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Abstract :

Within the retail sector, refrigeration accounts from between 30% to 60% of a store’s total

electrical energy budget (Ref 1 Tassou et al 2011), where the most commonly used method

in providing the necessary cooling energy to refrigeration cases is through multiplex direct

expansion systems. Here all shop floor refrigeration cases use direct expansion air-refrigerant

coils that are connected to banks of system compressors located in a remote machine room

normally in the back or on the roof of the store, along with the supporting air-cooled

condenser rooftop units. As a consequence of the highly regulated nature of the refrigeration

process itself, driven by business legal requirements, coupled with the need to maintain

proper food quality levels, underlying fridge control parametric data is as a result, both very

rich in content and readily accessible. In data volume terms with individual cases being

sampled typically every 5 minutes, this is estimated to generate upwards of 70-100 million

discrete pieces of relevant control point data for a typical large size store, in a single year.

Therefore this paper, through a series of examples from data taken for actual stores from a

large retailer, explores the value (economically and technically) of acquiring, harvesting, and

applying big data aggregated statistical approaches to this large data set, to help the domain

experts to deepen their knowledge of actual refrigeration case behaviour. It is shown that the

followon energy savings from the knowledge gained from this data analytics approach can be

significant, with one such project alone, relating to a defrost policy change, singularly

capable of delivering over 2.5% saving in overall store energy usage. (Ref 2 :

ComputerScope Article 2013 ). It is further presented, that through a set of followon

developed engineering driven key performance indicators (KPI’s) taken from this readily

available parametric data set, that this new insight will not only allow for additional energy

saving through realtime case anomaly detection, but also has the potential to positively

impact on the direction of future maintenance support models, supplementing traditional

preventative/reactive methods with cost effective data analytics driven predictive

maintenance approaches.
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1.0 Introduction

The basis of this paper publication has come from a collaboration project between IBM

Research Labs in Dublin and Tesco Regional Energy Management team where a feasibility

study was commenced in early 2013 around the effectiveness of applying big data (Ref 3

Ward et al 2013) analytics on the energy demand side of Tesco’s case refrigeration estate in

Ireland and the UK. Tesco has, over the past number of years, invested heavily in their IT

infrastructure in support of their business operations, and while this has yielded significant

returns already on the energy management side, it was felt that they had still not yet exploited

the full value from their comprehensive data warehousing efforts to date. Therefore, the

initial project objective was to identify and target a specific high volume data set within

Tesco’s data model where a big data analytics methodolgy could be applied to demonstrate to

Tesco the business value and savings impact of applying such an approach.

Given that it is estimated that refrigeration alone accounts for nearly 9% worldwide

consumption of energy (Ref 4 Bertoldi et al 2003), where in the US alone this equates to a

commercial refrigeration energy footprint of the order of 300 Twh per year (Ref 5 Goetzler

et al 2009), one can see the obvious value in focusing project efforts in this area. The other

main reason for choosing refrigeration was the availability and richness of the underlying

fridge parametric datasets brought about by not only the highly controlled nature of the

refrigeration process itself, but also the additional need for mandatory archiving of fridge data

in support of food safety EU legislation (Ref 6 EU Food Standard). It is estimated that for a

typical store, anything from between 70 million to 140 million discrete records are generated

annually, when archived 5 minute fridge parametric data is taken into account.

And while there are already well established methods and standards for performance testing

of Refrigeration Cases (Ref 7 EU Fridge Test Standard), the demonstrated descriptive

statistical approach taken here in this paper, through the presentation of a series of base level

sample case refrigeration KPI’s, offers an equally effective way in conducting ongoing

performance monitoring of the fridge estate, while additionally achieving a significant

positive impact on energy usage and maintenance support levels within the estate.

Furthermore, while the initial study focused on 8 stores covering the complete generic High

Temperature (HT), and Low Temperature (LT) refrigeration case types, that subsequently

generated over 500 million discrete records, this paper for simplicity focuses on selected

examples within the store study group, and specifically on just one of these LT Freezer case

types, namely the subgroup generically referred to as Full Glass Door Case (and within the

figures labelled as FGDC). Confining the scope to a single subgroup has the additional

benefit of allowing for proper peer-to-peer case and store-to-store performance comparisons

given the similar nature and function of the LT cases within the store.

Equally, because this paper focuses on the output value of the big data aggregation exercise,

there is no presented detail around the necessary data acquisition and data pre-processing

steps of the project itself. Suffice to state that once the parametric raw data sources are
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properly located (or connection to the data source established), that the underlying time series

data object set is verified and quality assured, and that the data processing sequence is

appropriately scripted, the followon consumption and appropriate output KPI reporting of the

initial raw data per store becomes a relatively quick exercise1

1
Per KPI, a store’s annualised 70 million per 5 minute records are fully preprocessed on an IBM X Series

rack server with multicore Intel processors, within 10 seconds

The standard Parametric Data Object List chosen for the study that forms the basis of this
sample KPI generation set and subsequent aggregation analysis is presented in Table 1 below.

