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1 Introduction

As the number and type of sensor deployments on water distribution networks (WDNs) increases,
there is an opportunity to use the sensor information to improve the management and operation
of the network.

Several techniques have been proposed in the literature to exploit data coming from
pressure/flow sensors in order to provide an initial guess for the location of the leaks within a
water network, thus reducing the time required by physical exploration. Most of the proposed
methods are based on the analysis of residuals between the sensor data and an estimate
calculated from prior knowledge of the nodal demands (Vento, 2009; Perez et al., 2010; Gertler
et al., 2010). An integration of the residual analysis with state estimation, where the demands
are estimated from the sensor data, was also proposed in (Andersen et al., 2000; Fusco et al.,
2012). In (Wu, 2008; Wu et al., 2010), an optimization-based technique was proposed, where
the leakage at the nodes is estimated by minimising the residuals between sensor data and
model prediction, using genetic algorithms. Existing techniques, however, are not reliable in
practical setups characterized by sparse sensors and may produce misleading diagnosis, with
high rates of false positives or false negatives. Even though more sensors are going in all the
time, in fact, the number of sensors is still usually small compared to the number of nodes in a
skeletonised system model.

In this paper, tools based on state estimation and bad data analysis, popular in the power
systems industry, are combined with factor analysis into a new method for detecting flow
anomalies in water systems. A key feature of the new technique is an aggregation scheme
whereby detected anomalies are mapped to a sub-graph of the network consistent with the
density of sensors. This mapping contrasts with reporting anomalies for a single node when
such resolution is not justified by the measurement density. The size of the flow anomaly is
estimated along with its uncertainty to support decisions on possible corrective actions.

The proposed methodology, along with some background on state estimation and bad data
analysis, is detailed in section 2. Both real and semi-synthetic results, on a real municipal DMA,
are presented in section 3. Final comments are then given in section 4.

2 Methodology

The proposed method for the localisation and estimation of leaks is based on state estimation
and bad data analysis, which are the typical tools in power systems for the identification and
estimation of anomalous errors in measurement data. In a power network, as well as in a WDN,
a set of m measurements, y ∈ Rm, can be expressed, in steady state, as functions of a minimum
independent set of n variables, x ∈ Rn, which fully specifies the state of the system:

y = h(x) + ε. (1)
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In (1), the noise term ε is included to model the uncertainty in the observations, due for example
to sensor noise, and it is typically considered to be zero-mean, white and Gaussian with diagonal
covariance matrix Σ.

The model h(·), in (1), is a mathematical description of the system which expresses any
physical variable of interest as a function of x, which is referred to as the state of the system. The
choice of the minimum set of n independent quantities composing x is not unique. In a WDN, for
example, the nodal demands could be chosen as state variable, since they allow the calculation
of all the flows and pressures, based on mass conservation and and head-loss equations (as
in a hydraulic simulation software). Note that, if loops are present, an explicit algebraic function
relating pressures to demands cannot be found. An extension of the state variable and of the
measurement set, to include some pipe flows, is required for the representation in (1) to be
possible, as detailed in (Andersen et al., 2000) and (Fusco et al., 2012). In the following, without
lack of generality, x represents the set of nodal demands and n is the number of nodes in the
network.

Based on an estimate of the state, calculated from the available measurements, the objective
of bad data analysis is to identify and possibly estimate anomalous errors ε, which do not belong
to the expected distribution. Some background on state estimation and bad data analysis is given
in sections 2.1 and 2.2. The reader is referred to (Abur et al., 2004) and (Monticelli, 2000), among
others, for extensive reviews on the topic.

2.1 State estimation

State estimation is the process of using (1) and the measurements set to reconstruct an estimate,
x̂. State estimation is typically solved by minimisation of the weighted least squares (WLS) error:

min
x
J(x) = [y − h(x)]T W [y − h(x)] , (2)

through the following iterative scheme:

x̂k+1 = x̂k + (HT
kWHk)

−1HT
kW [y − h(xk)] . (3)

In (2) and (3), W ∈ Rm×m is a diagonal weighting matrix and Hk ∈ Rm×n is the Jacobian matrix
of the model h(x), evaluated at x̂k. In a statistical setting, the weighting matrix is typically chosen
as W = Σ−1, where more weight is given to less uncertain measurements.

Note that it is necessary, albeit not sufficient, that enough measurements are available, m ≥
n, to make (HT

kWHk)
−1 invertible and the state estimation solvable.

