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DSOS and SDSOS Optimization:
LP and SOCP-Based Alternatives to Sum of Squares Optimization

Amir Ali Ahmadi and Anirudha Majumdar

Abstract— Sum of squares (SOS) optimization has been a
powerful and influential addition to the theory of optimiza-
tion in the past decade. Its reliance on relatively large-scale
semidefinite programming, however, has seriously challenged its
ability to scale in many practical applications. In this paper, we
introduce DSOS and SDSOS optimizatio as more tractable
alternatives to sum of squares optimization that rely instead
on linear programming and second order cone programming.
These are optimization problems over certain subsets of sum of
squares polynomials and positive semidefinite matrices and can
be of potential interest in general applications of semidefinite
programming where scalability is a limitation.

Note: This is an invited paper for the session on
“Optimization in the Information Sciences” of the 48th
Annual Conference on Information Sciences and Systems
(CISS 2014). It is meant to serve as an extended abstract
for a longer upcoming paper [1] by the authors on the same

topic. Most details are omitted.

I. INTRODUCTION

A fundamental problem in applied and computational
mathematics is that of optimizing over the set of nonnegative
polynomials. In such an optimization problem, one would
like to impose constraints on the coefficients of some un-
known (multivariate) polynomials in a way that they become
nonnegative, either globally in R™, or on certain basic
semialgebraic sets, i.e., subsets of R™ defined by a finite
number of polynomial inequalities. We give two examples
of fundamental domains where such optimization problems
arise and refer the reader to [1] for several others.

Polynomial optimization: The polynomial optimization
problem (POP) in its general form is represented as

minimize p(z)

subject to z € K :={x € R" | g;(x) > 0, hi(z) = 0},
(D
where p, g;, and h; are multivariate polynomials. The special
case of problem where the polynomials p, g;, h; all have
degree one is of course linear programming, which can be
solved very efficiently. For higher degrees, POP contains as
special case many important problems in operations research;
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e.g., the optimal power flow problem in power engineer-
ing [2], computation of Nash equilibria in game theory [3],
and a host of problems in combinatorial optimization. By
a straightforward reformulation of problem (IJ), we observe
that if we could optimize over the set of polynomials that
are nonnegative on a basic semialgebraic set, then we could
solve the POP problem to global optimality. To see this, note
that the optimal value of problem (I)) is equal to the optimal
value of the following problem:

maximize 7y

subject to  p(z) —y >0, Vz € K. &)

Here, we are trying to find the largest constant v such that
the polynomial p(x) — « is nonnegative on the set K i.e.,
the largest lower bound on problem (T).

Control systems and robotics: Numerous fundamental
problems in nonlinear dynamics and control, such as stability,
robustness, collision avoidance, controller design, etc., can be
turned into problems about finding special functions—the so-
called Lyapunov functions (see, e.g., [4])—that satisfy certain
sign conditions. For example, given a differential equation
z = f(x), with f : R® — R™, and origin as an equilibrium
point (i.e., satisfying f(0) = 0), consider the “region of
attraction problem™: For what set of initial conditions in
R™ do trajectories flow to the origin? Lyapunov’s stability
theorem (see, e.g., [4, Chap. 4]) tells us that if we can find
a (Lyapunov) function V' : R" — R, which together with its
gradient V'V satisfies

V(z)
—(VV(2), f(x))
3)

then the sublevel set {x| V(z) < B} is part of the region
of attraction. If f is a polynomial function (an immensely
important case in applications [5]), and if we parameterize V'
as a polynomial function, then the search for the coefficients
of V satisfying the conditions in is an optimization
problem over the set of nonnegative (or in this case positive)
polynomials. Designing stable equilibrium points with large
regions of attraction is a fundamental problem in control
engineering and robotics [6].

