
RC25438 (WAT1401-010) January 2, 2014
Computer Science

IBM Research Report

On the Challenges and Solutions for Migrating Legacy
Distributed Applications into Cloud

Chunqiang Tang, Byung Chul Tak, Long Wang, Hai Huang, Salman Baset
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598
USA

Research Division
Almaden – Austin – Beijing – Cambridge – Dublin - Haifa – India – Melbourne - T.J. Watson – Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report for
early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After
outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties). Many reports are available at http://domino.watson.ibm.com/library/CyberDig.nsf/home.



On the Challenges and Solutions for Migrating Legacy
Distributed Applications into Cloud

Chunqiang Tang, Byung Chul Tak, Long Wang, Hai Huang, and Salman Baset
IBM T.J. Watson Research Center

1101 Kitchawan Rd, Yorktown Heights, NY

ABSTRACT

As the adoption of cloud continues to grow, organiza-

tions are faced with the challenge of migrating legacy

applications into the cloud, or at least evaluating whether

a migration is worthwhile. The simple solution of a fresh

application reinstallation in the cloud is often labor inten-

sive and has a high risk of running into unknown prob-

lems. On the other hand, importing already-installed im-

ages requires intimate application knowledge to perform

reconfiguration, e.g., pointing one component to the new

IP address of another component. The purpose of the pa-

per is to present the migration problem to the research

community. We devise a methodology for defining the

migration solution space, and propose two techniques,

AppCloak and PseudoApp, that hopefully can help ad-

vance the state-of-the-art of migration.

1. INTRODUCTION

Cloud computing is a powerful force that has been re-

shaping the landscape of the IT industry. Many organi-

zations have either already embraced cloud or been ac-

tively exploring it to determine whether it is a good fit

for their workloads. In cloud research, much attention

has been given to finding new killer applications, e.g.,

data intensive analytics with MapReduce. However, how

to provide a smooth transition path from today’s technol-

ogy to a cloud environment has been mostly neglected in

the literature. In this paper we explore the challenges and

potential solutions in migrating legacy distributed appli-

cations to Infrastructure-as-a-Service (IaaS) clouds.

1.1 Challenges

One natural way of migrating an application to cloud

is to reinstall all application components in the cloud

from scratch. Installing and configuring a complex en-

terprise application is often time consuming and error

prone, thus, there is a significant risk of encountering un-

known issues and missing the project deadline.1 Another

1It was reported that migrating the relatively simple Java Pet-
Store benchmark to a cloud took more than 22 and 36 hours
for preparation and migration, respectively [6]. From our own
experience in a previous project, it took about a month to set up

even bigger challenge is that a legacy application may

have gone through many undocumented changes over a

long period of time. It is impossible to quickly reproduce

these changes on a fresh installation.

Another straightforward way of performing applica-

tion migration is to simply copy an existing application

in its entirety to virtual machines (VMs) in a cloud. The

challenge here is to reconfigure the application such that

it will still work in the new environment. As it turns out,

handling network changes is a big part of this challenge.

For example, one component may store the IP address of

another component in its configuration file or database

(that might even be encrypted). Without having intimate

knowledge of the application, it is hard to know where

the parameter is located.2 Another example is the com-

mon practice of binding a software license to a specific

IP address of the host machine. If the IP address later

changes (e.g., after migration), the software will cease

functioning, even with a valid license.

1.2 Contributions

The purpose of this paper is to present to the research

community the challenges of migrating complex applica-

tions into cloud, and hopefully spark more research work

in this area, which we, a group of cloud insiders, believe

to be critically important in practice. This problem is

particularly relevant to the network community, because

changes in the network environment are often the culprit

that breaks migrated applications.

We propose a methodology for defining the migration

solution space, which helps enumerate a large number

of potential solutions and discuss the pros and cons of

each solution in a systematic way. We break down the

migration problem into three tasks: OS migration, man-

agement tool migration, and application migration. A

complete migration solution can be obtained by combin-

ing different methods for different migration tasks. In

particular, we identify a rich set of solutions that poten-

tially can run unmodified legacy applications by provid-

a solution that involved half a dozen different products.
2A concrete example is that MySQL may grant remote access
for a database to a specific IP address. Access is denied if the
IP address changes.

