
RC25449 (WAT1402-065) February 21, 2014
Other

IBM Research Report

A Method for Improving Lossless Compression of Aligned
DNA Sequence

Hangu Yeo, Vadim Sheinin
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598
USA

Research Division
Almaden – Austin – Beijing – Cambridge – Dublin - Haifa – India – Melbourne - T.J. Watson – Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report for
early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After
outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties). Many reports are available at http://domino.watson.ibm.com/library/CyberDig.nsf/home.

1

A Method for Improving Lossless Compression of

Aligned DNA Sequence

Hangu Yeo and Vadim Sheinin

IBM T. J. Watson Research Center
Yorktown Heights, NY 10598 U. S. A.

{hangu,vadims}@us.ibm.com

Abstract

The huge volumes of genome sequencing data generated with Next Generation
Sequencing technology demands compression tools that can handle increasing costs
associated to storing and transmitting those data. We present a method for efficient
lossless compression of the DNA sequences stored in SAM file format. The compression
method compresses alignment information, read sequences and quality values separately
using customized compression algorithms. We concentrated our efforts on read base
sequence compression optimization, and the key feature of read sequence compression is
run-length encoding based on classified and sorted read sequences. The quality values are
compressed adaptively with run-length coding and predictive coding followed by
Huffman coding technique. The proposed method generates a mapped difference from
the reference to the target DNA sequences, classifies the mapped differences using
number of mismatched read bases within a sequence into number of groups. The read
sequences and quality values within each group are compressed losslessly with different
coding strategies, and the coding schemes are decided by the analysis of the histogram
created with the indexes of mismatched read bases within the sequence and neighboring
quality values around the quality value to be compressed. We focused on the compression
of sequences classified into first two groups, perfectly matched sequences and sequences
with a single mismatched base, as those sequences account for majority of sequences to
be compressed, and the proposed algorithm is a clear winner when compared with well
known compression tools.

1. Introduction

The human genome project started in 1990 to map three billion nucleotides of human
genome. In 2001, after more than a decade, the first draft of the human genome was
published. Advances in genomics during the past ten years have increased the generation
of deoxyribonucleic acid (DNA) sequence data and reduced the cost to generate the data
especially after the first commercial second (next) generation platform was introduced in
2004. With the advent of Next Generation Sequencing (NGS) technologies, the cost to

2

generate a genome has decreased from about $100,000,000 in 2001 to $10,000 in 2012,
and can be less than $1,000 within a couple of years
(http://www.genome.gov/sequencingcosts/). As a result, the amount of genomics data is
increasing exponentially. For example, accessed in May 2012, New York Genome
Center (NYGC) had a plan to produce 9,000 TB of genomics data within the next several
years.

The NGS instruments produce tens and hundreds of millions of oversampled (by from
thirty times to forty times) short read sequences to ensure each base of three billion base
pairs of human genome is sequenced. Each short sequence is a string of characters over
the nucleotide alphabets A, C, G and T. This means that 3 billion human genome requires
at least 100 GB of disk space to store the samples if we assume one byte for each base.
Hence, it created a need to store and transfer very large volumes of data efficiently, and
efficient represent of sequencing data is very important.

Although general purpose compression algorithms for text data such as GZIP, BZIP2 OR
7ZIP compress the DNA sequence reasonably well, their compression ratio is only
around 3:1 and is likely to be far from optimal. Taking into consideration of properties of
genomic data can produce better compression. For example, while the human genome
consists of about three billion base pairs, any two human genomes are more than 99%
identical. Compression of DNA sequences has been a very active research since the
introduction of NGS technology. The compression of genomic sequences can be divided
into three categories, assembly based compression, SAM (Sequence Alignment/Map
Format) file format compression and FASTQ file format compression.

