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The dominating set polytope via facility location

Mourad Bäıou1 and Francisco Barahona2

1 CNRS and Université Clermont II, Campus des cézeaux BP 125, 63173 Aubière cedex, France.
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Abstract. In this paper we present an extended formulation for the dominating set polytope
via facility location. We show that with this formulation we can describe the dominating set
polytope for cacti graphs, though its description in the natural node variables dimension
has been only partially obtained. Moreover, the inequalities describing this polytope have
coefficients in {−1, 0, 1}. This is not the case for the dominating set polytope in the node-
variables dimension. It is known from [1] that for any integer p, there exists a facet defining
inequality having coefficients in {1, . . . , p}. We also show a decomposition theorem by means
of 1-sums. Again this decomposition is much simpler with the extended formulation than
with the node-variables formulation given in [2].

1 Introduction

Let G = (V,A) be a directed graph, not necessarily connected, where each arc and each node has
a cost (or a profit) associated with it. Consider the following version of the uncapacitated facility
location problem (UFLP), where each location v ∈ V has a weight w(v) that corresponds to the
revenue obtained by opening a facility at that location, minus the cost of building this facility.
Each arc (u, v) ∈ A has a weight w(u, v) that represents the revenue obtained by assigning the
customer u to the opened facility at location v, minus the cost originated by this assignment. The
goal is to select some nodes where facilities are opened and assign to them the non selected node
in such a way that the overall profit is maximized. This version of the UFLP is called the prize-
collecting uncapacitated facility location (pc-UFLP). The following is a natural linear relaxation of
the pc-UFLP.

max
∑

(u,v)∈A

w(u, v)x(u, v) +
∑

v∈V

w(v)y(v) (1)

∑

(u,v)∈A

x(u, v) + y(u) ≤ 1 ∀u ∈ V, (2)

x(u, v) ≤ y(v) ∀(u, v) ∈ A, (3)

x(u, v) ≥ 0 ∀(u, v) ∈ A, (4)

y(v) ≥ 0 ∀v ∈ V. (5)

Let P (G) be the polytope defined by (2)-(4), and let UFLP ′(G) be the convex hull of P (G) ∩
{0, 1}|V |+|A|. Clearly UFLP ′(G) ⊆ P (G).

Given a directed graph G = (V,A), a subgraph induced by the nodes v1, . . . , vr of G is called a
bidirected cycle if the only arcs in this induced subgraph are (vi, vi+1) and (vi+1, vi), for i = 1, . . . , r,
with vr+1 = v1. We denote it by BICr. The first part of this paper is devoted to the study of
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UFLP ′(G), when G is a bidirected cycle. At first sight, the description of UFLP ′(BICn) seems
easy because of the simple structure of BICn. We will show that we need to add the so-called lifted g-
odd cycle inequalities, to complete its description. These inequalities define facets of UFLP ′(BICn),
and are valid for UFLP ′(G) for any graph G. We also give a linear time algorithm to separate these
inequalities.

To complete the description of UFLP ′(G) in a more general class of graphs, we consider the
graphs G = (V,A) that decompose by means of 1-sum. As a consequence we obtain a complete
description of UFLP ′(G) when G can be decomposed as 1-sums of bidirected cycles.

In the second part of this paper we discuss the consequences of these results when applied to the
dominating set problem. More precisely, let G = (V,E) be an undirected graph. A subset D ⊆ V
is called a dominating set if every node of V \D is adjacent to a node of D. The minimum weight
dominating set problem (MWDSP) is to find a dominating set D that minimizes

∑

v∈V w(v), where
w(v) is a weight associated with each node v ∈ V . A natural linear relaxation of the MWDSP is
defined by the linear program below

min
∑

v∈V

w(v)x(v) (6)

x(N [v]) ≥ 1 ∀v ∈ V, (7)

x(v) ≥ 0 ∀v ∈ V, (8)

x(v) ≤ 1 ∀v ∈ V, (9)

where N [v] denotes the set of neighbors of v including it. Define DSP (G) to be the convex hull of
the integer vectors satisfying (7)-(9).