1



ing them with an illusion of an execution environment

identical to the legacy environment.

In addition to defining the solution space, we propose

two novel solutions, AppCloak and PseudoApp. App-

Cloak is an OS-level container that can run an unmodi-

fied legacy application by providing a disguised execu-

tion environment. AppCloak is radically simpler than

traditional OS containers, because it is not concerned

with security or performance isolation, which is the ma-

jor source of complexity in the traditional containers. On

the other hand, AppCloak goes beyond traditional con-

tainers — it provides migrated applications an illusion

that their network environment is unchanged.

Another key observation is that the migration effort is

often dominated by the pre-migration assessment rather

than the actual migration. Tran et al. [6] reports that se-

lecting proper cloud providers and server types requires

significant effort during preparation for migration. Sup-

pose an organization wants to assess which cloud out of

three candidate clouds is the best fit (e.g., in terms of

performance and/or cost) for each of its n applications, it

has to perform a total of 3n migrations in order to com-

plete the assessment. Suppose 50% of the applications

are eventually considered not a fit for any cloud (i.e., only

n/2 of the applications will be migrated), the number of

pre-migration assessments is 3n — a 500% overhead!

Our solution, PseudoApp, addresses this problem by

providing a quick way of assessing an application’s per-

formance (e.g., throughput and response time) and cost

(e.g., due to VM size and disk/network traffic) in a po-

tential target cloud, without migrating the actual applica-

tion. It works by 1) building a simple pseudo-application

that closely resembles the real application’s behavior in

resource consumption (CPU, disk, and network), and then

2) benchmarking the pseudo-application in the target cloud.

2. BACKGROUND

This section provides background on cloud and migra-

tion in order to set the stage for the discussion of migra-

tion solutions.

2.1 Cost Saving in Managed Cloud

We consider two types of IaaS clouds. For an unman-

aged cloud such as Amazon EC2 [1], once a VM is pro-

visioned, the user is fully responsible for managing ev-

erything running inside the VM. For a managed cloud

such as IBM SmartCloud Enterprise+ (SCE+) [3], the

cloud service provider charges a premium for managing

software running in the VM. SCE+ provides a long list

of managed services, including patching the guest OS,

taking incremental backup of the guest file system, etc.

These services are often enabled in a traditional IT envi-

ronment through system administrators’ labor-intensive

manual operations, while are provided by SCE+ through

full automation.

The cost of running an enterprise application is often

dominated by the cost of providing the managed services

rather than the cost of getting a basic physical or virtual

machine. Moving the application into a managed cloud

not only saves the infrastructure cost due to the economy

of scale, but also replaces expensive labors with automa-

tion in providing the managed services.

2.2 Migration Tasks

A complete migration process involves three related

but different tasks.

OS migration: The guest OS and device drivers used in

a cloud are unlikely to be an exact match of those in the

legacy environment. For example, the cloud may use a

para-virtualized kernel. OS migration also covers basic

system reconfigurations related to hostname, IP address,

DNS server, etc.

Management tool migration: This is specific to a man-

aged cloud, which installs many management tools in a

VM to enable automation, e.g., Tivoli Endpoint Manager

for patching. During migration, existing tools need to be

replaced by the cloud’s tools.

Application migration: An application usually has con-

figuration parameters dependent on the legacy environ-

ment, e.g., IP address of a database server. These pa-

rameters need to be enumerated and modified before the

application can run in the cloud.

2.3 Evaluation Metrics

We describe some important metrics that will be used

to evaluate the migration solutions.

Ease of deployment: We prefer off-the-shelf software

over custom implementation. If custom code is neces-

sary, we prefer user-level code over kernel-level code.

Migration labor: We prefer solutions that need minimal

human labor.

Post-migration maintenance: It is undesirable if a mi-

gration method packages the application in a stiff way

that makes future application upgrade difficult.

