some degree of automation. We describe
a framework based primarily on the principle of interpreting
declarative representations of knowledge rather than capturing
such knowledge in procedural code, and a variety of tech-
niques for facilitating the continuous update of knowledge and
state. A metamodel representing data center-specific domain
knowledge forms the foundation for the framework. A model
of the data center topological elements is an instantiation
of the metamodel. Both metamodel and model are created
through a bootstrapping process, but continuously updated
using semi-automated techniques. Using the framework, we
present a methodology for conducting any data center analysis
activity (e.g., root cause analysis) as a model-driven topology
subtree traversal, governed by knowledge embedded in the
corresponding metamodel nodes. We show how to apply this
methodology successfully using two use cases drawn from
diverse domains: performance problem determination of a 3-
tier Web application running in a virtualized environment, and
an InfoSphere Streams processing application.

Keywords-Metamodel; Model; Model based analysis; Dy-
namic Metamodel and Model updates;

I. INTRODUCTION

The capability to analyze systems and applications is com-
monly needed in data centers to address diverse problems
such as root cause analysis of performance problems and
failures, investigation of security attack propagation, and
problem determination for predictive maintenance. With the
ever-growing size and complexity of data centers, there is a
clear need for automated, tool-oriented analysis methods.
Despite the demand for more rigorous approaches, such
analyses is often performed using ad-hoc custom-built tools.
It is typical to find data center administrators using a
hodgepodge of procedural code and scripts to implement

their heuristics for analysis, using the state of various data
center entities stored in diverse configuration databases.

A consequence of increased virtualization at all levels
in data centers is that entities in the data center and re-
lationships among them change frequently. For example,
in cloud computing, as service providers try to optimize
their resource usage on an ongoing basis, the set of VMs
hosted on a given hypervisor or the network elements in
between two VMs communicating with each other may
change in a dynamic fashion. To account for these ongoing
changes in today’s data centers, administrators typically use
a patchwork of extensions to their code and state. Such
adhoc methods may render the analysis results ineffective.

Clearly, there is a strong need for a structured, knowledge-
based approach to performing various analyses needed in
data centers where updates to entities and their relationships
in the data center are reflected easily and preferably, with
a degree of automation. For facilitating such analyses, we
describe a foundational framework that employs declarative
representations of knowledge — in the form of metamodels
and models — as first-class citizens. Procedural code captur-
ing the knowledge may be used, but only within the context
of those metamodels and models. The framework also in-
cludes techniques for facilitating the continuous update of
knowledge.

A primarily declarative metamodel representing data
center-specific domain knowledge forms the foundation for
the framework. The metamodel captures data center entities
and relationships between them. Additionally, the meta-
model encodes entity- and relationship-specific knowledge
useful for analyses, e.g., the probable cause of a performance
problem in an application server may include memory con-
tention. The metamodel is statically created using domain
expert knowledge, but is updated continuously in a semi-
automated fashion under the guidance of knowledge engi-
neers. We describe techniques that can be used to generate
metamodel update candidates.

A data center model (or, simply model) is an instantiation
of the metamodel used to represent the data center state,
where every object and relationship in the data center
(physical and logical) topology corresponds to an instantia-
tion of an entity and relationship (type) in the metamodel.
We describe how discovery techniques (both static and

dynamic) can be used to build the model and keep it up
to date. Using the framework, we present a methodology
for conducting any datacenter analysis activity (e.g., root
cause analysis) as a model-driven topology subtree traversal
governed by knowledge embedded in the corresponding
metamodel nodes. We show how to apply this methodology
successfully using two use cases drawn from diverse do-
mains: performance problem determination in a 3-tier Web
application, and in an InfoSphere Streams application.

In the rest of the paper, we first describe the model-based
analysis framework in Section II. Then we introduce the
metamodel in Section III. In Section IV and Section V,
we discuss how to statically and dynamically discover new
model and metamodel elements. In Section VI, we illustrate
the application of our approach in a virtualized environment
and in IBM Infosphere Streams!. We conclude the paper in
Section VII.