There have been numerous implementations of a variety of DNA sequence compression
algorithms. Jones et al. [1] presented an assembly based compression algorithm. This is
the first reference based compression technique reference to its own reference assembled
with de novo assembler not the reference human genome. It is noted that the quality of
assembly affects compression efficiency. The CRAM compression tool [2] developed by
EBI (European Bioinformatics Institute) is a very well-known tool to compress the DNA
sequence developed to compress aligned DNA sequences in SAM file format [3].
Popitsch et al. [4] also developed a compression tool that compresses mapped short read
data stored in SAM file format, and it encodes only the difference to the reference
column-wise. Mahoney [5] developed an algorithm that compresses DNA sequence in
FASTQ file format. This is a context model based algorithm using libzpaq public domain
compression library. Quality value compression is more difficult to compress than read
bases because it covers wider range of values. Quality value data takes up majority of the
total compressed file size, and makes the lossless compression tool less efficient. There
have been efforts on lossy compression of quality values as a solution to reduce the
compressed file size of quality values [2][4][6][7].

In this paper we present a lossless DNA compression algorithm that compresses DNA
sequences in SAM file format given a known reference genome. We presume that the
reference genome is available to both the encoding unit which compresses the sequence
and the decoding unit which decompresses the compressed data without any additional

http://www.genome.gov/sequencingcosts/

3

external information. The proposed algorithm first generates a mapped difference from
the reference to the target DNA sequences, and compresses the mapped difference and
quality values losslessly with adaptive encoding strategies. The proposed algorithm
works fairly well against general purpose compression algorithm such as GZIP, and is
compared against SAM and FASTQ file format compression tools.

2. Compression of Aligned DNA Sequence

Public repositories such as SRA (Sequence Read Archive) normally stores DNA
sequences in human-readable file format called FASTQ. In FASTQ file format, each
sequence consists of a sequence of DNA bases and a string of quality values for the read.
The quality value reflects the level of confidence in the readout of each base. The
sequence of DNA bases is composed of four bases (A, T, G and C), and the set of quality
values which ranges from ‘!’ to ‘~’ (ASCII code from 33 to 126) is far larger than the
four DNA nucleotides. This makes quality value compression more difficult than read
base compression. The inclusion of quality values is optional, and the FASTA format
does not include quality value.

The SAM format is a generic format to store read sequences and their alignment to a
reference sequence or assembly, and contains associated metadata for the alignment
information to a reference sequence as well as read sequences and corresponding quality
values. Short read sequence alignment tools such as BWA (Burrows-Wheeler Aligner,
bio-bwa.sourceforge.net) and BOWTIE2 (bowtie-bio.sourceforge.net/bowtie2) have
received the most attention as short read alignment algorithms that map files in FASTQ
file format to a reference genome, and produces output files in SAM format. Figure 1
depicts the block diagram of overall compression scheme. As depicted in the figure,
parsed metadata, parsed read sequence and parsed quality values are compressed
independently and the compressed files, in turn, are further compressed using GZIP or
LZMA compression. The SAM file aligned for FASTA file format does not include
quality information.

Figure 1. Block diagram (loss compression of DNA sequence).

FASTA/
FASTQ

Mapping
Tool SAM

Meta Data

Read

Quality Value

Compression

LZMA/
GZIP

4

2.1 Compression of Metadata

The metadata in SAM file format consists of nine mandatory fields that contain
alignment information for each read sequence. Since the data types (either string or
integer data types respectively) of nine mandatory fields are not identical it is not likely
that exactly one encoding strategy will be optimal for different types of fields. Figure 2
depicts metadata compression schemes. The metadata compression is straight forward
and simple. Each of nine mandatory fields is parsed and compressed separately using
standard compression techniques such as, for example, but not limited to, run-length
coding, differential coding and table index coding.

Figure 2. Meta data compression

2.2 Compression of Read Sequence

The read sequence is composed of four bases (A, T, G and C). A key feature of read
sequence compression is run-length encoding based on classified and sorted read
sequences. Run-length coding is a simple encoding scheme and works well when there
are many strings of the same alphabets within the sequences. Generally, run-length
coding is not effective to compress the read bases because the four bases randomly occur
within the sequence without having any pattern. To improve the efficiency of the simple
run-length coding technique, the read sequences are preprocessed as depicted in Figure 3.
The processed read sequences include long stretches of identical characters, and the run-
length coding efficiency is improved dramatically.