Post-migration application performance: Some meth-

ods such as nested virtualization incur runtime perfor-

mance overhead, which are less desirable.

Generality: Some methods may be simple but cannot

handle many legacy applications.

Cloud provider support: If a method requires changes

to hypervisor or network infrastructure, it is less attrac-

tive to application users compared with VM-level solu-

tions, as they need to pay for the extra support even if the

cloud provider offers the support.

3. MIGRATION SOLUTION SPACE
Table 1 shows the migration solution space. Each row

represents a common method for OS migration and man-

agement tool migration. OS and management tools are

2



❤
❤

❤
❤
❤

❤
❤
❤
❤

❤
❤
❤
❤

❤
❤
❤❤

OS/Tool Migration

Application Migration

Reinstall app Reconfig app Wrap app BlueCoat/Puppet

Create a new VM from the cloud’s existing image catalog X X See Table 2 X(bc/Puppet)

Clone the old VM, adjust OS/tools in the image, and import it into cloud N/A X(SCE+ Rapid Migr.) See Table 2 N/A

Table 1: Migration solution space. Each migration solution is a combination of one method for OS and man-

agement tool migration and another method for application migration.

handled together because they jointly form the runtime

environment for applications. Each column represents

a method for application migration. A complete migra-

tion solution combines a method for application migra-

tion with a method for OS/tool migration.

3.1 OS/Tool Migration
There are two methods for OS/tool migration.

Create a new VM. This method simply provisions a new

VM from the cloud’s existing image catalog. Since the

image is provided by the cloud, it already has the OS

and management tools properly configured. However,

the new VM’s kernel, software packages, and library ver-

sions may differ from those in the legacy environment.

The challenge then is to run the application properly in

the new VM and put the application under the control of

the installed tools.

Adjust the old VM. This method clones the old VM

from the legacy environment, adjusts the image, imports

it into the cloud, and finally provisions a VM from the

image. The adjustments include changing the kernel, in-

stalling the cloud tools, etc. This method is difficult but

doable, because OS/tool adjustments are a finite set, do

not grow with the number of applications, and hence po-

tentially can be automated. The advantage of this method

is that, unlike a new VM, the adjusted VM already con-

tains the application binary and configuration, which makes

application migration easier.

3.2 Application Migration

We identify four methods for application migration.

Reinstall application. This method may be the most

straightforward but time consuming approach.

Reconfigure application. This method copies the al-

ready installed application with its full configuration to

VMs in the cloud. It then changes the application’s con-

figuration to make it work in the cloud, e.g., pointing one

component to the new IP address of another component.

The main challenge is that the way of reconfiguration is

application specific and usually involves a lot of undoc-

umented parameters.

Wrap application. This method copies the already in-

stalled application with its full configuration to VMs in

the cloud. Rather than changing the application’s config-

uration, it runs the application in a disguised execution

environment, e.g., by performing network address trans-

lation (NAT) to hide the change of IP address.

PseudoApp. This method provides a quick and reliable

way of estimating the application’s performance in a tar-

get cloud. See Section 3.3.4.

3.3 Migration Solutions

Each cell in Table 1 represents a full migration solu-

tion. The solutions in the “Wrap app” column are ex-

plained separately in Section 4 and Table 2, because they

have many variants.

3.3.1 S1: Complete Reinstallation
This solution provisions a new VM from the cloud’s

existing image catalog and then installs the application

starting from scratch. This may be the most straightfor-

ward but time consuming approach.

3.3.2 S2: Get a New VM & Reconfigure App
This solution 1) provisions a new VM from the cloud’s

existing image catalog, 2) copies the already installed ap-

plication with its full configuration from the legacy envi-

ronment to the new VM, and 3) changes the application

configuration so that it works in the cloud. It may start

the application after chroot so that the application per-

ceives the illusion of a file system identical to that in the

legacy environment.

3.3.3 S3: Import the Old VM & Reconfigure App
This solution 1) adjusts the old VM and imports it into

the cloud, and 2) changes the application configuration

so that it works. There is no need to do chroot because

the imported VM has the application binary and config-

uration at the original place.

