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ABSTRACT
In this paper, we present the design, architecture, and im-
plementation of a novel analysis engine, called FCCE, that
finds correlations across a diverse set of data types spanning
over large time windows with very small latency and with
minimal access to raw data. FCCE scales well to collecting,
extracting, and querying features from geographically dis-
tributed large data sets. FCCE has been deployed in a large
production network with over 150,000 workstations for over
2 years, ingesting more than 2 billion events per day and pro-
viding low latency query responses for various analytics. We
explore two real use cases and applications to demonstrate
how we utilize the deployment of FCCE on large diverse data
sets in the cyber security domain: 1) detecting fluxing do-
main names of potential botnet activity and identifying all
the devices in the production network querying these names,
and 2) detecting advanced persistent threat infection. Both
evaluation results and our experience with real-world appli-
cations show that FCCE yields superior performance over
existing approaches, and excels in the challenging cyber se-
curity domain by correlating multiple features and deriving
security intelligence.

1. INTRODUCTION
Over the last few years, the database community has wit-

nessed an important trend in data management. Many new
data-driven applications demand for more flexible database
schemes that process, compute, and combine information
on-the-fly, as new data is flowing in and needs to be pre-
pared for future queries. For several decades, relational
database management systems (DBMSs) were the de-facto
standard for such applications. With the recent shift of the
industry towards data-driven analytics, where the paradigm
“write-a-lot, read-a-little” is central in many applications,
a new type of database management systems has emerged,
so-called NoSQL databases. Many Internet applications are
benefiting from these new type of databases, including on-
line bidding, social network applications, or multi-player on-
line gaming, where data requires to be exchanged in real
time across participating parties. Beyond those applica-
tions, many other domains started to map data-intensive
real-time exchange or data caching tasks onto the NoSQL
paradigm.

One domain that has particularly benefited from these
novel type of databases is cyber security analytics. Over
the last decade, cyber security has become a big data prob-
lem, for which a wide variety of real-time and offline data
sources have to be combined, stored, analyzed, and inter-
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Figure 1: Processing, storing, and correlating real-time and
historical data from multiple input sources by means of
FCCE

preted in order to identify complex on-going and past at-
tacks and threats. Distributed key-value stores offer excel-
lent performance and flexibility to cope with the high vol-
ume of events, accommodate various sensor formats, and
retrieve events from different data sources and time ranges
in a scalable fashion. However, current implementations of
key-value stores only offer a limited capability to correlate
data at query time across the data stores. For example, an-
notating the attributes queried from one data source using
data from other sources requires resource-intensive sequen-
tial querying of the second source to retrieve the annota-
tions. Moreover, repeating the annotation process over ad-
ditional data sources renders the query logic complex and
less usable.

In this paper, we address the challenge of collecting high
volume data from arbitrary data sources, and storing it effi-
ciently for high-performance and low-latency data retrieval,
streaming, and correlation using a novel distributed key-
value store (see Figure 1). A first problem we address is
the segregation of raw data into pieces and the derivation
of meaningful meta data representations, which we call fea-
tures, that are expressive and relevant to support correlation
at retrieval time. In addition to the feature representation,
we strive for an approach that enables efficient access to
the entire raw data stored. The second problem we focus
on is the data correlation mechanism at query time; this
mechanism enables a user to define and configure correla-
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tion criteria ahead of query time while leaving the complex-
ity of resolving and annotating attributes to the underlying
database management system.

The main contributions of this paper are:

• We present the design and architecture of the Feature
Collection and Collection Engine (FCCE), a highly-
scalable, low-latency, distributed key-value data man-
agement system. FCCE is optimized to extract, nor-
malize, store, retrieve, and correlate features from di-
verse data sources. FCCE is designed to support geo-
graphically distributed data sources, and does not re-
quire continuous connectivity between the data sources.
FCCE also offers resilience against failures of individ-
ual nodes within the distributed engine architecture.

• We propose a novel approach to integrate correlation
criteria directly into the query engine of our key-value
store to expedite the query response time and reduce
computational and I/O overhead.

• We implement and deploy FCCE in a large production
network with 150,000+ user workstations and network
servers, ingesting more than 2.3 billion events per day,
and yielding a total raw compressed data storage of
43 TB over 2 years and a total feature storage size
of 500GB/month (uncompressed). Our measurements
show that our engine can ingest, extract, and nor-
malize features from more than 3 billion events per
day (e.g., Netflow, DNS messages, DHCP logs, fire-
wall logs) with the performance being I/O bound and
scaling largely linearly with the number of hardware
nodes deployed.