II. MODEL-BASED ANALYSIS USING DATA CENTER
ToPOLOGY AND DOMAIN KNOWLEDGE

Figure 1 is a block diagram illustrating the overall model-
based analysis framework. The figure shows a metamodel
representing data center domain knowledge, and a data cen-
ter model representing its current state. Static and dynamic
topology discovery techniques described in subsequent sec-
tions are used to build the data center model and keep it up
to date. Furthermore, the metamodel is continuously updated
by knowledge engineers, who are periodically provided
with metamodel update candidates by tools described in
subsequent sections. The figure also shows knowledge-based
analysis being performed by processing monitoring metrics
data that is continuously collected from data center elements,
using the model and metamodel to control the sequence of
analysis steps as a guided walk of a subset of the data center
topology.

The model-based framework described here is targeted
at systems specialized for analysis of customer workloads
running on data centers to address problems such as detec-
tion and root cause analysis of performance bottlenecks and
detection and analysis of security attacks, and also iden-
tification of remediation actions. Such analysis is heavily
topology-driven, where a topology is a detailed represen-
tation of objects in the data center spanning infrastructure
elements (e.g., server, storage and network entities), core
software entities (e.g., operating systems, hypervisors, file
systems), virtualized entities (e.g., virtual machines/servers,
virtual switches) as well as software/middleware elements
(e.g., Web application servers, database servers). The rela-
tionship between the objects is also a core aspect of the
topology, representing state such as file system X uses
storage volume Y, virtual server A runs on hypervisor B,
etc.

Uhttp://www.ibm.com/software/data/infosphere/streams/

Topology-based analysis of data centers is not a new
topic [5] [2]. However, past work has focused primarily
on using the topology, rooted at some data center element
where problem symptoms are initially observed, to drive the
problem determination process via some traversal algorithm.
The analysis performed at each node of the topology is
script-driven. By introducing a metamodel in the framework
where all domain knowledge associated with an entity or
a relationship can be explicitly modeled, and treating each
node and link in the topology as an instance of an entity
or a relationship type in the metamodel, the knowledge
used to drive the analysis is easier to represent and manage
translating into ease of evolution of the overall system. This
is important as new diagnostic knowledge about an existing
entity (e.g., a solid state disk drive) is found on a Web site,
or as new types of entities and relationships are introduced
into the data center and the domain of analysis has to be
expanded to cover them.

Consider, for example, a performance problem analysis
process. Applications of interest are monitored for response
time or throughput. The definition of a service level agree-
ment (SLA) from a customer, for an application running
on the data center, might state the following: the average
response time of the application over N consecutive user
requests must be less than or equal to T seconds. An SLA
violation, determined by an analysis of response time metrics
over a sliding time window, triggers a problem determination
(PD) process. Note that the exact analysis techniques used
and the exact metrics collected to perform the analysis is
not the focus. It is the diagnosis knowledge, captured in
the metamodel and leveraged by the analysis, that is being
highlighted.

One approach to tackling the root cause analysis task
above may involve the following topology-based approach.
Starting with the application node in the topology, examine
its immediate dependent resources. The procedure to be
executed on any topology node consists of the following
steps:

1) Examine data relevant to the node. This could be
metrics collected by a monitoring system - e.g., CPU
metrics, or information extracted from a log file.

2) Apply a test on the data (e.g., check if the disk I/O
reate is correlated with the increase in response time).
The test to perform should ideally be represented as a
unit of knowledge in the metamodel node.

3) If the test succeeds in a definitive manner, then the anal-
ysis can be considered to be complete, and the desired
conclusion (e.g., of the root cause of a performance
problem) is available.

4) If not, the test results should indicate which node to
examine next (e.g., DB2 server node), which is also
encoded in the domain knowledge associated with the
metamodel node.