Referring to Figure 3, in the first step, the coding/compression portions of the method
take read sequences and a reference genome as input files, and align read sequences to
the reference genome using metadata fields such as rname, cigar, pos, etc. In the next
step, the read sequences are partitioned into groups based on the number of mismatched

RNAME

FLAG

QNAME

POS

MAPQ

CIGAR

RNEXT

PNEXT

TLEN

table index
encode

difference
encode

run-length
encodeEncoding Schemes

bases within the sequence. Since most of the read sequences are perfectly or near-
perfectly matched to the reference genome using the mapping position information, most
of the read sequences belong to a few groups, and the outputs of the classification are
Group0, Group1 and Group 2. Group 0 corresponds only to the read sequences which are
perfectly matched. Group 1 corresponds to read sequences which include only one
mismatched base in the sequence. Group 2 corresponds to read sequences which include
more than one mismatched base in the sequence. Figure 4 shows exemplary read
sequences for Group 0, Group 1 and Group 2. The matched bases are replaced with a
character ‘=’.

Figure 3. Flowchart (read sequ

Figure 4. Read sequences in ea

The read sequences in Group 0
needs zero bit to encode becau
any information other than met
Figure 5. The read sequences c
indexes of mismatched base, an

===============

===============

===============

===============

===============

===============

=

=

=

=

=

=

Group 0

Read Sequence
A

Reference Genome

Read Sequences

Meta Data

Re
(nu

Group 0
(perfect match)
lignment
5

ence compression)

ch group after alignment and classification.

account for 70% of the total sequences, but this group
se it is perfectly matched and the decoder does not need
adata to decode. The Group 1 encoding is depicted in
lassified in Group 1 are sorted in the first step based on the
d if there are multiple sequences with same mismatched

=======A======

=============C

==========G===

=============G

==========T===

=========C====

====A=========C

========T=====G

===========GA==

====C====G=====

==========C====

C=======A======

Group 1 Group 2

ad Sequence Classification
mber of mismatched bases)

Group 1
(# mismatch = 1)

Group 2
(# mismatch > 1)

6

base index, the sequences are lexicographically ordered. Figure 6 shows an exemplary
sorting for Group 1 based on the indexes. In the next step, a histogram is built using the
presorted read sequences classified into the Group 1 (read sequences with a single
mismatched base). This step is performed by, for example, histogram builder as depicted
in Figure 5. The distribution of indexes decides how the read sequences will be encoded.
If the indexes are uniformly distributed along one hundred possible positions (Figure 7),
the values of mismatched bases and positions of the mismatched bases are encoded using
run-length coding independently into two separate bit streams. In the first string, the
mismatched bases are run-length coded column-wise, and the indexes of the mismatched
based coded in the first string are run-length coded in the second string. If the
distribution of indexes is not uniformly distributed with a couple of peaks as depicted in
Figure 7, it means that there are many sequences having same mismatched positions, and
column-wise run-length coding works well. The two coding schemes are illustrated in
Figure 8.

Read sequences classified into Group 2 (more than one mismatched base) accounts for
less than 15% of the total input read sequences, and are sorted and run-length coded
column-wise, too. Thus, only metadata is encoded for sequences in Group 0, and both
metadata and read sequence data are encoded for sequences in Group 1 and Group 2. The
sorting process in Figure 5 is to maximize the length of stretches of ‘=’ characters. Since
run-length is basically a pair consisting of a single character and a positive integer
number that indicates the run length of the character, the entireties of the sequences
within the perfectly matched group can be encoded with zero bit spending. The efficiency
of run-length coding is improved when number of mismatched base is more than one by
sorting the sequences in the group to have the length of column-wise stretch of ‘=’ longer.

Figure 5. Flowchart (Group 1 read sequence coding schemes)

Figure 6. Read sequences in Group 1 are sorted using mismatched indexes as a key value.