• We evaluate FCCE with a large-scale real-world net-
work data to show low-latency query response time,
scalability, and real-time processing capability. We
also demonstrate practical impacts by applying FCCE

to two cyber security analytics use cases: (i) botnet
behavior detection and (ii) post-incident cyber threat
investigation.

The remainder of the paper is organized as follows. We de-
scribe the applications and challenges of NoSQL data stores
in the cyber security domain in §2. We detail the data model
in FCCE and interfaces for storing, retrieving, and correlat-
ing features in §3. We present the architecture of FCCE

in §4, and its implementation in §5. The performance of
FCCE is evaluated in §6 along with several real-world use
cases and applications. We discuss relevant literature and
existing work in §7, and conclude in §8.

2. NOSQL IN CYBER SECURITY
Corporations and governmental organizations have been

challenged by a drastic shift towards highly sophisticated
and targeted cyber security threats. Attackers are increas-
ingly applying stealthy attack techniques to hide their pres-
ence or, at least, reduce the probability of being detected,
e.g., by concealing their attack steps over multiple machines,
exploiting different application protocols, or spreading their
activities over long time frames. Many of these threats
are referred to as advanced persistent threats (APT). Yet
the chance to be able to detect and investigate such com-
plex attack patterns requires collecting, storing, and ana-
lyzing events from a variety of vantage points, different data

sources, and multiple abstraction layers, such as raw network
packets and network flow exports, DNS messages, DHCP re-
quests, ARP packets, wireless authentication logs, IDS/IPS
alerts, external blacklists, and so on.

The monitoring data, exported typically at rates of many
thousands of events per second, needs to be collected, stored,
and made available for real-time and historical analysis. With
such a load, a wide variety of relevant data types, and vary-
ing collection delays (e.g., network flow summaries are ex-
ported near real-time versus authentication logs are pulled
periodically), cyber security threat investigation has turned
into a big data problem and demands for careful selection of
suitable data management technologies. Many events col-
lected become only meaningful when they are put into con-
text and correlated with different data sources over poten-
tially large time windows (e.g., weeks or months) in order
to assess the big picture of on-going and past activities and
to filter out false alarms having little or no impact.

The data flow in cyber security applications is of the type
“write-a-lot, read-a-little”, as data is collected at a high
speed (e.g., 100K events/sec or more). Moreover, the data
exported is static and does not change (e.g., by means of up-
dates) at a later point in time. For example, log files contain
unchanged records of what happened. Existing (relational)
databases and their underlying indices are optimized for sce-
narios where data may be changed and indices are reorga-
nized and rebuilt over time; however, this is achieved at the
expense of more overhead during data insertion or update.
In addition, cyber security applications need to deal with
heterogeneous data sources in different formats and collect-
ing intervals. For example, some information is streamed in
near real-time whereas other data is exported periodically.
Finally, a lot of data relevant for cyber security provide con-
textual insights, such as associations between IP addresses
and hardware MAC addresses, or ownership between devices
and users. Such data is similar to (time-dependent) map-
ping between keys and values. Compared with a traditional
DBMS, NoSQL database management systems, and in par-
ticular key-value stores, provide superior performance that
is crucial for cyber security analytics.

In the remainder of this section, we provide an example
of a typical query we perform in many cyber security ana-
lytics applications. Figure 2 illustrates how we analyze the
scope of the impact of a known malicious or suspicious ex-
ternal machine (given its Fully Qualified Domain Name) in
5 stages, whereby the output of one correlation stage is fed
as an input into the next stage(s).

a) We look up all the IP addresses related to the investi-
gated external domain name.

b) We find all other names resolving to any of those IP
addresses, both historically and in real-time. This ex-
pands our knowledge from a single system that has
been reported to host malicious activities (e.g., by black-
lists or external investigation reports) or detected lo-
cally as the source of malicious activity (e.g., by botnet
analytics) to the larger network infrastructure related
to this system.

c) We look up all the IP addresses that have been re-
turned for any of those names during the investigation
time period (e.g., one month). At this point we have
expanded our knowledge about the external infrastruc-
ture that may be related to the incident and we have
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Figure 2: Security threat impact analysis of a known ma-
licious/suspicious external host by automatically extracting
correlated events from different locations, data sources, and
time periods.

looked three times at the DNS data collected during
this time period while changing inputs. The operations
are hard to parallelize.