> 0,Vx #£ 0,
> 0,Vz € {z| V(z) < B,z # 0},

Closely related to nonnegative polynomials are polynomi-
als that are sums of squares. We say that a polynomial p is
a sum of squares (sos) if it can be written as p = ) . q?
for some (finite number of) polynomials g;. The study of
the relationship between nonnegative and sum of squares
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polynomials is a classical problem in real algebraic geom-
etry. In the general, while sum of squares polynomials are
clearly always (globally) nonnegative, the exist nonnegative
polynomials that cannot be written as a sum of squares.
This fact was first shown with non-constructive arguments
in a celebrated paper of Hilbert [7], and later with concrete
examples starting with the work of Motzkin [8].

The classical questions around nonnegative and sum of
squares polynomials have been revisited quite extensively
in the past 10-15 years in different communities among
applied and computational mathematicians. The reason for
this renewed interest is twofold: (i) the discovery that
many problems of modern practical interest can be cast as
optimization problems over nonnegative polynomials, and
(ii) the observation that while optimizing over nonnegative
polynomials is generally NP-hard, optimization over the set
of sum of squares polynomials can be done via semidefinite
programming (SDP). The latter development, originally ex-
plored in the pioneering works of Shor [9], Nesterov [10],
Parrilo [11], [12], and Lasserre [13], has led to the so-
called area of sum of squares optimization—a computational
framework, with semidefinite programming as its underlying
engine, that can tackle many fundamental problems of real
algebra and polynomial optimization.

A. Motivation and contributions

The dependence of sum of squares approaches on semidef-
inite programming is a strength and at the same time a
weakness, depending on point of view. From a computational
complexity perspective, semidefinite programs can be solved
with arbitrary accuracy in polynomial time using interior
point methods (see [14] for a comprehensive survey). As
a result, sum of squares techniques offer polynomial time
algorithms that approximate a very broad class of NP-hard
problems of interest. From a more practical viewpoint, how-
ever, SDPs are among the most expensive convex relaxations
and the speed and reliability with which they can be solved
currently lag by a wide margin those of some more restricted
classes of convex programs, such as linear programs or
second order cone programs. This, combined with the fact
that sos problems generate large-scale semidefinite programs
to begin with (see [1] for details), has made scalability
the single most outstanding challenge for sum of squares
optimization.

In [1], we take the latter, more practical viewpoint on this
issue and offer alternatives to sum of squares optimization
that while more conservative in general, are significantly
more scalable. Our hope is that by doing so, we expand the
use and applicability of algebraic techniques in optimization
to new areas and share its appeal with a broader audience.
We call our new computational frameworks, which rely
on linear and second order cone programming, DSOS and
SDSOS optimization (see Section [[I| for precise definitions).
While these tools are primarily designed for sum of squares
optimization, they are also applicable to general applications
of semidefinite programming where tradeoffs between scal-
ability and performance may be desirable.

A particularly nice feature of DSOS and SDSOS opti-
mization is that they enjoy many of the same theoretical
guarantees that underly SOS optimization. In [1], we show
how several basic results from SOS optimization, which of-
ten rely on theorems of real algebraic geometry, carry over in
a straightforward manner to our new optimization problems.
We also show in [1] with numerical experiments from diverse
application areas—polynomial optimization, statistics and
machine learning, derivative pricing, and control theory—
that we can handle problems at scales that are currently far
beyond reach for sum of squares approaches. The remainder
of this note gives a brief presentation of a subset of the results
in [1] with proofs and details omitted.

II. DSOS AND SDSOS OPTIMIZATION

Let PSD,, q and SOS,, 4 respectively denote the cone of
nonnegative and sum of squares polynomials in n variables
and degree d, with the obvious inclusion relation SO.S,, 4 C
PSD,, 4. The basic idea is to approximate the cone SOS,, 4
from the inside with new cones that are more tractable for
optimization. Towards this goal, one may think of several
natural sufficient conditions for a polynomial to be a sum of
squares. For example, consider the following cones:

o The cone of polynomials that are sums of 4-th powers

of polynomials: {p| p =" ¢}},

o The cone of polynomials that are a sum of three squares

of polynomials: {p| p = ¢ + ¢5 + 3}

Even though both of these cones clearly reside inside the
sos cone, they are not any easier to optimize over. In fact,
they are harder! Testing membership to either of these two
cones is NP-hard [15]. This shows that we have to take some
care in deciding what subset of SOS,, 4 we exactly choose to
work with: on one hand, it should be computationally simpler
for optimization; on the other hand, it has to comprise a “big
enough” subset.