5) Continue the traversal until a conclusion is reached, or

e e e e s s L e S s

« Server, storage,

Instance-of

Middleware
| \ A

\

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
}
} IMetamodel (knowledge) : types, relationships, rules, ...
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Knowledge engineers
¥ ¥
-0 .. ‘ ‘

Tool

CIM-to-oniolog

#-

Texi-to-knowledge: Knowledge Mining

PRISMATIC (Watson),
other ...
Eom= e ey
CIM Models NIST Vainerabilty
DB

NW discovery Data Center
l 1 ?pps L app app?
iscovery.
: Netflow, System w1 [u] (w2
i call tracing VM1 [m] (m] vm2
| Static / [Ryot [M] . [M[Hyp2]
H Dynamic [PM1 M|] P2 |
| Topology b_
: Discovery [}
I
I
|
l -
I Knowledge Corrective
I Engineer T
I
I
I
I
i
Analytics (e.g..
anomaly
detection)
Knowledge-based analysis

and autonomic
management

Monitoring + Automated Incident
Knowledge Management
sources

Figure 1. Model-Based Analysis and Autonomic Management of Data Centers

using heuristics, it can be concluded that no root cause
can be determined using the current model and avail-
able (e.g., metrics) data. Note that the latter condition
can trigger more detailed topology discovery.

The node-level test referenced above can be one or more
of several alternatives such as - comparison with a threshold
value (e.g., average CPU utilization over the last 30 minutes
is over 95 percent), a statistical computation (e.g., correlation
between a server’s disk I/O rate and the increase in response
time of the main application over the last 30 minutes is 0.9 or
higher), or a more complex computation such as performing
time series analyses of the history of a monitored metric
associated with the topology node to detect anomalies [4].

An alternate approach to model-based analysis using
a data center topology may involve the following steps,
involving a different mode of topology traversal, but still
leveraging diagnostic knowledge stored in the metamodel:

1) Consider a subset of the data center model that rep-
resents a “useful” unit of analysis, e.g., a hypervisor
running on a physical machine, and all the virtual
machine (VM) and other virtual resources provisioned
on that hypervisor. In this scenario, the hypervisor of
interest is the one that has been used to provision one or
more VMs that are running components of the customer
application exhibiting performance issues.

2) Construct a Bayesian Network that is dericed from

3)

4)

5)

the data center model of the hypervisor and its virtual
resources. Nodes of the model form the nodes of the
Bayesian network, and the links between the nodes
are identical to instances of certain relationships in the
topology, such as UsesResourceOf in Figure 5.
Initialize the Bayesian Network model with joint prob-
ability values that are captured in the metamodel
nodes and relationships corresponding to the model
subset. These probability values are assumed to have
been learnt using standard Bayesian Network learning
techniques. If the probability values are recomputed
periodically using diagnostics history data, then they
are reflected back in the metamodel.

Run the Bayesian Network using the metrics or other
data collected in each node, as in the earlier approach
described above.

If the Bayesian Network identifies the root cause re-
source that can explain the application performance
problem with sufficiently high confidence, then the
analysis task is complete. Otherwise, the focus of the
analysis has to move to another part of the data center
model.

III. METAMODELS

Domain knowledge represented in the data center meta-

model forms the core of the framework. The basic meta-

model is an OWL? ontology representing types of entities
and relationships covering all objects of interest in a virtual-
ized data center that may need to be inspected and analyzed.