d) We transfer analysis from the ‘outside’ to the ‘inside’ of
the monitored network and determine all internal de-
vices that either looked up any of the external names
(DNS messages) and/or connected (network flows) to
any of the external IP addresses. Flows and lookups
deliver internal IP addresses, that are automatically
translated into MAC addresses (using historical DHCP
/ARP information) and then collapsed to the differ-
ent devices (e.g., unifying wireless and wired MAC ad-
dresses to a single machine).

e) We can lookup which credentials have been used on
those devices (single-sign on, authentication logs) and
that may have been exposed on those suspicious de-
vices, or which high value assets have been accessed
from those devices (network flows, high value asset
information). We can reduce the number of further
investigated devices by prioritizing them based on the
privileges of the user credentials or the accessed servers
hosting valuable assets.

As we will see in more details later, FCCE can perform such
tasks with only several seconds latency.

3. CONCEPT
In this section we present a set of key concepts of FCCE,

including the data model, idempotence, and APIs, and dis-
cuss the rationale behind the design choice to make FCCE

simple yet suitable for the target applications.

3.1 Data Model
As introduced in §1, the design of FCCE centers around

the concept of features. A feature essentially specifies the
relationship between a pair of key and value, both of which
may comprise multiple attributes. Each type of features has
a unique name, typically given by concatenating the names
of the key and value attributes.

Example 1. IPByNameDate names the type of features
specifying the DNS resolution relationship of Domain Name
+ Date (key) and IP Address (value), e.g., www.example.com
+ 20130101 → 1.2.3.4.

FCCE presents a simplified relational data model to a user.
Conceptually, data is organized by tables and rows. Each
table stores one type of features. Each row is individually
identified by a key, and may contain multiple values. Please
note that our concrete implementation does not strictly fol-
low this conceptual model for storage and retrieval efficiency.
We discuss implementation details in §5.

3.2 Idempotence
Conventional key-value stores typically differentiate the

values associated with the same key by assigning different
version numbers. In contrast, FCCE treats the values asso-
ciated with the same key as a set.

The rationale behind the simplification is as follows. First,
the loss of ordering and duplicate information is often non-
consequential for applications that continuously correlate
live and historical data. Second, one can always impose
the ordering information by appending timestamps to the
values. Third, most importantly, the order in which values
are stored in FCCE is transparent to read operations.

This leads to the idempotence property of FCCE, and this
property significantly simplifies the logic of collecting fea-
tures in environments wherein diverse data arrives along
multiple overlapping paths originated from geographically
distributed and heterogeneous data sources (details in §5).

3.3 API
At the low level, FCCE provides a set of flexible APIs for

storing, retrieving, and correlating features.

put(feature, 〈K, V〉): put stores key-value pair (K, V) to feature
table. FCCE handles a series of key-value pair inputs
(e.g., inputs from a file or a feature collector).

get(feature, 〈K, . . . 〉): get reads the values associated with
K from feature table. Note that 〈. . . 〉 indicates that
FCCE can take a sequence of keys as an input (e.g.,
read a list of keys from a file, data stream, or standard
input) and fetch all of their associated values.

Although its basic form seems similar to the get function
in conventional key-value stores, FCCE differs in providing
two powerful mechanisms that empower simple APIs to sup-
port efficient correlation operations between features.

a) Query pipeline: This mechanism allows passing the
features retrieved from one query to another query as
inputs. In other words, with query pipeline, one is able
to chain multiple get functions sequentially, thereby gen-
erating the intersection of multiple feature stores.
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Example 2. Table NameDateByClient stores the do-
main names queried on specific dates by each client while
table IPByNameDate stores the resolved IP addresses of
the domain names on a specific date. Therefore, one
may have the following expression which chains two get
functions:

get(IPByNameDate, get(NameDateByClient, 1.2.3.4))

By correlating both features, one can identify all the IP
addresses to which client 1.2.3.4 tries to connect.

b) Query modifier: On top of the basic get operation,
FCCE offers a rich set of options for fine-grained controls
of its behavior. We refer the options as query modifiers.
A subset of important modifiers include:

• ++select 〈field〉: This allows selecting a subset of spe-
cific fields from each record.

• ++subscribe: This enables the subscription mode,
which consumes data directly from live data streams
(details in §4).

• ++where 〈expression〉: This filters the query results
based on the evaluation of the expression.

• ++duplicate: This allows duplicate records to be out-
put for saving the cost of de-duplication (details in
§5).