3.3.4 S4: PseudoApp
This solution does not perform the actual application

migration. It is a tool for a quick and reliable estimation

of an application’s performance in a target cloud. Then a

user can quickly choose the right VM size, estimate the

cost, and decide whether a real migration is worthwhile.

A PseudoApp resembles a real application’s behavior

of resource consumption at the thread level. For each

component (i.e., process) in the real application, the Pseu-

doApp has a corresponding pseudo component. Con-

sider a multi-tiered web application. Processing a web

3



.2

.4

.6

.8

1

 0  30  60  90  120  150  180

R
e

s
po

n
s
e

 T
im

e
 (s
e

c
)

Number of Client Threads

Response Time

Apache
PseudoApp

 0

 5

 10

 15

 20

 25

 30

 0  5  10  15  20  25  30  35

T
h

ro
u

g
h

pu
t(r

e
q

/s
)

Number of Client Threads

Throughput

TPC-W
PseudoApp

(a) Apache vs. PseudoApp (b) TPC-W vs. PseudoApp

Figure 1: PseudoApp’s performance prediction.

request involves a sequence of nested invocations across

multiple distributed components. A vertex in the sequence

represents a processing step on a component, which per-

forms certain CPU computation and/or disk I/O. An edge

in the sequence represents one component calling an-

other component through network.

When the same web request is submitted to both the

real application and the PseudoApp, they produce iden-

tical invocation sequences, with the same order of trav-

eling through different components. Moreover, within a

processing step on a component, they execute the same

order and the same amount of interleaved CPU compu-

tation, disk I/O, and network communication. The only

difference is that, the real application does useful work,

whereas the PseudoApp performs CPU spinning, writes

to files with meaningless data, and sends network mes-

sages with meaningless payloads.

We have adopted the principles of vPath [5] to pro-

file a distributed application and build the corresponding

PseudoApp. vPath can track the precise invocation se-

quence of events relevant to resource consumption. We

have implemented it to trace disk I/O and CPU service

time, and enhanced it to handle event-driven programs.

Due to the space limit, technical details are omitted and

we present the preliminary evaluations of PseudoApp in

Figure 1. We use the profiling data obtained under very

light workloads to construct the PseudoApp for Apache

and TPC-W (a multi-tiered ecommerce benchmark). The

figure shows that PseudoApp is able to accurately predict

the performance under high workloads, even if it never

sees that workload during profiling.

4. WRAP-APPLICATION SOLUTIONS
This section presents migration solutions that belong

to the “wrap app” column of Table 1. These solutions

copy the application with its full configuration to VMs

in the cloud, and then run the application in a disguised

execution environment (e.g., performing chroot and

NAT) so that the application functions properly without

any configuration change.

4.1 Requirements on Disguised Environment
Below are a number of requirements for supporting a

wide variety of unmodified applications in a new runtime

environment.

FR1) The application sees the same file system layout as

that in the legacy environment.

FR2) The application sees the same hostname as that in

the legacy environment.

FR3) The application sees the same IP addresses as those

in the legacy environment.

FR4) When the application performs a DNS lookup for

an old hostname in the legacy environment, it gets the

old IP address associated with that hostname.

FR5) Distributed components of an application see the

same communication endpoints as those in the legacy

environment. Suppose an application has two compo-

nents X and Y . The VM running the component X
uses old-IP-X in the legacy environment, but uses new-

IP-X in the cloud. Similarly, component Y has old-IP-

Y and new-IP-Y. In the cloud, when component X in-

vokes sendto(old-IP-Y), the message is delivered

to component Y , even if Y ’s real IP now is new-IP-Y.

Moreover, component Y sees the message coming from

old-IP-X, even if X’s real IP now is new-IP-X.

FR6) The application can initiate connections to and ac-

cept connections from servers outside the cloud. In the

example above, a server on the Internet can connect to

component X using new-IP-X. Component X can also

directly connect to any server on the Internet.