The MWDSP is a special case of the set covering problem. It is NP-hard even when all the
weights are equal to 1, this can be shown using a simple reduction from the vertex cover problem.
A large literature is devoted to this case and many of its variants, for a deep understanding of the
subject we refer to [3,4]. It has been shown that when the weights are all equal to 1, the MWDSP is
solvable in many classes of graphs, a non-exhaustive list is cactus graphs [5], trees [5], series-parallel
graphs [6], permutation graphs [7,8,9,10], cocomparability graphs [11], (see chapter 2 in [4] for more
classes). For the weighted case of the MWDSP we have a short list of graphs where this problem
can be solved in polynomial time, for threshold graphs [12], for cycles [13] and for strongly chordal
graphs [14]. Little is known from the point of view of polyhedral approach and particularly few
complete characterizations of the polytope associated with the MDWSP are known. For the case of
strongly chordal graph Farber [14] gives a primal-dual algorithm to solve the MWDSP this shows
that DSP (G) is defined by (7)-(9). DSP (G) has been described for threshold graphs [12]. And it
has been, first, characterized for cycle graphs in [13] and later published in [1]. This result has also
been established in [15] using a different approach. One can also use the results related to the set
covering polytope [16,17,18,19,20], to cite a few, to establish new results for the MWDSP. The set
covering polytope is the convex hull of {x ∈ IRn : Ax ≥ 1, x ∈ {0, 1}n}, where A is an m×n matrix
with 0,1 entries. For example, the polytope DSP (G) when G is a cycle with n nodes coincide with
the set covering polytope when A is the C3

n circulant matrix. Recently in [21] a complete description
of the set covering polytope is established when A is the circulant matrix Ck

2k or Ck
3k, k ≥ 3.

We give an extended formulation via facility location to completely characterize the DSP (G)

when G is a cactus. This description has been studied in the original dimension that is IR|V | in
[13,1]. They developed several facet defining inequalities for this case, and showed that this polytope
has a more complicated structure than the case when G is a cycle. Even with the 1-sum composition
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developed in [2], the complete characterization of DSP (G) in cactus graphs has not been found. The
main difficulty reported in [13,1] is the description of the polytope when restricted to the auxiliary
graphs obtained after the decomposition. In our work we show that with the extended formulation
this task is easy and allows us to completely describe this polytope in a higher dimension. Moreover
in [13,1], it has been shown that for any fixed integer p, there exist a cactus G such that DSP (G)
has a facet defining inequality with coefficients 1, . . . , p. In our description all the facets defining
inequalities have coefficients in {0,−1,+1}.

This paper is organized as follows. In Section 2, we give some useful definitions and notations.
Section 3 is devoted to the characterization of UFLP ′(G) when G is a bidirected cycle. In Section
4, we show how the results of the previous sections apply to the dominating set polytope using a
composition theorem. Finally, in Section 5 we present the algorithmic consequences of our approach.
In particular, we devise the first polynomial time algorithm to solve the MWDSP in cacti. This is
done via a linear time separation algorithm of the inequalities we introduced.

2 Definitions and notations

Recall that a bidirected cycle BICr of a directed graph G = (V,A) is a sequence of nodes v1, . . . , vn
in V and arcs (vi, vi+1), (vi+1, vi) in A, for i = 1, . . . , n, where vn+1 = v1. The arcs of BICn are
denoted by A(BICn). To simplify the notation, we will denote the nodes of BICn by 1, . . . , n,
and the arcs by (i, i + 1) and (i + 1, i) for i = 1, . . . , n. When we use numbers i + j or i − j,
i, j ∈ {1, n}, the positive numbers are taken modulo n and the negative ones are taken modulo
−n. The number zero represents the node n. A bidirected path P of the graph BICn is an ordered
sequence of consecutive nodes of BICn, where the arcs (i, i+1) and (i+1, i) of any two consecutive
nodes i and i+ 1 of P , are both considered in the path. Here i+ 1 is taken modulo n. The size of
P is the number of its nodes minus one. Given a directed graph G = (V,A) its intersection graph
denoted by I(G) is obtained by associating a node for each arc of A. Two nodes are adjacent if the
tail of one of the corresponding arcs coincides with the tail or the head of the other corresponding
arc. It is easy to see that I(BICn) consists of the following circulant graph G2n = (A(BICn), E),
where A = {a1, . . . , a2n} and the set of edges E consists of the edges {ai, ai+1} and {ai, ai+2}, for
i = 1, . . . , 2n; the indices are taken modulo 2n.