The domain metamodel is primarily declarative in nature
and represents data center entities (e.g., Server, StorageEle-
ment, MiddlewareSystem) and relationships (e.g., UsesRe-
sourceOf, RunsOn). Additional pieces of knowledge can be
associated with the core domain entities and relationships.
For example, a constraint can be attached to a VirtualMem-
ory entity that participates in a PartOf relationship with
a WindowsOS entity, representing a guideline for setting
the page file size as a multiple of virtual memory size
for attaining reasonable application performance. Such a
guideline could have been discovered from a Web crawl
of the Microsoft Developer Network (MSDN) Web site
for structured knowledge extraction, as described in Sec-
tion V. Another example of domain knowledge could be
a published vulnerability of a given IT component and a
response to a security attack exploiting that vulnerability,
representing knowledge extracted from the National Vulner-
ability Database’. At its core, domain knowledge captures
resource dependencies in running customer workloads, and
information required to diagnose resource bottlenecks or
the propagation of information (e.g., malware) along the
dependency paths.

Domain metamodels need to be kept up to date to facilitate
accurate model-based analysis. This is a complex task, and
both established methods such as leveraging CIM* models
and more state-of-the-art techniques for extracting structured
knowledge from unstructured text [3] [9] [6] can be applied
within the framework. Metamodel updates have to carefully
supervised, and automated knowledge extraction techniques
should only be considered as an aid, with the final inclusion
of a piece of knowledge occurring under the supervision of
an experienced knowledge engineer.

The paper also proposes some new approaches for ex-
tending the metamodel, which can be performed as a side
effect of both static as well as dynamic topology discovery.
Topology discovery is described in Section IV, and meta-
model discovery leveraging topology discovery is described
in Section V.

IV. ToPOLOGY DISCOVERY

Topology discovery is an important component of the
framework, since functionally rich discovery mechanisms
are required to construct accurate data center models for
performing analysis. Static topology discovery as described
in Section I'V-A uses well-known techniques that the frame-
work takes advantage of. Approaches for efficient dynamic
topology discovery are outlined in Section IV-B.

Zhttp://www.w3.org/TR/owl-ref/
3http://nvd.nist.gov/
“http://dmtf.org/standards/cim

Static analysis for model

Topology update request
creation (prior art)

Dynamic fopology
discovery

Ontology (mode|) update

Application

Middleware i

Knowledge Base:
ontology (meta-
model,
model/topology)

Hypervisor . 8 = |

Server (hardwa[&ﬁ

Metrics|/

Network .‘I

Analysis Module
(e.g.. performance —
RCA)

Data
warehouse

Includes KP|s
* in warehouse,
E: logs. output of

Agent (for NW flow analysis) Monitor commands. efc

Sim&@

Storage

Figure 2. Dynamic Topology Discovery Architecture

A. Static Topology Discovery

Static topology discovery via configuration and code
analysis is well known and implemented in commercial and
research systems [1] [8] [7]. Static discovery tools leverage
knowledge of configuration databases (e.g., the Windows
registry) as well as the format of configuration files (e.g.,
EAR files for J2EE applications) to enumerate software
components installed on a server, and the dependency of
each component on other components which may reside
on the same or different servers. File system configuration
can be used to understand dependencies on storage systems
that are local disks or remote file or block storage systems.
Network topology constructed by network management tools
can be queried to find network components - switches and
routers - that a distributed application depends on.

The model-based analysis framework of this paper de-
pends on static discovery tools to populate a configuration
management database (CMDB). A mapping table is subse-
quently used to convert each entry in the CMDB to instances
of entity and relation types in the metamodel to construct the
model. The mapping table has to be manually constructed’,
since the CMDB schema is a legacy data center artifact and
the metamodel is an add-on component of our architecture.

B. Dynamic Topology Discovery

Demand-based dynamic topology discovery starts a stat-
ically discovered topology. The statically discovered model
may be incomplete since application components may com-
municate with remotely located components in the data

5The size of the mapping table is linear in the size of the metamodel,
which is normally not big.