Table 1 : Sample Case Refrigeration KPI Summary

2.0 Analytics Methodology

The following section outlines the analytics approach taken through the presentation of a

some sample KPI’s and a series of illustrated examples that demonstrate the value and

additional engineering insight gained through this KPI application when applied to the

historical object data sets defined in Table 1, for some sample store datasets.

2.1 KPI 1 : Monthly Average Defrost Event Aggregation

KPI 1 Monthly Average Defrost Event Aggregation – This KPI is defined as the observed

average number of daily defrost cycles within a month where defrost cycle is based on

appropriate defrost status flag declarations within the provided standard case parametric

set.

The most basic and commonly used defrost control strategy for supermarket applications is

the scheduled timed defrost. By aggregating all scheduled defrost events within a 12 month

period for individual cases it is possible to quickly identify background defrost policy

adherence and anomalous case behaviour. In Figure 1, in Store 1 below, examples of large
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variation in daily defrost averages can be seen to exist across cases, averaging from between

2 and 6 defrost cycles per day, prior to March 2013, from which point standardisation to 2

defrost cycles were adopted on an interim basis. Similarly for Store 2, in Figure 1, it can be

seen the move to defrost cycle standardisation was executed in late 2012, where all cases

went to a single defrost per day, and in fact has now finally been recommended as the

standard defrost policy for all FGDC cases within the estate, again as a result of this project

effort.

Figure 1: Monthly Defrost Events Average Summary Plot

2.1.1 KPI 1 : Estimating Monthly Defrost Policy Change Energy Saving Example

An additional advantage of using a KPI aggregation approach applied to the data set, is that

when coupled with available actual instore energy submetering data, it is possible to both

estimate and subsequently verify the savings potential of any changes made within the

project. So taking the defrost event KPI and analysis as an example, it is possible to estimate

the energy saving potential and subsequent impact of the unilateral LT Case defrost schedule

policy change executed in Store 2 in November 2012, and as discussed in the previous

section, and as observed in Figure 1 above.

Figure 2(a) : Store 2 LT2 Compressor/Condenser Pack Metered Energy Snapshot

Start 14
th

Nov
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Figure 2(b) : Store 2 REF 1 Overall Refrigeration Case Metered Energy Snapshot

Figure 2 shows snapshots of the actual relevant daily store sub meter output plots around the

defrost policy change period, with the relevant Supply Side Compressor/Condenser Pack

labelled LT2 in Figure 2(a), and the relevant Demand Side case energy usage, labelled REF 1

in Figure 2(b), which meters all the case energy used within the store. In this Figure 2(b) it

can be clearly seen the step change seen from the 14th of November which was exclusively

due to the defrost electrical resistive heater load reduction on the LT cases, with the unilateral

move from 4 to 1 daily defrost cycles.

Table 2 : Defrost Policy Change Energy Savings Calculations

And so, it is possible, as is summarised in Table 2, to make energy saving estimates from the

defrost policy change by combining the defrost cycle KPI aggregation (pre and post policy

change) and relevant available underlying submeter data as previously presented in Figure 2.

Furthermore, data driven estimates of energy usage per defrost cycle could now be

Start 14
th

Nov
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established beyond previous published model driven defrost cycle energy usage estimates

(Ref 8 Fricke et al 2010), where the overall total (direct and indirect) annualised electrical

energy usage footprint per defrost cycle for the store’s LT 2.64 meter long cases, was

estimated to be just under 1 Mwh per cycle per year.

And again from Table 2, it can be seen that by rolling up the subsequent energy savings from

the defrost policy change to the store level, it is estimated to yield a conservative overall

2.5% reduction in store energy usage, and this compares favourably to the actual confirmed

annualised store metered 2013 energy reductions of 4.5%, where separate additional energy

saving initiatives executed within the year contributed to the overall impressive year-on-year

energy savings.

2.2 KPI 2 : Monthly Average Defrost Duration Estimate

KPI 2 Monthly Defrost Duration Estimate – This KPI is based on defrost flag analysis and

estimating the time period from defrost flag transition (time between transition defrost flag

going 0 to 1 at start of defrost, and transition of defrost flag going 1 to 0)

By defining this KPI, and attempting to aggregate defrost duration estimates over the months,

it is possible to establish baseline case defrost durations, that allow not only for within store

case-to-case comparison and detection of anomalous case behaviour, but also to detect store-

to-store variation, as can be seen in Figure 3 in Store 1 and in Store 2, where significant

differences in average defrost duration estimates are clearly apparent. Additionally among

other valuable uses for this KPI, it is possible, by plotting monthly defrost durations

aggregations, to detect defrost average duration drifts over time, where detecting such

continued month-to-month average time degradation could be an early indicator of either a

defrost heating problem or possible ice buildup conditions in the case evaporator coil.