For a directed graph D = (V,A), and S ⊆ V , we denote by δ+(S) the set of arcs (u, v) ∈ A
with u ∈ S and v ∈ V \ S. For a node v ∈ V we write δ+(v) instead of δ+({v}). If there is a risk of
confusion we use δ+G.

Given an undirected graph G = (V,E), a subset S ⊆ V is called stable if there is no edge between
any pair of nodes of S. The convex hull of the incidence vectors of the stable sets in G is called the
stable set polytope and is denoted by SSP (G). When each node v ∈ V has an associated weight
w(v), the maximum weight stable set problem (MWSSP) is to find a stable set S ⊆ V maximizing
∑

v∈S w(v). A set K ⊆ V is called a clique if there is an edge between every pair of nodes in K.
For a ground set U and a function f from U to IR, we use f(S) to denote f(S) =

∑

a∈S f(a),
whenever S ⊆ U .

3 The characterization of UFLP
′(BICn)

First we will give two families of valid inequalities for UFLP ′(G), when G is any directed graph.
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Let G = (V,A) be any directed graph. Let BICr a bidirected cycle included in G. The inequality
below is called a bidirected cycle inequality and has been introduced in [22],

∑

a∈A(BICr)

x(a) ≤

⌊

2|r|

3

⌋

. (10)

Now let us introduce the g-odd cycle inequalities. For any directed graph G = (V,A), a simple
cycle C is an ordered sequence v0, a0, v1, a1, . . . , ap−1, vp, where v0 = vp and for i = 0, . . . , p− 1, vi
and ai are distinct nodes and arcs, respectively. For i = 0, . . . , p− 1, the nodes vi and vi+1 are the
endnodes of ai.

By setting ap = a0, we associate with C three more sets as below.

– We denote by Ĉ the set of nodes vi, such that vi is the head of ai−1 and also the head of ai,
1 ≤ i ≤ p.

– We denote by Ċ the set of nodes vi, such that vi is the tail of ai−1 and also the tail of ai,
1 ≤ i ≤ p.

– We denote by C̃ the set of nodes vi, such that either vi is the head of ai−1 and also the tail of
ai, or vi is the tail of ai−1 and also the head of ai, 1 ≤ i ≤ p.

Notice that |Ĉ| = |Ċ|. A cycle will be called g-odd (generalized odd) if p+ |Ċ| (or |Ċ|+ |C̃|) is odd,
otherwise it will be called g-even. A cycle C with Ċ = Ĉ = ∅ is a directed cycle. The set of arcs in
C is denoted by A(C).

Let C be a g-odd cycle. Now we define a set of arcs Ã(C) as follows. For each node vi ∈ Ċ we
have two cases. Let vi−1 and vi+1 be the two neighbors of vi in C.

– If vi−1 and vi+1 are in C̃, we pick arbitrarily one arc from {(vi−1, vi), (vi+1, vi)} and add it to
Ã(C).

– If only one of the neighbors of vi is in C̃, say the node vj ∈ {vi−1, vi+1}. We add (vj , vi) to

Ã(C).

Once the lifting set Ã(C) has been defined, a lifted g-odd cycle inequality has the form

∑

a∈A(C)

x(a) +
∑

a∈Ã(C)

x(a)−
∑

v∈Ĉ

y(v) ≤
|C̃|+ |Ĉ| − 1

2
. (11)

One can easily show that this is a Gomory-Chvátal cut of rank one. Notice that given a g-
odd cycle C, we might have several lifting sets Ã(C), therefore we might have several lifted g-
odd cycle inequalities. Similar inequalities called lifted odd cycle inequalities have been studied in
[24,25,26,27].

The main result of this section is the following theorem.

Theorem 1. UFLP ′(BICn) is described by the constraints (2)-(5), the bidirected cycle inequality
(10) with respect to BICn and the lifted g-odd cycle inequalities (11).