========A======

==============C

===========G===

==============G

===========T===

===========G===

==============C

==============G

===========G===

===========G===

===========T===

========A======

sort

Histogram
Builder

Sort

Coding Scheme 1

Coding Scheme 2

7

Figure 7. Histograms using indexes of mismatched bases.

Figure 8. Coding example of read sequences in Group 0.

2.3 Compression of Quality Values

Base-calling is a central part in genomic sequencing effort, and it is a process to assign
bases to chromatogram peaks and produce base sequences as accurate as possible in the
presence of noisy environment which may lead to wrong readout of the sequencing signal.
The probability for base calling mistakes is represented by scores that reflect the level of
confidence of readout of each base, and higher values represent greater confidence. These
scores are known as quality values, and the quality values are part of FASTQ file format.
In the FASTQ file format, genomic sequences are represented by a set of read bases
along with quality values of each base-call.

As already mentioned in the previous section, the range of quality value (from 33 to 126
in ASCII code) is larger than four DNA nucleotides. This makes the quality value

Coding Scheme 1 Coding Scheme 2

==============C

==============G

===========G===

===========G===

===========T===

========A======

Construct two strings, one composed of
unmatched base from each sequence,
and the second string using the
position

Column-wise run-length coding
in vertical direction

(=,53) A (=,14) (G,2) T (=,7) C GSequence: C (G,3) T A
Index: (0,2) (3,3) 6

0

2000

4000

6000

8000

10000

12000

14000

16000

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Series1

0

500

1000

1500

2000

2500

3000

3500

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Series1

Coding Scheme 1 Coding Scheme 2

8

compression more difficult than the read sequence compression. Experiments show some
properties of quality values. One such property of quality values is that the quality values
are non-uniformly distributed [8], i.e., there are certain values which occur very
frequently. Another such property of quality values is that for a given quality value, there
is a strong correlation between that quality value and a few previous quality values with
quality typically reducing along the length of the sequence [5].

A key feature of quality value compression is encoding the quality values adaptively with
run-length coding and predictive coding schemes. To improve the efficiency of the
coding scheme, the quality value sequences are presorted lexicographically, and the
presorted quality value sequences include long stretches of identical characters and the
correlation between vertically positioned quality values is improved as well. Only the
DNA sequences corresponding to Group 0 are sorted because Group 1 and Group 2 are
sorted using mismatched indexes as key values as described in the previous section.

sort

Run-Length Coding (row-wise)

length(run)
< threshold

Predictive/Huffman
coding

No

Yes

Group 0 ?

Yes

Nosort

Run-Length Coding (row-wise)

length(run)
< threshold

Predictive/Huffman
coding

No

Yes

Group 0 ?

Yes

No

Figure 9. Flowchart (Quality value coding)

Figure 9 shows an exemplary method for quality value compression. In the first step, the
DNA sequences are sorted lexicographically followed by row-wise run-length coding on
the sorted sequences to obtain a code result. The presorting enhances the correlation
between horizontally and vertically positioned quality values further. The length of the
run is examined whether or not it is less than a threshold. If so, the quality value is
predicted using the neighboring three quality values (one left, one upper and one upper-
left positioned) followed by Huffman coding technique.

9

3. Simulation Results and Comparison

The proposed lossless DNA compression algorithm compresses DNA sequences in SAM
file format. The paired-end test FASTQ files were randomly selected and downloaded
from ftp://ftp-trace.ncbi.nih.gov/1000genomes, and aligned using public domain software
BOWTIE2 and reference human genome hg19 file downloaded from
http://genome.ucsc.edu. The test files are compressed using three compression tools,
GZIP, CRAM and proposed compression tools, and the compression ratio is calculated
by dividing the input file size (paired-end FASATA file size in Table 1 and paired-end
FASTQ file size in Table 2) by the compressed output file size.