Figure 3 : KPI 2 Defrost Duration Summary Plot



7

2.3 KPI 3 : Defrost Termination Setpoint Attainment using S5 Temperature Sensor

KPI 3 Defrost Termination Setpoint Attainment – This is an ongoing post project KPI

development and is defined for now as a simple daily assessment of individual cases

achieving their S5 termination temperatures within a store.

The availability of S5 Defrost Temperature Sensor data was considered critical to

understanding defrost performance within the LT cases. Not all inspected LT FGDC cases

were found to have S5 probes correctly positioned1, or reporting externally (and as a

consequence there was limited archived data for analysis for the project). In fact over the

project lifetime, one of the significant findings of the work was that, in general, incorrect S5

probe positioning leads to excessive energy usage and case downtime scenarios due to

unpredicted evaporator coil icebuild up events.

Figure 4 below shows the average of the daily defrost termination temperature for Store1 and

while some cases show varying daily termination temperatures probably related to sampling

frequency, there is a clear pattern observable in the separation between cases achieving

average defrost termination temperatures of greater than 5 degrees, and those closer to 0

degree C average termination temperatures. Subsequent physical inspection of the evaporator

coils show good correlation between S5 defrost setpoint attainment and condition of the

evaporator coil with respect to ice buildup. In Figure 4 for cases s001, s003, and s005 where

S5 termination temperatures never exceeded 0 degrees, followup physical inspections were

found to show significant icebuild on the coils, or minimally show signs of commencement

of ice buildup around the S5 probe area.

1
Best practice state that S5 probe is positioned in the coldest part of the evaporator (Ref 9 KER Therm

Solutions 2012) – by extension because most cases are made up of multiple coils, the single case S5 probe is

best positioned as close to the Expansion Valve inlet of the case as possible. This approach allows for better

early warning of potential ice-up conditions, where the first signs of ice-up will occur at the coldest part of the

case, that being towards the Expansion Valve inlet side of the case.

Figure 4 : Defrost Temperature Setpoint Attainment Summary Plot
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2.3.1 KPI 3 : Monitoring Ongoing Reference Case Defrost Behaviour Example

Within the project, as a followon exercise, a reference case s022, in Store 1, which was

initially detected and found physically as having significant ice buildup on its evaporator coil,

went through a complete maintenance program cycle in preparation of reference case

declaration. In this exercise the case coils were fully de-iced, and its S5 probe mounting and

position validated as per previous commentary. From there the case defrost termination

temperature was closely monitored, and in parallel had regular physical inspections of the

coil for the following 3 month period for signs of significant ice buildup on the coils. Figure 5

shows that ongoing plot of Case s022 daily defrost termination temperatures and setpoint

attainment analysis, where the continued regular physical coil inspections confirmed the

expected continued ice free conditions, and thus validating the criticality of S5 data, and the

good correlation between high S5 temperature attainment and proper ice free condition of the

evaporator coil.

Figure 5 : Defrost Temperature Setpoint Attainment Summary Plot

2.4 KPI 4 : Post Defrost Average Pull Down Duration Estimate

KPI 4 Post Defrost Average Pull Down Duration Estimate – This developed KPI is a

summary of recovery or pull down time for the case after defrost, and is based on an estimate

of time from end of defrost status condition to S4 achieving an arbitrary -20 deg C

This KPI was considered a good indicator of overall evaporator coil condition and case

performance, where any deterioration of case aggregate recovery time (or in fact in the rate of

recovery) observed over time, can be an early warning of coil efficiency degradation. Figure

6 below shows the varying pull down time monthly aggregations for Store 1 and Store 2

respectively, where it can be clearly seen that case s004 in Store 1 shows continued poor

aggregate monthly pull down time with respect to its peers, and where case s060 in Store 2

showed ongoing month-on-month deterioration in aggregate pull down times. Both these
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anomalous cases were subsequently found to have significant coil ice buildup on physical

examination showing the positive correlation between poor pull down times and ice buildup

levels on the coils, and thus helping to validate again the potential value of the generated KPI

with respect to case performance degradation indicators.

Figure 6 : Post Defrost Pull Down Time Summary Plot

2.5 KPI 5 : Steady State Case Monthly Temperature Control Performance

KPI 5a and KPI 5b Steady State Case Monthly Average Temperature Control Performance

– This KPI is simply an aggregation of the S4 Air Off (KPI 5a), and S3 Air On (KPI 5b)

temperatures over the month during the defined steady state period, from post defrost end of

pull down to beginning of next defrost cycle.