Static topology of customer app

°)

@/g é}i\@

»{ S

« Direction of connection not critical
« In-degree of node can be
leveraged, as in social networks

« Stop dynamic topology discovery
. = “. after N levels of indirection,
Process A initiated TCP
connection to B

assuming that it has no effect on
performance RCA

Figure 3. Network Flow-Based Dynamic Topology Discovery

center whose identities are hardcoded, or such dependencies
might be defined in configuration files that are not well-
documented, and thus are not processed by all topology
discovery tools. Such remote components can be discov-
ered by applying well-known techniques that involve either
analysis of system calls or of network flows initiated by the
known components of the model. Another requirement for
dynamic topology updates may occur due to well-understood
dynamics of a data center, e.g., caused by virtual machines
(VMs) being migrated from one hypervisor to another, or
scale-up and scale-down operations being performed on
multi-node clusters, in order to deal with load balancing
requirements. We refer to this as planned dynamic topology
discovery.

Figure 2 describes the various components of the dynamic
topology discovery architecture. For discovering topology
changes of the “planned” flavor, the discovery component
depends on cluster or hyperisor managers for information
about topology changes that they initiate. If such systems do
not offer notification mechanisms, then some type of polling
mechanism can be implemented to detect dynamic changes.

The discovery of resource-usage relationships not covered
by static topology discovery tools is initiated only when
attempts at model-based analysis of data center problems
fail repeatedly, indicating that the model may be incomplete.
This approach is more efficient than continously performing
such analyses to detect topology changes. In our framework,
such dynamic topology discovery leverages network flow
analysis techniques - either by examining network packet
traces in individual servers using "tcpdump’ type of utilities,
or by examining Netflow traces in switches. Agents depicted
in Figure 2 enable the capture of network data.

Our approach to the discovery of new resource-usage
relationships in a data center involves a 3-step process that is
repeated until deterministic or heuristic stopping conditions

5

J

after identifying *service” node
*Assumption: callers of a service

do not impact a service that is not

reflected in the service's metrics

\- Stop dynamic topology discovery

are detected, as described below.

o Step 1: for each known topology node representing a
software component, the operating system (OS) running
on the server where the software component is running
is identified. If the node is mappable to a process, the
topology discovery system needs to determine whether
the process is participating in network connections - for
example, has an open TCP (Transmission Control Pro-
tocol) socket in LISTENING or CONNECTED mode.

e Step 2: a ’tcpdump’-like utility and operating system
facilities are used for each such process to analyze net-
work connections it is participating in, and to discover
the identity of partner end points (IP-address, port-
number) of each such connection. The use of Netflow
tracing (a standard feature in modern network switches)
to enable this type of analysis is also an option. Note
that in the latter case, Netflow tracing is typically set
in switches on a permanent basis and such trace data
stored in a warehouse, where it may be accessed later
as required for various analyses tasks. With Netflow
data from the past, the “direction” of a TCP connection
identifying the initiator and the listener can be deter-
mined, which is important for identifying services in
the data center. For each such TCP connection, if the
connection partner is not a known topology node, it is
identified as a new node reflecting a new dependency
and it is eventually added to the topology/model.

o Step 3: If the “listening” partner identified in step 2

is not an existing topology node, but the listening port
is well-known, then this new node can be identified as
an instance of a known metamodel node (for example,
a Web server listens on port 80, IBM’s DB2 database
server listens on port 50000, etc.). Note that in some
cases, more analysis work will be required to complete
this step, e.g., to determine the exact identity of the
Web server listening on port 80, for which well known
discovery tools such as TADDM can be employed.
If the TCP end point is not a well-known port, then
potentially, a new metamodel node may have been
identified if analysis of network flows to/from that node
is used to determine that the node is a new type of
service. The process of identifying a new service in the
data center is described further below.

Steps 1 through 3 above are repeated as long as new
topology nodes are discovered, though an iteration may be
terminated after a preconfigured threshold of N iterations
have been performed. Additionally, discovery of a new
service can be a stopping criterion for terminating dynamic
topology discovery. The rationale for the latter is the obser-
vation that the performance of a topology node that provides
a service is primarily determined by the load imposed on it
by its clients, which can be measured by node-local resource
usage metrics alone without analyzing client metrics.