2.2 Traditional bad data analysis

The detection and identification of bad data is based on the analysis of residuals, r ∈ Rm,
defined as the difference between the measurements, y, and their estimation, h(x̂), based on a
state estimate :

r , y − h(x̂). (4)

For small deviations, (4) can be linearised to:

r = Sε, (5)

where S ∈ Rm×m is termed the residual sensitivity matrix and it is given by:

S = I −H(HTΣ−1H)−1HTΣ−1. (6)

In (6), I ∈ Rm×m is the identity matrix andH is the Jacobian of the model h(x), evaluated around
the state estimate, x̂.
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Based on (5) and on the assumptions about the distribution of the measurement error ε, the
residual is distributed as a zero-mean Gaussian variable with covariance matrix given by:

Ω = SΣ. (7)

Therefore, if no anomalies are present, the normalised residuals, defined as:

rNi ,
|ri|√
Ωii

i = 1, . . .m, (8)

have a zero mean and unitary standard deviation.
A statistical test can therefore be designed on the normalised residuals:

|rNi | ≥ Cα, (9)

to decide whether the measurement yi is affected by anomalous error. The choice of the
threshold Cα depends on the desired level of confidence, α (rate of expected true positives),
and it is evaluated from the properties of the Gaussian distribution. As an example, a value of
Cα = 3 corresponds to α ≈ 99.7%.

A naive method for bad data identification, which we will refer to as Normalised Residual
(NR), flags as bad data all measurements for which the test in (9) is true. An estimate of the
anomalous error is given by the residual itself.

A single error, however, can affect many residuals, based on (5). A slightly more advanced
method, named largest normalised residual (LNR), has been proposed. In LNR, only the the
maximum rNi is tested. If the test is positive, the corresponding measurement is flagged as
anomalous, a new state estimate is calculated after removing such measurement and the
procedure is repeated. The method stops when the statistical test in (9) is negative on the
largest normalised residual, or when m − n bad measurements have been found, after which
there are not enough measurements left to solve the state estimation. Again the residuals give
an estimate of the anomalous errors.

In the presence of multiple bad data, LNR may fail to correctly identify the erroneous
measurements. An alternative, more effective method, called hypothesis test identification (HTI)
was therefore proposed by (Mili et al., 1988), where the residuals are decorrelated before the
diagnosis. In HTI, the observations are partitioned in suspect, ys, and true, yt, measurements,
based on the value of the corresponding normalised residuals. The residuals are also
partitioned accordingly: [

rs
rt

]
=

[
Sss Sst
Sts Stt

] [
εs
εt

]
. (10)

By assuming that εt = 0, the error of the suspect measurements is then estimated as:

ε̂s = S−1ss rs, (11)

with covariance matrix ∆ = S−1ss Σs, where Σs is the covariance matrix of εs. A statistical test
similar to (9) is then designed to decide whether the ε̂s are anomalous. The estimate of the error,
in this case is more accurate than using the residual. Again, a maximum of m−n measurements
can be chosen as suspect, otherwise the matrix Sss is not invertible, because the rank of S is, at
best, m− n.

2.3 Application to leak identification

In principle, the method of bad data analysis can immediately be applied to the problem of leak
localisation and estimation in WDNs. Given sensor data measuring flow and pressure at some
pipes and nodes of the network a model of the type in (1) can be written. Additional observations
come from some knowledge of the nodal demands, available from metering infrastructure or,
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more often, from expected consumption patterns (not real measurements but mathematically
similar, possibly with a larger error). By assuming that the pressure and flow measurements
(sensors) are correct, the effect of leakage in the WDN is the same of an anomalous error on
the measured (or expected) demands. Identification and estimation of errors corresponding to
demand measurements, with NR, LNR or HTI, will therefore indicate the size and location of
possible leaks, approximated to the nearby node of the skeletonised model.