The remainder of this section is devoted to prove this theorem. It is easy to see that UFLP ′(G)
is full dimensional for any graph G. Now assume that

αx+ βy ≤ ρ, (12)
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is a valid inequality defining a facet of UFLP ′(BICn). Let Fα,β = {(x, y) ∈ UFLP (G) ∩
{0, 1}|V |+|A| : αx + βy = ρ}. We will show that (12) is one of the inequalities (2)-(5), (10) or
(11). We assume in this section that (12) is different from (2)-(5) and (10). We will recall this when
needed. In the proof we will implicitly use the following remark.

Remark 1. There exist always a feasible 0-1 solution in Fα,β that satisfies inequalities (2)-(5) as
a strict inequalities (not necessarily at the same time). Otherwise (12) is one of the inequalities
(2)-(5).

Now we give a series of technical lemmas that will be used in the discussion that complete the proof
in subsection 3.1. For a detailed proofs see [28].

Lemma 1. We have α(u, v) ∈ {0, 1} for each (u, v) ∈ A(BICn) and β(u) ∈ {0,−1} for each
u ∈ V (BICn).

Proof. The main idea of the proof is a transformation to the stable set polytope. We add a slack
variable to each inequality (2), then we eliminate the y’s variables using the equations obtained from
(2) after the additions of the slack variables. It is not difficult to see that the convex hull of the 0-1
solutions in this new system is exactly the stable set polytope of a graph H = (U,E). Each column
corresponds to a node in H, and two nodes are adjacent if there is some inequality so that the two
respective columns appear with non zero coefficients. We can observe that this graph is quasi-line.
Using the results in [29], we show that the inequalities defining the stable set polytope in this new
graph can have coefficients in {0, 1, 2}. And we know that any valid inequality of UFLP ′(G) can
be obtained from a valid inequality of that stable set polytope by eliminating the slack variables
using the equations obtained from (2). This yield to a valid inequality with coefficients in {0, 1} for
the x’s variables and with coefficients in {0,−1} for the y’s variables. ⊓⊔

Lemma 2. We cannot have α(u, v) = 1 for all (u, v) ∈ A(BICn) and β(u) = −1 for all u ∈
V (BICn).

Proof. Assume that α(u, v) = 1 for all (u, v) ∈ A(BICn) and β(u) = −1 for all u ∈ V (BICn) .
Notice that

Max(x,y)∈UFLP ′(BICn)







∑

(u,v)∈A(BICn)

x(u, v)−
∑

u∈V (BICn)

y(u)







=
⌊n

3

⌋

. (13)

In fact, notice that if y(i) = 1, to have a positive contribution to the objective, we need x(i −
1, i) = 1 = x(i+1, i). So we should have a configuration like in Figure 1. The maximum number of
such configurations is

⌊

n
3

⌋

. It follows that

ii− 1

i+ 1

Fig. 1. The black node and bold arcs are variables with value 1, the other variables are zero, except the
nodes in the extremities.
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⌊n

3

⌋

≤ ρ (14)

We will study three cases. If n = 3k, there are only 3 feasible 0−1 vectors that give the maximum
of (13). If n = 3k+1, there are only n feasible 0−1 vectors that give this maximum of (13). Since we
have a full dimensional polytope we need at least 3n vectors that satisfy the inequality as equation,
to have a facet. Therefore, to finish the proof we need to study the case n = 3k+2 differently, since
int his case we have 3n vectors that give the maximum of (13).

Let n = 3k + 2. The nodes of BICn are 1, . . . , 3k, 3k + 1, 3k + 2.
We define a cycle C as follows. The set of nodes in Ĉ are i = 2+3l, for l = 0, . . . , k− 1 plus the

node 3k+ 1. For each node i ∈ Ĉ let (i− 1, i) and (i+ 1, i) in A(C). To complete the cycle we add
the arcs (3k + 2, 1) and (i, i + 1) for i = 3l, l = 1, . . . k. It results that the nodes i = (3k + 2) + 3l
for l = 0, . . . , k, are in Ċ and the nodes i = (3k + 2) + 3l + 1 for l = 0, . . . , k − 1, are in C̃.
Hence |Ĉ| = |Ċ| = k + 1 and |C̃| = k, so C is a g-odd cycle. Define a lifting set as follows: with
Ã(C) = {(i + 1, i) : i = (3k + 2) + 3l, l = 0, . . . , k − 1}. We have the following lifted g-odd cycle
inequality,