Example 3. The following expression identifies the
IP addresses in the subnet of 1.2.0.0/16, which have been
visited by the client 1.2.3.4.

get(IPByNameDate, get(NameDateByClient, 1.2.3.4),
‘++where’, ‘in 1.2.0.0/16’)

4. ARCHITECTURE
In designing FCCE, we strive to achieve the following five

objectives:

Scalability: It should scale up to ingest extremely high-
volume data input (e.g., in the order of hundreds of
thousands of events per second).

Low query latency: It should respond to queries in fairly
limited time windows (e.g., in the order of nanosec-
onds).

Versatility: It should be easily adaptable to handle new
data types (e.g., various network monitoring data).

Fault tolerance: It should be resilient against the failures
of single points in the system.

Usability: It should provide a rich and interactive interface
for accessing the features in the store.

In the rest of the section, we first give an overview of the
system architecture of FCCE and then detail the design de-
cisions of its core components that help achieve the afore-
mentioned objectives.

As introduced in §3, in FCCE, we extract meta data repre-
sentations called features. An extracted feature is conceptu-
ally a key-value pair, where a key essentially points to a spe-
cific“bucket”of feature values. For example, when we collect
features from DHCP requests, an IP address as a key can
be mapped to a set of hardware MAC addresses that were
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Figure 3: Architecture of FCCE: Organization of compo-
nents and flow of data in FCCE during data ingestion (bot-
tom box) and retrieval (top box).

associated with the IP address. We treat the feature values
in each bucket as a mathematical set. The collection of such
sets forms feature store (FS), which is implementable using
off-the-shelf key-value data stores. The use of mathematical
sets to aggregate features allows to ingest data without con-
sidering its temporal ordering, which is especially beneficial
for distributed environments. Furthermore, the use of sets
enables to efficiently aggregate different data sources that
may become available at different time frames.

FCCE entails a complete framework for ingesting, aggre-
gating, storing, as well as retrieving data. The overall archi-
tecture of FCCE is sketched in Figure 3. The data ingestion
part can yet be subdivided into feature extraction (ingesting
and processing raw data to abstract features), feature aggre-
gation (collecting and merging features from different data
inputs), and feature storage (storing the aggregated results).
For data retrieval, a feature retrieval layer provides an in-
terface for efficiently querying features of interest by a data
consumer (e.g., analytics applications).

Feature extraction. For each input data source, do-
main experts specify the method of extracting (or “decap-
sulating”) and abstracting features from raw data, which
is implemented as a component called Extractor. Each data
source is associated with one or more extractors for fast pro-
cessing. The extracted features from each data source are
directly forwarded to the next phase, or de-duplicated and
cached in local and transient feature stores. The transient
feature stores constitute the locally derived knowledge from
the associated input data sources.

Feature aggregation. The next phase is to aggregate
the local knowledge at different extractors to form a global
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view. It is implemented by a component which we refer to as
Collector. Each collector takes as an input the features ex-
tracted by multiple extractors, and aggregates the features
while de-duplicating any redundancy. At each collector, a lo-
cal feature store keeps the derived and de-duplicated knowl-
edge from all the inputs fed into the collector. In the same
manner as an extractor, a collector can optionally forward
new values to one or more other collectors, constructing a
hierarchical structure (e.g., a tree or a DAG) for the purpose
of scalability, load balancing, and redundancy.

Feature storage. At the top of the hierarchy of col-
lectors, one or more collectors are designated as Root Col-
lectors. Root collectors provide the permanent storage for
the collected features, as well as the Query Service (QS) for
accessing the information.

Feature retrieval. FCCE provides a rich query inter-
face by supporting 3 different ways of accessing the derived
knowledge. First, one can use the registration service (RS)
to find the root collector that stores the features of inter-
est, and follow the query protocol (QP) to send queries to
the corresponding feature store using specific feature types
and keys as query predicates. Second, one can also sub-
scribe to specific extractors/collectors (as routed by the reg-
istration service) about feature types of interest using the
subscription protocol (SP). Once new key-value pair of the
subscribed feature types are inserted to the (local) feature
stores, they are also forwarded to the subscribers. Finally,
one can use the interface of feature correlation (FC) and set
up customized correlation functions to acquire knowledge
from different types of features.

5. IMPLEMENTATION
In this section, we address the detailed issues of imple-

menting FCCE. Figure 4 illustrates the core components
of FCCE (referred to as its core modules), which are im-
plemented using about 28,000 lines of C code. Based on
their functionalities, the core modules are grouped into four
layers: (a) the ingestion and extraction layer that receives
incoming data and normalizes them into features, (b) the
feature collection layer that aggregates and de-duplicates
the features, (c) the feature store management layer that
archives and manages the aggregated features, and (d) the
feature access service layer that provides query services for
retrieving or correlating features. Below we detail their im-
plementation.