Figure 3 illustrates the 3-step discovery process. As steps
1 through 3 are iteratively applied, new topology nodes
are discovered as described by the algorithm. Node S has
been identified as a (known or unknown) service, because
a majority of connections to that node are found to have
been initiated by other nodes - as indicated by the direction
of the TCP connection setup found in switch Netflow
records. Therefore, further discovery based on node S is not
continued. However, network flow analysis of node D leads
to the discovery that it uses another node, which uses another
node, and so on, and as per the 3-step process, the transitive
discovery step is terminated after N-steps where N could be
statically configured but modified based on experience over
time.

V. METAMODEL DISCOVERY

In a model-based framework where domain knowledge
is a core component, the ability to create an accurate
metamodel and keep it up to date is of critical importance.
This section identifies several approaches for identifying new
candidate pieces of knowledge which can be integrated into
the existing metamodel. Figure 1 outlines some knowledge
sources and extraction techniques.

The initial metamodel can be manually constructed by
domain experts and knowledge engineers. An alternate ap-
proach for bootstrapping a starter metamodel could be to
convert existing IT domain knowledge encoded in (machine
readable) CIM models for IT management, where profiles
are available for server, storage, network and even some
middleware components, into OWL ontologies in a semi-
automated manner. Such a process should be executed peri-
odically since CIM models are regularly updated by different
expert groups. For example, the CIM block storage device
modeling subgroup published a new model to represent
solid state drives when they were first introduced. Ingesting
such a new CIM model into the ontology at the right
location (subclass of DiskDrive entity) can automatically
enrich the metamodel beyond just the mere addition of entity
and relationship types, e.g., by inheriting from the already-
defined diagnostic knowledge that a DiskDrive (and any
subclass therof) can impact the performance of a file system
that uses it.

Recently refined artificial intelligence (Al)-based methods
to extract structured knowledge (relationship triples) from
analysis of unstructured text can also be used to update the
metamodel [3] [9] [6]. However, such automated approaches
typically extract a huge number of relationships, and the
filtering of useful intrinsic relationships for enhancing the
metamodel can be a laborious task.

In addition to the above approaches that are well-
documented, the authors propose two other methods to
detect new candidate metamodel nodes. Both approaches are
side effects of topology discovery.

Metamodel updates

/

)
Y

Model updates

Model +
Metamodel
Generator

Mapping
table

Configuration DB

Discovery
Component

Figure 4. New Metamodel Node Learning

A new metamodel node may be discovered as a side
effect of the dynamic topology discovery process described
in Section IV-B. In Step 3, if the partner of the known
topology node sharing a TCP connection is using a non-
well known TCP port, and it is discovered that the number
of TCP connections initiated to that node by other TCP end
points greatly exceeds the number of TCP connections the
node itself has initiated, then the new node is identified as a
potentially new type of service that may play an important
role in the data center. If true, then the new type of service
would warrant modeling as a new entity type in the domain
metamodel. The Dynamic Topology Discovery component
in Figure 2 alerts the knowledge engineers of the finding,
who can initiate further manual analysis steps to confirm or
reject the recommendation. In knowledge engineering terms,
extrinsic domain knowledge about a new node discovered
in the data center, coupled with heuristic analysis of the
number of incoming versus outgoing TCP connections for
which that node is an end point, is used to infer intrinsic
domain knowledge about a new type of entity in the data
center.

New metamodel nodes may also be discovered as a side
effect of static topology discovery. For example, a static
discovery tool such as IBM’s Tivoli TADDM product will
record in a CMDB a new descriptor of a disk drive it found
by querying the operating system’s device configuration,
which the operating system itself extracted from the disk
drive during boot. That configuration information might
describe the new disk drive as a “2 TB SAS drive” -
for which no metamodel node currently exists because the
knowledge engineers may be oblivious to the fact that such
disk drives have been introduced in the data center and need
to be modeled.