∑

a∈A(C)

x(a) +
∑

a∈Ã(C)

x(a)−
∑

v∈Ĉ

y(v) ≤
|Ĉ|+ |C̃| − 1

2
= k =

⌊n

3

⌋

. (15)

Inequalities (3) imply,

x(i, i− 1) ≤ y(i− 1) for each i ∈ Ĉ, (16)

x(i, i+ 1) ≤ y(i+ 1) for each i ∈ Ĉ. (17)

The sum of (15), (16) and (17) shows that (12) cannot define a facet of UFLP ′(BICn). ⊓⊔

The following three lemmas are easy to prove.

Lemma 3. Let i be a node of BICn with β(i) = −1. Then α(i+ 1, i) = α(i− 1, i) = 1.

Lemma 4. Let i be a node of BICn with β(i) = −1. If α(i, i− 1) = α(i− 1, i) = 1, then β(i− 1) =
−1.

Lemma 5. Let i be a node of BICn with β(i) = −1. If α(i, i− 1) = 1, then α(i, i+ 1) = 1.

Let us summarize the implications of Lemmas 2, 3, 4 and 5 by the following Lemma.

Lemma 6. Let i be a node of BICn with β(i) = −1. Then the following assumptions hold

(a1) α(i+ 1, i) = α(i− 1, i) = 1, and
(a2) α(i, i− 1) = α(i, i+ 1) = 0.

Proof. (a1) is obtained from Lemma 3. Now if we suppose that (a2) is not true, then Lemma 4 and
Lemma 5 imply that α(u, v) = 1 for each (u, v) ∈ A(BICn) and β(u) = −1 for each u ∈ V (BICn).
But this contradicts Lemma 2. ⊓⊔

Lemma 7. If α(i− 1, i) = 1 and β(i) = 0, then α(i, i+ 1) = 1.

Proof. There is a vector x ∈ Fα,β with y(i− 1) + x(i− 1, i) + x(i− 1, i− 2) = 0.
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– If y(i) = 1, we set x(i− 1, i) = 1 and violate the inequality; so y(i) = 0.
– If x(i, i+ 1) = 0, then we can set y(i) = 1 and proceed as before; so x(i, i+ 1) = 1.
– If α(i, i+ 1) = 0, we set x(i, i+ 1) = 0 and proceed as before; so α(i, i+ 1) = 1. ⊓⊔

Lemma 8. Suppose that we are not dealing with the bidirected cycle inequality. If α(i, i + 1) =
α(i+ 1, i) = 1 then α(i+ 2, i+ 1) = α(i− 1, i) = 0.

Proof. Assume i = 1. The proof is based on the statements below.

– It follows from Lemma 6 that β(1) = β(2) = 0.
– It follows from Lemma 7 that α(2, 3) = α(1, n) = 1.
– Since this is not a bidirected cycle inequality, we assume that there is an index k ≥ 2 such that:
• β(j) = β(j + 1) = 0, α(j, j + 1) = α(j + 1, j) = 1, for 1 ≤ j ≤ k.
• α(n, 1) = α(k + 2, k + 1) = 0.
• α(1, n) = α(k + 1, k + 2) = 1.

– There is a vector x ∈ Fα,β with y(k− 1) + x(δ+(k− 1)) = 0. We modify x as below to obtain a
vector that violates the inequality.
• If y(k) = 1 we just set x(k − 1, k) = 1.
• If y(k) = 0 and x(k, k + 1) = 0, we set y(k) = 1 and proceed as above.
• If y(k) = 0 and x(k, k + 1) = 1, we set y(k + 1) = x(k, k + 1) = x(k + 2, k + 1) = 0, and
y(k) = x(k − 1, k) = x(k + 1, k) = 1. ⊓⊔

Lemma 9. If α(i− 1, i) = α(i+ 1, i) = 1, then β(i) = −1.

Proof. Suppose β(i) = 0. It follows from Lemma 7 that α(i, i−1) = α(i, i+1) = 1. This contradicts
Lemma 8. ⊓⊔

Lemma 10. We have at least one of the values α(i, i + 1) or α(i + 1, i) equal to 1, for each
i = 1, . . . , n.