We classify these requirements into two categories:

1) disguise network communication endpoints (i.e., FR5

and FR6), and 2) disguise file system and everything else

(i.e., FR1–FR4). Each row of Table 2 represents one

method for handling the first category of requirements.

Each column of Table 2 represents one method for han-

dling the second category of requirements. A complete

migration solution combines a method from a row with a

method from a column.

4.2 Disguise File System etc.

chroot. This method 1) provisions a new VM from the

cloud’s existing image catalog, 2) copies the entire file

system of the old VM in the legacy environment to a di-

rectory in the new VM (e.g., /oldroot), and 3) runs

chroot /oldroot before starting the application. The

application treats /oldroot as its root file system, which

is identical to what it sees in the legacy environment.

This simple method does not meet requirements FR2–

FR4, but it is sufficient to make certain applications work,

assuming they have only file system dependency and no

other dependencies.

OS Container. To deliver a more faithfully disguised

4



❤
❤
❤

❤
❤
❤
❤

❤
❤
❤

❤
❤
❤
❤

❤
❤
❤❤

Disguise Net. Endpoints

Disguise File Sys. etc. Create New VM Adjust Old VM (SCE+ Rapid Migr.)

chroot
OS Con-

tainer

Misc syscall

manipulation

Nested

VM

OS Con-

tainer
Misc syscall manipulation

Network Address Translation (NAT) X X N/A X X N/A

Virtual Private Network (VPN) X X N/A X X N/A

Network syscall manipulation XBCC XBCC XBCC N/A XBCC XBCC:BlueCoat/Camouflage

Cloud provider enabled VPC/SDN X X N/A X X N/A

Table 2: Wrap-application solutions. Each checkmark Xrepresents a valid solution, by combining a method

from a row with a method from a column.

environment, this method creates in the VM an OS-level

container (e.g., LXC 3), configured with the old host-

name (FR2), the old IP addresses (FR3), and /oldroot

as the root file (FR1). By manipulating /oldroot/etc

/hosts, it can return proper DNS lookup results (FR4).

Misc syscall manipulation. A traditional OS container

is ill-suited for application migration. Its complexity mainly

comes from enforcing security and performance isola-

tion, which is not needed at all in application migra-

tion, because each VM runs only one container. A dra-

matically simpler approach is to just intercept and ma-

nipulate a few syscalls that are of interest to applica-

tion migration, e.g., uname() for hostname (FR2), and

ioctl(SIOCGIFFLAGS) for IP addresses (FR3). It

can use chroot to provide a disguised file system (FR1),

and manipulate /oldroot/etc/hosts to return proper

DNS lookup results (FR4).

Nested VM. Running an OS container in a VM is one

form of nested virtualization. Nested VM [2] goes even

one step further. This method 1) provisions a new VM

from the cloud’s existing image catalog, which has the

cloud required kernel and management tools, and 2) runs

the old VM from the legacy environment as a nested

guest VM inside the cloud VM. Users have the control

over the nested hypervisor so that they can have VM

management capabilities. On the other hand, it also has

several major drawbacks: 1) highest runtime performance

overhead among the solutions, 2) hard to deploy since

no off-the-shelf implementation is available, and 3) in-

creased post-migration maintenance cost, e.g., patching

both the cloud VM and the nested VM.

Adjust the old VM. This is the method described in Sec-

tion 3.1. The adjusted VM’s file system is almost iden-

tical to that of the original VM, and hence there is no

need to perform chroot before starting the application.

Requirements FR2–FR4 can be met using either the “OS

Container” method or the “Misc syscall manipulation”

method described above.

4.3 Disguise Network Comm. Endpoints
The network communication discussed in Table 2 can

3http://lxc.sourceforge.net/

be disguised with or without the assistance of a cloud

provider. The first three methods listed below do not re-

quire the assistance from a cloud provider.