To analyze the output of discovery tools to build the
data center topology/model and associate it with known
metamodel nodes, mapping tables (such as depicted in
Figure 4) are employed. Mapping tables enable parsing
of configuration database fields to identify which database

items correspond to which types of metamodel nodes (e.g.,
disk drives, CPUs, virtual servers). When a new configura-
tion item described as “2 TB SAS drive” is first encountered
by configuration-to-model mapper component, no mapping
table entry will exist. Based on the location of the item’s
entry in the CMDB, namely where information about other
types of disk drives are stored, the metamodel discovery
component can infer that the configuration item “2 TB
SAS drive” represents a new type of disk drive, and the
knowledge engineer, who can confirm or reject the system-
generated hypothesis, is alerted.

VI. CASE STUDY

We have applied a subset of the model-based approach
to perform root cause analysis of performance problems in
two application environments, one a traditional 3-tier Web
application running in a virtualized environment, the other
an InfoSphere Streams application. These two cases are
described below.

A. Applications in a virtualized environment

The Apache DayTrader application was used for our first
experiment. The 3-tier Web application and its resources
were deployed in two virtual machines (VMs) provisioned
on a common hypervisor, and a separate physical machine.
One VM was used to run a Web server, Websphere Applica-
tion Server and the DayTrader application. The second VM
ran IBM DB/2. The second physical server ran the Linux
NFS server to provide storage to the hypervisor. Additional
VMs were provisioned to run JMeter to generate a trading-
request load to DayTrader, and to also generate an external
I/O request load to the NFS server.

In the setup, trading requests submitted from JMeter were
processed by Websphere Application Server and backend
database requests were forwarded to IBM DB/2, the table
spaces of which are allocated on a virtual disk in the VM,
mapped to a file on the hypervisor’s NFS mounted file sys-
tem. Figure 5 shows the data center model representing this
topology, and also the metamodel nodes that represent the
underlying entity and relationship types. In the model, the
nodes WIN2K8VMI represents the VM running DayTrader
and the Web components, WIN2K8VM?2 represents the VM
running DB/2, and dushesh66 models the physical machine
running the NFS server.

In the experimental testbed, operating system (OS)-
specific monitoring agents were installed in each virtual and
physical server to collect metrics covering CPU, memory
and disk usage. Additionally, a special monitoring agent
to measure Web application (HTTP request-response based)
response time was also installed on a separate node. The
response time agent monitored all network flows in promis-
cuous mode. All agents output their metrics periodically
(and frequently) into a data warehouse. Constant ingestion
of warehouse data was used by the diagnostic system to

ear

WApplication Middleware
o) ez

M!
DayTrader. >
N\

— |: instanceOf
— P: part of

R: runs on

U: uses resource of
V: virtualization of

ipAddress =
10.10.20.182

Figure 5.

Topology of the DayTrader Application

drive the model-based root cause analysis of performance
degradation.

In the scenario, if the application SLA metric (e.g.,
ApplictionResponseTime exceeds a predefined threshold
(as defined in the customer SLA), the model based diagnosis
process is triggered. The diagnostic logic traverses the
portion of the data center model starting at the node labelled
“DayTrader.ear” in Figure 5 and starts the topology traversal
(drill-down) process. The diagnostic process only leverages
OS metrics applied to the virtual and physical servers hosting
dependent resources. Network resource dependencies were
ignored.

In each node analyzed during topology traversal
(WIN2K8VM1, WIN2K8VM?2, dushesh66), the system
examines four different OS metrics: CPU-utilization,
memory-utilization, disk-utilization, and disk-latency. The
history of each metric is analyzed using four separate
algorithms, two sets of time series analysis based anomaly
detection algorithms (see [4]), computation of pair wise
correlation of each OS metric and the application response
time, and also comparison of the average value of each OS
metric in the last T minutes compared with a threshold. By
using a voting mechanism, the system determines if there is
an anomaly in the “recent” values of the recorded metrics.
If the degree of anomaly is definitive, then the traversal is
stopped. Otherwise, the traversal continues to the next node.