Now we can complete the proof of Theorem 1.

3.1 The proof of Theorem 1

Let Gα be the graph induced by the arcs (i, j) ∈ A(BICn) with α(i, j) = 1, we call this graph the
support graph of (12). Recall that a bidirected path P of a graph G = (V,A) is a sequence of nodes
P = 1, 2, . . . , k with (i, i+1) and (i+1, i) are both in A, for i = 1, . . . , k− 1. The size of P is k− 1.
We say that P is maximal if we cannot extend it to a bidirected path from one of its endnodes.

Notice that by definition the support graph of any g-odd lifted cycle inequality satisfy the
following three properties

– it contains a cycle as a subgraph,
– each maximal bidirected path is of size 1. Moreover, if P = i, i+1 is such a path, then (i− 1, i)
and (i+ 2, i+ 1) do not appear, and

– if C is the lifted cycle and i a node in Ċ, then the support graph must contain exactly one of
the arcs (i − 1, i) or (i + 1, i) when both nodes i − 1 and i + 1 are in C̃, it contains none of
the arcs if both of these nodes are in Ĉ and finally if, say i + 1 is in C̃, we must have the arc
(i+ 1, i).



8

Let us see that these properties are satisfied by Gα. Lemma 10 implies that Gα contains at least
one cycle as a subgraph. Choose any such a cycle and call it C. Lemma 8 implies that each maximal
bidirected path is of size one, and that for any such bidirected path P = i, i + 1 the arcs (i − 1, i)
and (i+ 2, i+ 1) are not in Gα. Again Lemma 10 implies that (i, i− 1) and (i+ 1, i+ 2) belong to
Gα.

Let i ∈ Ċ, and let i− 1 and i+ 1 be the neighbors of i in Gα. Notice that Gα must contain at
most one of the arcs (i− 1, i) and (i+ 1, i) since the size of maximal bidirected path is one.

If both i− 1 and i+1 are in Ĉ, then Lemma 9 implies that β(i− 1) = −1 = β(i+1), and using
Lemma 6 we obtain that α(i− 1, i) = 0 = α(i+ 1, i). So in this case the arcs (i− 1, i) and (i+ 1, i)
are not in Gα.

Assume that i + 1 is in C̃ and that Gα contains none of the arcs (i − 1, i) or (i + 1, i), that is
α(i−1, i) = α(i+1, i) = 0. By definition α(i, i−1) = α(i, i+1) = 1. Lemma 6 implies that β(i) = 0
and since i + 1 is in C̃, we must have α(i + 1, i + 2) = 1 and then again Lemma 6 implies that
β(i + 1) = 0. We can assume that there is a solution (x, y) ∈ Fα,β with x(i + 1, i) = 1, otherwise
(12) is the trivial inequality x(i+1, i) ≥ 0. Now if we set x(i, i+1) and y(i+1) to 1; x(i+1, i) and
y(i) to 0 and possibly x(i− 1, i) to 0, we obtain a feasible solution that violates (12). Therefore, we
must have exactly one of the arcs (i − 1, i) or (i + 1, i) in Gα. Moreover, if the node i − 1 is in Ĉ,
Lemma 9 implies that β(i− 1) = −1, and Lemma 6 implies that α(i− 1, i) = 0, so (i− 1, i) is not
an arc of Gα.

The above discussion shows that the support graph Gα coincides with the support graph of the
lifted g-odd cycle inequality defined from C. Moreover, from Lemma 6, each node i with β(i) = −1
must be in Ĉ. And from Lemma 9, for each node i ∈ Ĉ we have β(i) = −1.

For a g-odd cycle inequality it is easy to find a 0-1 vector of UFLP ′(BICn) that satisfies it with
equation. Then we have ρ ≥ (|Ĉ|+ |C̃| − 1)/2.

Now the proof of Theorem 1 is complete.

4 Application to the dominating set polytope

Let G = (V,E) an undirected connected graph. The graph G is a cactus if each edge of G is
contained in at most one cycle of G. For example every tree is a cactus. The main result of this
section is a complete description of the dominating set polytope DSP (G) in IR|V |+2|E| when G
is a cactus. This description can be seen as an extended formulation of DSP (G). We will show
that with this extended formulation, to obtain the polytope associated with a cactus, it suffices to
characterize the polytope associated with the maximal two-connected components.