Network address translation (NAT). To support FR5,

for communication between two components of a dis-

tributed application, it needs to perform both source NAT

(SNAT) and destination NAT (DNAT) on both endpoints

(VMs running the application). Linux iptables sup-

ports both SNAT and DNAT, but it only allows SNAT for

forwarded packets and disallows SNAT for packets that

originated from an endpoint itself. FR5, however, re-

quires the latter. It can be supported by adding a custom

NetFilter kernel module like that in Zap [4] or hooking

up NAT with an OpenFlow-like method which performs

directory lookup for appropriate address translation.

Virtual Private Network (VPN). Instead of doing ad-

dress translation, this method runs a VPN client in a VM,

and forms a VPN among the components of a distributed

application (encryption and authentication provided by

VPN can be disabled for our purpose to reduce over-

head). An off-the-shelf example is OpenVPN.4 Typi-

cally, traffic between VMs is routed through the VPN

server, which can impact performance. An alternative is

to use dynamic multipoint VPN (DMVPN) so that end-

points can communicate directly.5

Network syscall manipulation. This method works at

the syscall level to provide the illusion of a different IP

address. Unlike NAT, it never makes any change to IP

packets. See Section 4.4 for details.

Cloud provider enabled virtual private cloud (VPC).

This method differs from the VPN method above in that,

the VPC is implemented at the hypervisor level or net-

work infrastructure level, rather than at the VM level.

One example is Amazon VPC.6 Though the internals of

Amazon VPC are not published, there are many ways of

implementing VPC. A VPC can use a VLAN to connect

a customer’s VMs and use a gateway to connect to the

outside world. A VPC can also be implemented using

software defined networking (SDN) in conjunction with

4http://openvpn.net/
5https://en.wikipedia.org/wiki/Dynamic Multipoint Virtual Pri
vate Network
6http://aws.amazon.com/vpc/

5



VLANs, VxLANS, GREs, mGREs, VPNs, or DMVPNs.

4.4 AppCloak
Due to the space limitation, we do not present the de-

tails of every solution in Table 2. We instead focus on our

solution AppCloak, an OS-level container where legacy

applications run without any modification. It intercepts a

small set of syscalls and manipulates parameters and/or

return values to meet the requirements of FR2, FR3, FR5,

and FR6. Syscall interception can be implemented through

kernel modification, ptrace, or intercepting the cor-

responding libc wrapper functions via LD PRELOAD.

We prefer LD PRELOAD because it is easier to deploy

than kernel modification and more efficient than ptrace.

To give the application the illusion of the old host-

name, AppCloak intercepts uname() and returns the

old hostname (FR2). AppCloak also intercepts

ioctl(SIOCGIFFLAGS) and returns the old IP ad-

dresses (FR3).

AppCloak performs NAT at the syscall level rather

than at the network layer. Suppose an application has two

components X and Y , using old-IP-X and old-IP-Y be-

fore the migration, and using new-IP-X and new-IP-Y af-

ter the migration. Because old-IP-Y is stored in X’s con-

figuration file, X still attempts to invoke

connect(old-IP-Y) to establish a connection with

Y . AppCloak intercepts this and asks the OS to perform

connect(new-IP-Y) instead.

When X invokes getsockname(), AppCloak re-

turns old-IP-X. When X invokes getpeername(), Ap-

pCloak returns old-IP-Y. Similarly, when Y invokes

getsockname(), AppCloak returns old-IP-Y. When

Y invokes getpeername(), AppCloak returns old-IP-

X. Therefore, X and Y perceive the same communica-

tion endpoints as those in the legacy environment.

AppCloak also does address translation for accept(),

bind(), sendto(), recvfrom(), etc. However,

when X connect() or sendto() a real IP address

that should not be translated, e.g., an IP address outside

the cloud, AppCloak just passes it through.

AppCloak has multiple advantages. First, it is easy to

deploy, as it is a light-weight, user-level solution. Sec-

ond, it is efficient. It does not inspect network pack-

ets, and does not even intercept the most frequently used

syscalls for network communication, including read(),

write(), send(), and recv(). Finally, migration

with AppCloak is easy. It does not require time consum-

ing reinstallation or reconfiguration of the application.