A. The cone of r-dsos and r-sdsos polynomials

We now describe cones inside P, 4 that are naturally
motivated and that lend themselves to linear and second order
cone programming. There are also useful generalizations of
these cones that result in “small” semidefinite programs.
These generalizations are presented in [1] and are omitted
from here.

Definition 1 (Ahmadi, Majumdar,‘13):

o A polynomial p is diagonally-dominant-sum-of-squares

(dsos) if it can be written as

p= Za,mf + ZBU(TTM + mj)Z,
i i,j

for some monomials m;,m; and some nonnegative
constants a;, 3; ;.

o A polynomial p is scaled-diagonally-dominant-sum-of-
squares (sdsos) if it can be written as

p=>Y aimi+ Y (Bimi+ym;)?,

i,J



for some monomials m;,m; and some constants
Q; 2 Oa 57,7’71

« For a positive integer r, a polynomial p is r-diagonally-
dominant-sum-of-squares (r-dsos) if p- (3=, x2)" is dsos.
o For a positive integer r, a polynomial p is r-scaled-
diagonally-dominant-sum-of-squares (r-sdsos) if
DANARE
p - (3;2?) is sdsos.

We denote the set of polynomials in n variables
and degree d that are dsos, sdos, r-dsos, and 1-
sdsos by DSOS, 4,SDSOS,, q4,7DSOS,, 4,7SDSOS,, 4,
respectively.

The following inclusion relations are straightforward:

DSOS,.q C SDSOS,,.4 C SOS,.q C POS, 4,
rDSOS, 4 C rSDSOS, 4 C POS, 4,

Our terminology in Definition [T] comes from the following
concepts in linear algebra.

Definition 2: A symmetric matrix A is diagonally domi-
nant (dd) if a;; > Ej# |a;;] for all . A symmetric matrix
A is scaled diagonally dominant (sdd) if there exists an
element-wise positive vector y such that:

QY > Z laijly;, Vi.
J#i
Equivalently, A is sdd if there exists a positive diagonal
matrix D such that AD (or equivalently, DAD) is dd. We
denote the set of n x n dd and sdd matrices with DD,, and
SDD,, respectively.
Theorem 2.1 (Ahmadi, Majumdar,’13):

e A polynomial p of degree 2d is dsos if and only if it
admits a representation as p(z) = 27 (2)Qz(x), where
z(x) is the standard monomial vector of degree d, and
@ is a dd matrix.

o A polynomial p of degree 2d is sdsos if and only if it
admits a representation as p(z) = 27 (2)Qz(x), where
z(x) is the standard monomial vector of degree d, and
@ is a sdd matrix.

Theorem 2.2 (Ahmadi, Majumdar’13): For any nonneg-
ative integer 7, the set rDSOS, 4 is polyhedral and the
set 7SDSOS,, 4 has a second order cone representation.
For any fixed r and d, optimization over rDSO.S,, 4 (resp.
rSDSOS, 4) can be done with linear programming (resp.
second order cone programming), of size polynomial in n.

B. Asymptotic guarantees and comparison to sos techniques

The purpose of the parameter r is to have a knob for trad-
ing off speed with accuracy of approximation. By increasing
r, we obtain increasingly accurate inner approximations
to the set of nonnegative polynomials. The following two
examples show that the linear programs obtained from even
small r can outperform the semidefinite programs resulting
from sum of squares.