In practice, however, most WDNs only avail of very sparse measurements, for example
consisting of the water flow at the inlet and the pressure at a few nodes. It is recognised that, in
cases of low measurement redundancy, many residuals could be strongly correlated, the
corresponding columns in the sensitivity matrix S, given in (5), being linear dependent. As a
consequence, a single error in ε has a similar effect on many residuals, so that it cannot be
uniquely identified. Groups of measurements with highly correlated residuals are termed critical
sets in the literature of bad data analysis and they were studied in (Ayres et al., 1986; Korres
et al., 1991; Fusco et al., 2014) among others. It is clear that traditional methods based on LNR
or HTI, which try to identify the exact erroneous measurement, could give quite misleading
results in this case. In the particular case of leak detection, the presence of critical sets also
means that most traditional methods, by trying to identify the exact location of a leak, could
produce incorrect results. Such methods include optimisation-based techniques (Wu, 2008; Wu
et al., 2010), as well as methods based on residual analysis (Andersen et al., 2000; Perez et al.,
2010; Gertler et al., 2010; Fusco et al., 2012).

In this paper, we propose a solution where strongly-correlated residuals are grouped together
first, and bad data analysis is then performed for each group as a whole, based on an extension
of HTI. Each group can be conveniently interpreted as a sub-graph of the WDN model, so that
bad data analysis produces, for each group, a likelihood of the presence of leakage, as well as
an estimate of the total anomalous water demand. Nothing definite can be said about individual
nodes within the groups. The method is summarised in the following sections, and the reader is
referred to Fusco et al. (2014) for a complete treatment, in the context of power systems.

2.3.1 Clustering residuals in strongly-correlated groups

The clustering of the residuals is based on factor analysis (FA), which is a statistical tool used to
express the covariance relationships among many variables in terms of a few underlying
quantities called factors (Johnson et al., 2007). Base on FA, the covariance matrix of the n
residuals corresponding to the demand measurements, given in (7), is expressed as:

Ω = LLT + Ψ, (12)

where L ∈ Rn×p is the matrix of the factor loadings and p < n is the desired number of factors.
Based on (12), FA approximates Ω with LLT , which spans a space of dimension p. The matrix Ψ
measures the error of the approximation error. Implicitly, the n residuals are being expressed as a
linear combination of p independent factors. The matrix L can be obtained by maximum likelihood
estimation, as implemented in the factoran function of Matlab Statistics Toolbox (Mathworks,
2013), which is used in this paper.

The maximum possible number of factors, p, is given by the rank of Ω, which equals the
rank of S and is exactly given by the sensor redundancy over the size of the state variable, that
is m − n, as explained in section 2.2. We therefore set p = m − n. Note that, by assuming
the pressure/flow measurements are correct (error within the assumed sensor noise) and setting
the focus on leak detection, FA is applied to a subset of the m residuals corresponding to the n
demand measurements, so that it may happen that m−n > n (if we have many sensors!). In this
case we set p = n, which is the dimension of the Ω considered in (12), so that we have as many
factors as residuals and the procedure converges to traditional methods discussed in section 2.2.

The factor loadings lij , elements of L, express how much the residual i loads on factor j.
Residuals loading a lot on the same factor are strongly correlated. Therefore, for each factor, we
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build a cluster of measurements, namelyMk, k = 1, . . . p, such that i ∈Mki if the corresponding
factor loading is maximum in absolute value, that is if |liki | ≥ |lij | ∀j.

2.3.2 Bad data identification in clusters

After clustering the measurement set, we employ a similar procedure to HTI, described in section
2.2. One measurement per each of the p clusters is flagged as suspect. We propose to choose
the one with largest normalised residual, but the result is, in theory, independent on this choice.

Based on the partition in (10), and similarly to (11), an estimate of the error in the suspect
measurements is calculated as:

ε̂s = S−1ss rs. (13)

The matrix Sss is invertible by construction, since each of its columns corresponds to a residual
that is mostly approximated by one of the p independent factors. By similar argument one can
verify that errors in the same cluster are not distinguishable, since Sss would be close to singular.

Very conveniently, and under conditions typically verified in practice, it can be shown that the
error estimate, calculated from (11), is such that:

ε̂i '
1

Sii

∑
j∈Mki

Sijεj ∀i ∈ S. (14)

The result in (14) gives the convenient interpretation of ε̂s as a measure of the total error within
each cluster. In the specific case of leak detection, ε̂s is the total anomalous demand (possibly
leakage) in each group of nodes. Statistical testing, similar to (9), can be designed to decide
whether a leak is present or not, given a certain significance and threshold.

3 Results

To method has been applied to a real-world test DMA in Chapelizod, Dublin city. The DMA
consists of a total of nearly 3.6 Km of pipelines, serving approximately 400 households, modelled
with n = 122 demand nodes and 127 connecting links, as shown in Fig. 3(a). A flow meter at
the inlet, along with five pressure loggers, were available and provided measurement data for 18
days between February and March 2013, sampled at 15 minutes.