The compression ratio of the proposed method is compared with a general compression
algorithm (GZIP) and CRAM lossless compression mode in TABLE 1. Table 1 compares
compressed file sizes using input files in FASTA file format. The proposed method
significantly outperforms CRAM in compressing header and read sequences, for example
26:1 (CRAM) versus 92:1 (proposed method) with SRR702072 as an input sequence. In
Table 2, we compare the three compression tools using input files in FASTQ file format.
The proposed algorithm still outperforms the CRAM tool in compressing three
components (header, read bases and quality values) of the FASTQ files. While the
proposed algorithm obtains up to 92:1 compression ratio for header and read sequence
compression, we believe that improving compression ratio of quality value beyond 4:1 is
infeasible. For example, the quality value only compression ratio is 3.9:1 (proposed
algorithm) and 3.5:1 (CRAM) with SRR702072 as an input sequence. The results in
Table 1 and Table 2 indicate that the compressed quality value data accounts for majority
of the total compressed file size.

Table 1. Compression ratio comparison (FASTA file format compression)
Sequence GZIP CRAM proposed

SRR062634 3.9 20 43
SRR043384 4.0 16 34
SRR081241 3.9 23 66
SRR077487 3.9 23 65
SRR037780 4,2 17 39
SRR100335 3.7 18 37
SRR702072 3.9 26 92
ERR013151 3.7 19 41

ftp://ftp-trace.ncbi.nih.gov/1000genomes
http://genome.ucsc.edu/

10

Table 2. Compression ratio comparison (FASTQ file format compression)
Sequence GZIP CRAM proposed

SRR062634 2.9 7.1 7.9
SRR043384 3.9 10.4 11.6
SRR081241 3.1 6.8 7.5
SRR077487 3.1 6.8 7.4
SRR037780 3.6 13.2 14.7
SRR100335 2.9 6.9 7.4
SRR702072 3.0 6.6 7.6
ERR013151 3.4 7.8 9.0

4. Conclusion

The huge volumes of genome sequencing data generated with NGS technology demands
compression tools that can handle increasing costs associated to storing and transmitting
those data. We have shown methods for efficient lossless compression of the DNA
sequences stored in SAM file format. The proposed algorithm provides higher
compression ratios when we compare the performance of the proposed algorithm with a
general text compression algorithm (GZIP) and one of the very well-known compression
tools (CRAM). Especially in the absence of the quality scores, the simulation results
show that the proposed algorithm would be a clear winner in compressing header and
read sequence data information. The limitation of the proposed algorithm is that it only
supports lossless compression of quality values. Given the fact that compressing quality
values beyond 4:1 seems feasible, directions for the future work will include developing
lossy compression for quality values.

5. References

[1] D. C. Jones, W. L. Ruzzo, X. Peng and M. G. Katze, “Compression of Next-
Generation Sequencing Reads Aided by Highly Efficient De Novo Assembly,” Nucleic
Acids Research, August 2012.
[2] M. H. Fritz, R. Leinonen, G. Cochrane and E. Birney, “Efficient Storage of High
Throughput DNA Sequencing Data using Referenced-Based Compression,” Genome
Research, vol. 21, pp. 734-740, 2011.
[3] The SAM Format Specification, The SAM Format Specification Workgroup,
September 2011.
[4] N. Popitsch and A. Haeseler, “NGC: Lossless and Lossy Compression of Aligned
High-Throughput Sequencing Data,” Nucleic Acids Research, October 2012.
[5] J. K. Bonfield and M. Mahoney, “Compression of FASTQ and SAM Format
Sequencing Data,” PLoS ONE, vol. 8, e59190, March 2013.

11

[6] I. Ochoa, H. Asnani, D. Bharadia, M. Chowdhury, T. Weissman and G. Yona,
“QualComp: A New Lossy Compressor for Quality Scores Based on Rate Distortion
Theory,” BMC Bioinformatics, vol. 14, June 2013.
[7] C. Kozanitis, C. Saunders, S. Kruglyak, V. Bafna and G. Varghese, “Compressing
Genomic Sequence Frgments using SlimGene,” Journal of Computational Biology, vol.
18, pp. 401-413, 2011.
[8] R. Wan, V. N. Anh and K. Asai, “Transformations for the Compression of FASTQ
Quality Scores of Next Generation Sequencing Data,” Bioinformatics, vol. 25 pp. 628-
635, March 2012.