While this subset of KPI’s are built around the fundamental temperature control performance

metrics for the cases, as can be seen from some examples given in Figures 7 and 8 below,

they can still be very useful indicators of continued case performance when aggregated over

time, to help identify anomalous case behaviour with respect to energy usage and possible

energy saving opportunities within the estate.

Furthermore, descriptive statistical KPIs manipulating variants of the available S3 and S4

data, can also be considered here, like using Calculated Product Temperature (CPT which

uses an S3 and S4 temp ratio, normally 50:50 to calculate an actual shelf product

temperature) aggregation, to highlight any possible food health and safety considerations, and

delta T, the difference in the S3 and S4 aggregated temperature to highlight case energy

usage anomalies, with respect to in store case peer-to-peer temperature control performance,

have also shown to be of value.
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2.5.1 KPI 5a - S4 Air Off Average Temperature Analysis Example

S4 Air Off is the temperature of the air leaving the evaporator coil that is subsequently

circulated through the case for product refrigeration at the appropriate setpoint temperature.

For KPI 5a, plotting of case S4 monthly average temperatures, as in Figure 7 below, for

Stores 2 and 3, one can clearly see both the large store-to-store monthly average temperature

variation, as well as in store case-to-case variation. A significant portion of this variation is

due to the fact that S4 is one of the few critical control levers available to the Fridge Engineer

to make overall temperature adjustments to the freezer environment (and quickest to resolve

warmer control temperature issues) when responding to high temperature alarm callouts,

which causes cases to drift from case policy temperature setpoints over time. Having the

ability through this type of analysis to quickly identify anomalous cases, for example s009,

and s016 in Store 3 which are clearly operating at too cold an S4 temperature, represent

significant energy wastage events and saving opportunity when identified and resolved in a

timely manner, demonstrating just one example of the value of such a KPI when applied to

the S4 Air Off monthly aggregated data

set.

Figure 7 : S4 Air Off Monthly Average Temperature Summary Plot
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Figure 8 : S3 Air On Average Temperature Summary Plot

2.5.2 KPI 5b - S3 Air On Average Temperature Analysis Example

S3 Air On Temperature which represents the returned circulated air within the LT FGDC
case is an indirect indicator of the amount of cooling demand present within the case, with
warmer S3 values an indicator of increased case demand (due to possible product restock, or
prolonged door opening times, or excessive air ingress due to a door seal problem). Unlike
S4, S3 is not directly controllable and as a result can be effectively used as a useful indicator
of overall case environmental conditions. For example drifting in S3 aggregate values over
time as observed with case s014 in Store 3, and case s060 in Store 2 in Figure 8 above, can be
indicators of air circulation problems within the cases, where there may be restriction of
airflow across the coil (due to a possible fan failure or ice build up) which causes warmer S3
values. This in can in turn can accelerate case iceup conditions as can be seen when
comparing comparable monthly S3 and S4 values in Figure 7 and Figure 8 for case s014 in
Store 3, whereas expected S4 values are being pulled downwards excessively to compensate
for the warmer S3’s in order for the case to maintain ongoing setpoint temperature control.
Another likely cause for warmer S3 temperatures over time in the LT FGDC cases may be
due to excessive door opening times, although given the observed normal behaviour of this
activity (Ref 10 Fricke et al 2011), it is unlikely to be the cause of any systemic movement
in average S3 temperatures.

3.0 Conclusions

There is significant value to be gained from the harvesting and analysing of the readily
available standard refrigeration case parametric data, as a means of validating of case
refrigeration performance, and to help in identifying case anomalies against standard policies
and control strategies within the refrigeration case estate.

The potential for overall energy, CO2, and cost savings can be very substantial indeed when
one considers just the impact of implementing one of the project recommendations based on
single defrost cycles, which yielded a 2.5% overall energy saving, and that if applied to the
wider retail sector refrigeration estate, has the potential in the US alone to save multiple
Terrawatthours annually.

And not only will this deeper knowledge yield significant energy savings in the short term,
but can also lead to a positive wider impact on future fridge control strategies. For example,
by implementing appropriate best practice positioning of S5 defrost sensor, and making the
data available near realtime, will lead to improved case performance, and implementation of
more effective and consistent defrost strategies across the estate.

Also it has been shown that with when appropriately defined KPI’s are applied to the
underlying refrigeration parametric dataset it is possible in many cases to accurately predict
impending refrigeration case failures with respect to one of the biggest causes of freezer case
downtime, and associated loss of sales, that of excessive ice buildups within the evaporator
coils. Having the ability to predict and prevent failures and subsequent loss of sales, through
this low cost KPI analysis approach should be considered a useful addition to augment
current maintenance support strategies.
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