While the presence of leakage in the DMA is acknowledged by the water utility, the position
and size of the leaks is not known, and a field investigation could not be carried out in order to
validate the results of our methodology. Before presenting the results on the real test-case, in
section 3.2, the effectiveness of the method is demonstrated on a semi-synthetic example applied
to the same network model, in section 3.1.

3.1 Semi-synthetic example

In order to build a realistic example, a hydraulic simulation of the DMA was run with the nodal
demands given by real smart meter data, available from Dublin City council (collected in a
different DMA). It was assumed that the actual demands were not known, but average daily
patterns were available for each demand node. The demand patterns come from 4 generic
shapes derived from the smart meter data by use of Gaussian mixture models and clustering
techniques, as described in detail in Mckenna et al. (2013), where information about the smart
meter data-set utilised here can also be found. Figure 1 compares the available profile against
the actual demands at two of the nodes, to exemplify the significant amount of uncertainty in the
system.

The total demand in the network peaks about 2.5 L/s. Two leaks were simulated as constant
demands of 0.3 and 0.5 L/s at the two circled nodes in Fig. 3(b), where the position of the
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Figure 1: Example of assumed demands patterns (used as measurements in the state estimation) against actual
demands coming from smart meters, at two nodes of the network (Mckenna et al., 2013).
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Figure 2: Simulated measurements of the: (a) Flow at the inlet; (b) Total head at 5 nodes. A Gaussian random noise
with 0.01 L/s and 0.01 m was applied to model sensor noise.

5 pressure loggers is also indicated by squared boxes. The pressure and flow measurements
were generated from the results of the simulation, by applying a random noise with a standard
deviation of 0.01 L/s and m, respectively, to model sensor noise, and are shown in Fig. 2. The
simulation was run over a 7-days time window and data were sampled at hourly intervals, for a
total of 168 samples.

The state estimation, as described in section 2.1, was run at each of the 168 time steps to
produce an estimate of the nodal demands. Factor analysis of the residual covariance matrix,
obtained from (7) and based on an average of the sensitivity matrix across the whole simulation,
was utilised to cluster highly-correlated demand nodes, according to the methodology outlined in
section 2.3.1. The order of the factor analysis was set to p = m−n = 6, which is the redundancy
of measurements, m = 129 (6 sensors, 123 demand profiles), over the dimension of the state,
n = 123 (123 demand nodes), and represents the degrees of freedoms (rank) of the residual
correlation matrix. Figure 3(a) shows how the 6 resulting node groups are distributed on the
network. It is interesting to note how the clusters are composed of connected nodes, which is
not a constraint of the method, but only an implicit result of the mathematical description of the
system and of how the pressure/flow data are related to the nodal demands.

The residual analysis and error estimation, as outlined in section 2.3.2, is then run for each of
the 168 time steps. In particular, based on (14), the estimated errors represent the total amount
of anomalous demand (possibly leakage) in each group of nodes previously identified. Based on
the evaluation of the covariance of the estimated error, given in (11), the maximum α, such that
a statistical test of the type in (9) gives positive outcome, is evaluated. Such a value of α will give
the confidence that the estimated error represents an actual anomaly (leakage).

Figure 3(b) shows the overall results, averaged over the 168 time steps. An average error
ε̂ ≈ 0.887 L/s, corresponding to a confidence of α > 99%, is evaluated at the red-colored
nodes, corresponding to M3, which actually contains the two leaks of 0.3 and 0.5 L/s. The
rest of the network is flagged as anomalous with low confidence of α < 50% (green-colored
nodes) or α < 30% (black-colored nodes). Given the strong correlation between the residuals
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Figure 3: Scheletonised model of Chapelizod (Dublin, Ireland) DMA: (a) Identified clusters; (b) Output of proposed
leak detection method (ε̂ is the average estimated leakage in groupM3, red color indicates α > 99%). The location
of the 5 pressure loggers is indicated by boxed nodes, while the actual leaks are indicated by circled nodes.
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Figure 4: Average daily pattern of estimated error in each cluster. The error represents the total anomalous water
consumption in each area of the network.

corresponding to the two leaking nodes (they belong to the same cluster), the method declares
them indistinguishable, with the given data (and no method would be able to distinguish them!).