5. RELATED WORK
Zap [4] is the closest to AppCloak. It is an OS con-

tainer that supports live process migration. It relies on

a kernel module to perform NAT and migrate the ker-

nel state. It assumes that the migration source and des-

tination have similar environments, e.g., nearly identi-

cal kernel versions and a shared network file system for

hosting application data. AppCloak’s user-level imple-

mentation is much simpler than Zap, because AppCloak

does not target live migration. AppCloak supports mi-

gration between more heterogeneous environments, e.g.,

para-virtualized vs. vanilla kernels.

Darwin [7] is a tool capable of migrating applications

across different platforms. It takes the reinstallation ap-

proach but uses the configuration discovered in the old

environment to guide the installation and configuration

in the new environment. It can only migrate software for

which it has built-in knowledge.

6. CONCLUSION AND FUTURE WORK
We presented the problem of application migration into

cloud, and developed a taxonomy of migration techniques

based on which software components to migrate and how

to handle network and file system encapsulations. We

found that these solutions have different challenges and

trade-offs. In addition, we proposed AppCloak, a tech-

nique for running a legacy application in a cloud with-

out modifications, and PseudoApp, a technique that as-

sesses an application’s performance in a cloud without

installing the real application.

For future work, we plan to evaluate and compare the

different migration solutions on a wide variety of real

applications. Clearly, no one solution has the absolute

advantage over all the others. It is important to identify

a sorted list of environment factors that are “sensitive” to

applications, i.e., their changes are likely to break appli-

cations. This helps evaluate whether a migration solution

addresses those sensitive factors.

More experiments are needed to evaluate each solu-

tion’s impact on the post-migration maintenance of the

VM and application. For example, it is unclear whether

“chroot+AppCloak” would cause issues for application

upgrade, system library upgrade, or distro upgrade.

The complexity can be avoided if the cloud provider

builds full migration support into the cloud. The design

of such a cloud is still an open question. Ideally, the

cloud should 1) require no changes to an imported VM

except installing cloud management tools, 2) support net-

work communication for an imported VM even if it uses

its old IP address, and 3) enable the cloud management

tools to work properly, even if they function under the

VM’s old IP address, hostname, and other legacy states.

7. REFERENCES
[1] Amazon Elastic Compute Cloud.

http://aws.amazon.com/ec2/.

[2] M. Ben-Yehuda, M. D. Day, Z. Dubitzky, M. Factor, N. Har’El,

A. Gordon, A. Liguori, O. Wasserman, and B.-A. Yassour. The

turtles project: design and implementation of nested

virtualization. In Proceedings of the 9th USENIX conference on

Operating systems design and implementation, OSDI’10, pages

1–6, Berkeley, CA, USA, 2010. USENIX Association.

[3] IBM SmartCloud Enterprise Plus. http://www.ibm.com/

services/us/en/managed-cloud-hosting/.

6



[4] S. Osman, D. Subhraveti, G. Su, and J. Nieh. The design and

implementation of zap: a system for migrating computing

environments. SIGOPS Oper. Syst., 36(SI):361–376, Dec. 2002.

[5] B. C. Tak, C. Tang, C. Zhang, S. Govindan, B. Urgaonkar, and

R. N. Chang. vpath: precise discovery of request processing paths

from black-box observations of thread and network activities. In

Proceedings of the 2009 conference on USENIX Annual technical

conference, USENIX’09, pages 19–19, Berkeley, CA, USA, 2009.

[6] V. Tran, J. Keung, A. Liu, and A. Fekete. Application migration to

cloud: a taxonomy of critical factors. In Proceedings of the 2nd

International Workshop on Software Engineering for Cloud

Computing, SECLOUD ’11, New York, NY, USA, 2011. ACM.

[7] C. Ward, N. Aravamudan, K. Bhattacharya, K. Cheng, R. Filepp,

R. D. Kearney, B. P. andk Larisa Shwartz, and C. C. Young.

Workload migration into clouds challenges, experiences,

opportunities. In IEEE CLOUD, 2010.

7