Given an undirected graph G = (V,E). We say that G is a 1-sum of G1 = (V1, E1) and
G1 = (V1, E1) if |V1 ∩ V2| = 1, V = V1 ∪ V2, E = E1 ∪ E2.

Consider the following equalities obtained from (2).

∑

(u,v)∈A

x(u, v) + y(u) = 1 ∀u ∈ V. (18)

Define UFLP (G) to be the convex hull of the feasible 0-1 vectors satisfying (18) and (3)-(5). This
is the classical uncapacitated facility location polytope. Now given an undirected graph G = (V,E),

define the directed graph
←→
G = (V,A) that have the same node-set as G, and its arc-set A is defined

from E by replacing each edge uv ∈ E by two arcs (u, v) and (v, u).
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Lemma 11. For any undirected graph G = (V,E), the projection of UFLP (
←→
G ) onto the y’s

variables is exactly DSP (G).

Proof. We have to prove, DSP (G) = {y | there is a vector x such that (x, y) ∈ UFLP (
←→
G )}. First

consider ȳ ∈ DSP (G). We have ȳ =
∑

αiy
i,
∑

αi = 1, α ≥ 0, where {yi} are extreme points of
DSP (G). Consider now a particular vector yk. Let Dk = {u | yk(u) = 1}. For each v ∈ V \Dk, there
is at least one of its neighbors in Dk, wv say. We set xk(v, wv) = 1. We set xk(i, j) = 0 for all other

arcs (i, j) in
←→
G . Each vector (xk, yk) is an extreme point of UFLP (

←→
G ). So (x̄, ȳ) =

∑

αi(x
i, yi)

is a vector in UFLP (
←→
G ). Consider now (x̄, ȳ) ∈ UFLP (

←→
G ). We have (x̄, ȳ) =

∑

αi(x
i, yi),

∑

αi = 1, α ≥ 0, where each vector (xi, yi) is an extreme point of UFLP (
←→
G ). Then each vector yi

is the incidence vector of a dominating set Di, therefore it is an extreme point of DSP (G). Then
ȳ =

∑

αiy
i is a vector in DSP (G). ⊓⊔

Theorem 2 ([30]). Let D be a directed graph that is a 1-sum of D1 = (V1, A1) and D2 = (V2, A2),
with V1∩V2 = {u}. Let D′

1 be the graph obtained from D1 by replacing u with u′, and D′
2 is obtained

from D2 by replacing u with u′′. Suppose that the system

Az′ ≤ b (19)

z′
(

δ+
D′

1

(u′)
)

+ z′(u′) ≤ 1 (20)

describes UFLP ′(D′
1). Suppose that (19) contains the inequalities (2)-(5) except for (20). Similarly

suppose that

Cz′′ ≤ d (21)

z′′
(

δ+
D′

2

(u′′)
)

+ z′′(u′′) ≤ 1 (22)

describes UFLP ′(D′
2). Also (21) contains the inequalities (2)-(5) except for (22). Then the system

below describes an integral polyhedron.

Az′ ≤ b (23)

Cz′′ ≤ d (24)

z′
(

δ+
D′

1

(u′)
)

+ z′′
(

δ+
D′

2

(u′′)
)

+ z′(u′) ≤ 1 (25)

z′(u′) = z′′(u′′). (26)

Thus the theorem below follows from Theorem 1 and Theorem 2.

Theorem 3. If G is a cactus, then UFLP ′(
←→
G ) is described by the constraints (2)-(5), the bidirected

cycle inequalities (10), and the lifted g-odd cycle inequalities (11).

UFLP (
←→
G ) is a face of UFLP ′(

←→
G ). From Lemma 11, DSP (G) is a projection of UFLP (

←→
G ).