It is also interesting to look at the daily profiles of the estimated errors, where the values at
each time of the day are averaged over the 7 days of the analysis. Figure 4 shows the estimated
daily profiles of anomalous water consumption in each of the 6 clusters. They can be intuitively
interpreted as difference between expected (from consumption profiles) and actual demand
(estimated from the available real-time sensors). At cluster M3 there is a consistent
under-estimation (positive error) of the expected demand, whose cause may likely be a leak
(and it is, in fact). Given the large uncertainty in the demands, however, we can see different
anomalous patterns appearing also in other groups. Their average is usually close enough to
zero, but the daily shape may give indications about significant errors in the expected demand
patterns. Consider, for example, the significant negative error (over-estimation) inM4 at around
11.00 am. If we look at the demand profile in Fig. 1, right-most graph, the smart meter data
clearly indicate that the actual consumption is consistently much lower, just at around 11am,
which may be the cause of the estimated anomaly.

The proposed method, therefore, can be used as a generic tool to investigate mismatches
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Figure 5: Measured in-let flow against aggregated demand (graph on left), based on profiles of the nodal demands
(graph on the right). The shaded area around the aggregated demand represents their ±3 standard-deviations
confidence interval.

between expected and actual water consumption, including but not limited to leakage. The results
are very intuitive and offer themselves to immediate interpretation of the potential source of the
anomaly, since the daily patterns of the estimated error indicate whether they may be caused by
a leak, unexpected peak in demand, or something else.

3.2 Real test-case

The real data available from the DMA under study were also used to run the proposed method,
although, as previously mentioned, a validation of the results in the field was not possible to date.
However, the results are still of some value, in providing insight in other interesting aspects of the
proposed solution.

The data consist of 18 days of measurements of the inlet flow and of the pressure at 5
locations, indicated by squared boxes in Fig. 6(b). Daily profiles of the nodal demands were
also provided by the utility. The given profiles, and their uncertainty (standard deviation) were
calibrated with the available flow measurements, also accounting for an estimated amount of
leakage of 1.2 L/s, independently calculated by the utility. The resulting profiles are shown in Fig.
5 (graph on the right), together with a comparison of the total aggregated demand against the
measured flow at the inlet (graph on the left).

The first interesting result is the fact that, as shown in Fig. 6(b), the methodology identified
only 2 clusters of nodes, given the same sensors as in the example of section 3.1. The reason
behind this behavior is mostly due to the fact that the available model didn’t seem to be well
calibrated, so that there was a significant mismatch between the predicted and measured
pressures. All of the residuals were, therefore, mostly approximated by only two factors, in (12),
due to the high level of uncertainty in the pressures.

Although losing in resolution, the method is still able to come up with a meaningful result, as
shown by the daily profiles of the estimated anomalous water consumption, in Fig. 6(a). The
highest confidence, α ≈ 100%, in the presence of leakage is flagged in M1, and the profile
clearly indicates significant under-estimation of the night-flow. The anomalous flow inM2, on the
other hand, seems to be composed of a pattern similar to a demand, which may indicate the fact
that the given demand profiles may under-estimate the actual water usage in that area.

4 Conclusion

This paper presented a new methodology for the localisation of flow anomalies in WDNs, where
the anomalies may represent unexpected demands or leakage. Compared to existing solutions,
the method implicitly adapts to level of information available about the network, including
hydraulic sensors, physical model, and profiles. The WDN is first divided in areas (group of
nodes) where the leak is not identifiable, given the available information. An estimate of the total
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Figure 6: Estimated anomalous water consumption (graph on the left) in the two clusters identified (graph on the right).

anomalous water demand in each area of the network is then produced, as well as a statistical
bound (standard deviation) indicating the confidence of the estimate. The spatial resolution of
the method (size of the areas) is strictly relates to the amount of sensors and to the quality of
the model and of the available demand models.

Overall, the proposed method provides the means for a hotspot analysis, where areas of the
network are assigned an amount of anomalous consumption and confidence in the estimate.
The daily profiles of the estimated patterns of anomalous flow can be intuitively processed for
root-cause analysis of the problem (leakage, unexpected customer demands, . . . ). The solution
would indeed provide an invaluable tool for the WDN operator, who, based on the output, can then
decide to investigate further the issue by increasing the number of sensors (or move the available
ones) in a flagged area for a finer diagnosis, until the source of anomaly is finally pinned down.
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