Example 2.1: Consider the Motzkin polynomial [8],
M(z) = zix3 + 2323 — 3232323 + 25, which is famously
known to be nonnegative but not a sum of squares. We can
give an LP-based nonnegativity certificate of this polynomial
by showing that M € 2DSOS. Hence, 2DSOS ¢ SOS.

Example 2.2: Consider the polynomial, p(z) = zix3 +
r3r3 + 2322 — 3232323, Once again this polynomial is
nonnegative but not a sum of squares [16]. However, there
is an LP-based nonnegativity certificate since M € 1DSOS.
Hence, 1DSOS ¢ SOS.

The following two theorems provide asymptotic guaran-
tees on r-dsos (and hence r-sdsos) hierarchies. Their proofs
rely on powerful Positivstellensatz results from real algebraic
geometry.

Theorem 2.3 (Ahmadi, Majumdar,’13): Let p be an even
form, with p(z) > 0 for all z # 0, then there exists an
integer r such that p € rDSOS.

The theorem states that at least for even forms (forms
where individual variables are only raised to even degrees),
a certificate of nonnegativity can always be found by one
of the LPs in our hierarchy. Even forms already form a
very interesting class of polynomials since they include, e.g.,
all polynomials coming from copositive programming [12],
and many important 0/1 integer programs and combinatorial
optimization problems. For example, when the hierarchy is
applied to the maximum stable set problem, by using a result
from [17] we can show that a?(G) levels of the rDSOS
hierarchy are enough to give the exact value «(G) of the
maximum stable set of any graph G.

The next theorem removes the assumption of evenness
from the previous theorem by using a general multiplier (as
opposed to > 7).

Theorem 2.4 (Ahmadi, Majumdar,’13): For any positive
definite form p, there exists a form ¢ such that ¢ and pq
are both dsos.

Note that given p, the search for such a ¢ (of a given
degree) is a linear program. Moreover, a feasible solution to
this linear program certifies nonnegativity of p. This theorem
can be used to prove the following general result, which we
state here informally.

Theorem 2.5 (Ahmadi, Majumdar,’13): Consider the gen-
eral polynomial optimization problem (POP) in There is
a hierarchy of linear programs based on optimization over
dsos polynomials that can solve POP to arbitrary accuracy.

This theorem is similar to the Parrilo and Lasserre hierar-
chies for polynomial optimization that are instead based on
a search over sum of squares polynomials via semidefinite
programming [11], [13].

III. NUMERICAL EXAMPLES

In this section, we focus on two problems from statistics
and control theory to show the magnitude of improvements
in scalability that we can achieve by using dsos and sdsos
conditions over sos. See [1] for several other examples. The
machine used for our numerical examples is a PC with 4
processors, a clock speed of 3.4 GHz, and 16GB of RAM.



A. Convex regression

We consider the problem of fitting a function to data
subject to a constraint on convexity of the function. This
is an important problem in statistics with applications such
as value function estimation in reinforcement learning, util-
ity function estimation in economics, among many others.
Formally, we are given pairs of data points (z;,y;) with
x; € RN, y; € R and the task is to find a convex function
f from a family F that minimizes an appropriate notion of
fitting error (e.g., Lo, error):

min i) — Vi
min ol f(e)
s.t. f(zx) is convex.

The convexity constraint here can be imposed by requiring
that the function y” H (x)y associated with the Hessian H ()
of f(x) be nonnegative for all z,y. Restricting ourselves to
polynomial functions f of bounded degree, we obtain the
following optimization problem:

min max | f(x;) — v;
min_ ax |f (1) — il
s.t. y"H(z)y >0,

where H(x) is again the Hessian of f(z). Unfortunately,
optimizing over the set of convex polynomials or even testing
convexity of a given polynomial function is NP-hard in the
strong sense [18]. As an algebraic relaxation, we can replace
the latter nonnegativity constraint with a dsos/sdsos/sos con-
straint and obtain linear, second order cone, or semidefinite
programs. For our numerical experiment, we generated 300
random vectors z; in R2° drawn i.i.d. from the standard
normal distribution. The function values y; are computed as
follows:

yi = exp(||zill2) + wi,

where w; is chosen i.i.d. from the standard normal distri-
bution. Note here that we are trying to approximate a non-
polynomial convex function with a convex polynomial func-
tion (in the presence of noise), and that the dsos/sdsos/sos
constraints are on a polynomial with 40 variables. Tables
[A] and present the fitting errors and running times for
the DSOS/SDSOS/SOS programs resulting from restricting
the class of functions F to polynomials of degree d = 2
and d = 4. As the results illustrate, we are able to obtain
significantly smaller errors with polynomials of degree 4
using DSOS and SDSOS (compared to SOS with d = 2),
while the SOS program for d = 4 simply does not get past
the first iteration of the interior point solver even after several
hours have elapsed.

B. Region of attraction computation

Most (but not all) applications of SOS programming in
control theory rely on checking some type of Lyapunov
inequalities for trajectories of nonlinear systems. Here, we
consider the representative problem of estimating a region
of attraction, which has been studied in the literature exten-
sively [19], [20].

DSOS | SDSOS | SOS
d=2 | 35.11 33.92 21.28
d=14 14.86 12.94 NA
TABLE 1
COMPARISON OF FITTING ERRORS FOR OUR CONVEX REGRESSION
PROBLEM.
DSOS SDSOS | SOS
d=2 <ls <ls <ls
d=4 | 14585s | 240.18 s oo
TABLE II

COMPARISON OF RUNNING TIMES ERRORS FOR OUR CONVEX
REGRESSION PROBLEM.

As discussed in Section[I} one can compute (inner approx-
imations of) the region of attraction (ROA) of a dynamical
system & = f(x) by finding a function V' : R" — R that
satisfies the following conditions:

V(x)
f(@))
)

This guarantees that the sublevel set {z| V(z) < 8} is a
subset of the ROA of the system; i.e., initial conditions that
begin in this sublevel set converge to the origin. However,
the task finding a polynomial Lyapunov function satisfying
the inequalities in is intractable. For example, even the
problem of testing if a cubic vector field admits a local
quadratic Lyapunov function is strongly NP-hard [21].

Nevertheless, there are standard ways of replacing the
inequalities in with (more conservative) sum of squares
conditions to attack the problem with semidefinite pro-
gramming; see, e.g., [12], [19], [20]. By replacing the sos
constraints with dsos/sdsos constraints, one can compute
inner approximations to the ROA more efficiently. While
the approximations will be more conservative in general,
the ability to tradeoff conservatism with computation time
afforded to us by the approach presented in this paper is an
important one.

Figures and present preliminary evidence that the
sacrifice in terms of conservatism can be relatively minor.
We consider an underactuated 5-link pendulum (depicted
in Figure [I), which has four actuators (one at every joint
except the base joint) and a n = 10 dimensional state
space. The pendulum is balanced about the upright position
using a Linear Quadratic Regulator (LQR) controller. The
figure compares projections of the computed ROAs onto two
2—dimensional subspaces of the state space. As the plot
suggests, the ROA computed using SDSOS programming
is only slightly more conservative than the SOS ROA. In
fact, comparing the volumes of the two ROAs raised to the
reciprocal of the ambient dimension, we find:

> 0,Vx # 0,

—(VV(z), > 0,Vz € {z| V(x) < 5,z # 0}.

VOlllléZ—sdsos
VOlROA—sos



The ROA computed using DSOS is much smaller (but
still potentially useful in practice). The running time of the
solvers for DSOS,SDSOS, and SOS (with the standard solver
SeDuMi [22]) are respectively 37 seconds, 40 seconds, and
1.6 hours on a standard PC. The speed-up is about a factor
of 150.
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Fig. 2. Comparisons of the ROAs computed for the 5-link pendulum system
using DSOS, SDSOS and SOS.
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