The first server node to be examined is WIN2K8VM1,
which is the computer system instance that DayTrader is
running on. In the case of WIN2K8VMI, it turns out that
none of the base metrics values exhibit any anomaly. Next,
the system traverses next node hosting a resource that the
application is dependent on, namely WIN2K8VM2 which
hosts the DB2 instance that DayTrader uses. Analysis of
the base metrics on that VM indicates that the disk latency
is anomalous. That leads the system to focus next on the
third node (dushesh66) hosting the NFS server, because the
(virtual) disk of WIN2K8VM?2 is mapped to a NFS-mounted

dushesh66

ipAddress =
10.10.10.206

file system exported by that server. A resource constraint
on the NFS server can result in delays in disk I/O request
processing times in WIN2K8VM?2, thereby affecting DB/2
performance. Analysis of the base metrics of dushesh66
indicates that the disk-utilization metric exhibits significant
anomalies. At that point, the drill-down stops, and the load
on the NFS server is declared as the root cause of the SLA
violation detected in DayTrader.

VII. CONCLUSIONS AND FUTURE WORK

We have presented a model based framework for per-
forming automated analysis of complex applications us-
ing resource dependencies and diagnostic knowledge. In
this framework, the metamodel is a critical component for
capturing IT domain knowledge, and the model that is
an instantiation of the metamodel is a critical component
for capturing data center state that is leveraged in the
analysis process. We have provided methodologies for the
creation of both the metamodel and the model and to keep
them current. We have also illustrated how to apply this
framework to analyze application performance problems in
both virtualized and Streams environments.

For our future work, we plan to enhance two aspects of
our framework : (1) enhance the anomaly detection methods
to enable adjustments based on application workloads; (2)
enhance the analysis techniques for problem prediction.

REFERENCES

[1] Tivoli application dependency discovery
www.ibm.com/software/tivoli/products/taddm.

manager.

[2] M. K. Agarwal, K. Appleby, M. Gupta, G. Kar, A. Neogi, and
A. Sailer. Problem determination using dependency graphs and
run-time behavior models. In DSOM, pages 171-182, 2004.

[3] M. Banko, M. J. Cafarella, S. Soderland, M. Broadhead, and
O. Etzioni. Open information extraction from the web. In
Proceedings of 1JCAI, pages 2670-2676, 2007.

[4] A. Biem, H. Feng, A. V. Riabov, and D. S. Turaga. Real-
time analysis and management of big time-series data. /BM J.
Research and Development, 57(3/4):8:1-8:12, 2013.

[5] A. B. Brown, G. Kar, and A. Keller. An active approach
to characterizing dynamic dependencies for problem determi-
nation in a distributed environment. In Integrated Network
Management, pages 377-390, 2001.

[6] J. Fan, A. Kalyanpur, D. C. Gondek, and D. A. Ferrucci.
Automatic knowledge extraction from documents. IBM J.
Research and Development, 56(3/4):5:1-5:10, 2012.

[7]1 N. Joukov, B. Pfitzmann, H. V. Ramasamy, N. G. V. andM
V Devarakonda, and T. Ager. Itbvm: It business value modeler.
In Proceedings of IEEE International Conference on Services
Computing, pages 128-135, 2009.

[8] K. Magoutis, M. Devarakonda, N. Joukov, and N. Vogl.
Galapagos: Model-driven discovery of end-to-end application-
storage relationships in distributed systems. IBM J. Research
and Development, 52:367-378, 2008.

[9] P. P. Talukdar, D. Wijaya, and T. Mitchell. Acquiring temporal
constraints between relations. In Proceedings of the Conference
on Information and Knowledge Management (CIKM 2012),
Hawaii, USA, October 2012. Association for Computing Ma-
chinery.