Therefore we have an extended formulation for DSP (G).
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5 Algorithmic consequences

In [1] the authors give the first polynomial algorithm to solve the minimum weighted dominating
set problem (MWDSP) in a cycle. They showed that the separation of the inequalities defining the
dominating set polytope in a cycle can be done in O(n2). Below we will show that the separation of
our inequalities can be done in linear time. In [31], we gave a linear time combinatorial algorithm
that solves the MWDSP, when the underlying graph is a cactus. Below we will give a cutting-plane

polynomial time algorithm to solve pc-UFLP in the graph
←→
G when G is a cactus. From Theorem 3

it suffices to develop a polynomial time algorithm to solve the separation problem associated with

inequalities (10) and (11). Recall that
←→
G can be decomposed by means of 1-sum into bidirected

cycles and bidirected paths of size one. The number of bidirected cycles is at most n
3 , where n is

the number of nodes of G. It follows that one can easily introduce the bidirected cycle inequalities
(10) in any linear program. Therefore we only need to solve the separation problem for the lifted

g-odd inequalities (11) for each component of
←→
G that is a bidirected cycle.

Separating lifted g-odd inequalities in a bidirected cycle Given a vector (x, y) we want to
verify if there is a lifted g-odd cycle inequality (11) violated by (x, y) if there is any.

Theorem 4. The g-odd lifted cycle inequalities can be separated in linear time for bidirected cycles.

Proof. A lifted g-odd cycle inequality (11) can also be written as

∑

a∈A(C)

(1− 2x(a))−
∑

a∈Ã(C)

2x(a) +
∑

v∈Ĉ

(2y(v)− 1) ≥ 1. (27)

Thus we look for a cycle that violates (27). For that we create a directed graph D′ = (V ′, A′)
as follows. For every arc (i, i+1) and (i+1, i) we create a node in D′. The arcs in A′ are as below.

– From (i, i+1) to (i+1, i+2) we create an arc with weight 1− 2x(i+1, i+2) and label “odd.”
– From (i, i+1) to (i+2, i+1) we create an arc with weight 2y(i+1)− 2x(i+2, i+1) and label

“even.”
– From (i+1, i) to (i+1, i+2) we create an arc with weight 1− 2x(i+1, i+2) and label “odd.”
– From (i+1, i) to (i+2, i+1) we create an arc with weight 1− 2x(i+2, i+1) and label “odd.”
– From (i, i−1) to (i+1, i+2) we create an arc with weight 2−2x(i, i+1)−2x(i+1, i)−2x(i+1, i+2),
and label “even.” This arc corresponds to the case when either (i, i + 1) or (i + 1, i) is in the
lifting set Ã(C).

Then we look for a minimum weight directed cycle with an odd number of odd arcs in D′. If the
weight of such a cycle is less than one, we have found a violated inequality.

Now we give the details of how to find a minimum weight directed cycle with an odd number
of odd arcs. We pick and index i, and remove the arcs entering (i, i+ 1) and (i+ 1, i). We add an
extra node s and connect it to (i, i+1) and (i+1, i) with even arcs of weight zero. For each node v
in D′ let fo(v) (resp. fe(v)) be the weight of a shortest path from s to v having an odd (resp. even)
number of odd arcs. We set fe(s) = 0, fo(s) = fo(v) = fe(v) =∞ for every other node v in D′. We
call the labels of s permanent and all others temporary. For each arc (u, v) we denote by w(u, v) its



11

weight. Then for a node v such that all its predecessors have permanent labels we update its labels
as below.

fo(v) = min
{

min
u
{fo(u) + w(u, v) : (u, v) is even},min

u
{fe(u) + w(u, v) : (u, v) is odd}

}

(28)

fe(v) = min
{

min
u
{fo(u) + w(u, v) : (u, v) is odd},min

u
{fe(u) + w(u, v) : (u, v) is even}

}

. (29)

Then the labels of v are called permanent, and we continue.
Once all labels are permanent, we use the arcs entering (i, i+1) and (i+1, i) to find a shortest

directed cycle with an odd number of odd arcs and including either (i, i+ 1) or (i+ 1, i). Next we
have to consider the case when neither (i, i+ 1) nor (i+ 1, i) is in the shortest cycle. This is when
the arc from (i, i − 1) to (i + 1, i + 2) is part of the shortest cycle. For that we repeat the same
procedure with i′ = i+ 1.

Since the indegree of each node in D′ is at most three, the labels in (28) and (29) are computed
in constant time for each node. Therefore this is a linear time algorithm. ⊓⊔
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