5.1 Ingestion and Extraction
FCCE supports a range of methods to ingest live data into

the system. Presently, raw TCP and UDP socket readers, a
file reader, and API wrappers (available in C, Python, and
Perl) are implemented.

A feature extractor decapsulates features from the associ-
ated input data, and encodes the features into a pre-defined
format. More precisely, the ingested data is first decoded
by a data type-specific component (e.g., tcpdump to decode
pcap data), which can be either loaded from a collection of
modules or a custom-built module. The desired information
is extracted from the data and mapped into key-value pairs
based on the configuration. In addition, a system times-
tamp (T) is automatically attached to each key-value pair to
indicate its insertion time; moreover, the identifier of the fea-
ture of interest (featureID) is also attached to the key, which

Figure 4: Illustration of the FCCE core modules, handling
feature extraction, collection, storage, and access services.

will direct FCCE to appropriately store the feature. Each
key-value pair is then encoded into a format defined by the
configuration, with the binary key K and value V.

Example 4. We show how a “Domain Name-to-IP Ad-
dress” feature, IPByNameDate, is created from DNS responses.
We configure the feature extractor with the appropriate data
adaptor (e.g., Wireshark) to handle all incoming DNS re-
sponses and map them into the featureID of IPByNameDate.
Subsequently, for every DNS response, a key-value pair is ex-
tracted by the adaptor of the format 〈(Domain Name, Date),
IP Address〉. For instance, if a DNS lookup returns the fol-
lowing resource record on 2013/04/01:

www.example.com. IN A 192.168.1.1

The adaptor generates an entry with key (www.example.com.,
20130401) and value 192.168.1.1.

5.2 Feature Collection
At the feature aggregation layer, a set of collectors aggre-

gates the features fed by multiple extractors (or peer collec-
tors) and de-duplicates redundant information in the input.
Specifically, for a new key-value entry K-V (associated with
timestamp T), a collector implements the de-duplication op-
eration as sketched in Algorithm 1. Note that every tu-
ple 〈K, (T,V)〉 written to the local feature store is also for-
warded to the designated upper-level collector(s) in the hier-
archy, which are configurable in the registry service (details
in §5.4).

5.3 Feature Storage Manager
At the core of our implementation of FCCE is the fea-

ture store manager (FSM), which manages an underlying
custom-built key-value store. Although the use of off-the-
shelf key-value stores is also possible, our implementation
leverages several key properties of FCCE, including (i) idem-
potence, (ii) write-a-lot-read-a-little, and (iii) append-only
update, thereby achieving superior storage and retrieval per-
formance over conventional key-value stores (see §6.1).
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Algorithm 1: De-duplicating and storing new feature
values.

for newly arriving key-value pair K-V with timestamp
T do

R ← lookup of local feature store using key K
if R = ∅ then

store tuple 〈K, (T, V )〉 {new record is created}
else

if V exists in R then
T ′ ← timestamp associated with V in R
if T < T ′ then

replace T ′ with T in R
write R to feature store {update timestamp}

end if
else

append (T, V ) to R
write R to feature store {append new value}

end if
end if

end for

hash function

Directory Directory Directory

Key

Top-Level 
Directory Pages

Auto-Balancing 
Hash Tree

Data Pages
K1/V1 K2/V2

K3/V3
IDX

K4/V4 ... ... ... 

Figure 5: Implementation of FCCE feature store manager

Figure 5 illustrates the implementation of FSM. Overall
the key-value store is organized as a set of fixed size pages.
There are three types of pages: free map pages, data pages,
and directory pages. Free map pages maintain a record for
each page with the amount of free space on that page. The
data pages contain one or more key-value data entries stored
in the form of key length, value length, key bytes, and value
bytes. When an entry could not fit in one page, it is ex-
panded to another page. The directory pages store the di-
rectory records. Overall these records form a dynamically
expanded set of hash tables, which map the hashes of the
keys to respective data pages. Further, the 16-bit checksum
values are also used to reduce false hits. Note that since no
information about the location of data entries on the data
page is maintained, the data can be moved around within
each page without the need to perform directory updates.
Finally, as shown in Figure 5, all the directory pages are or-
ganized as a set of auto-balancing hash trees, thereby evenly
distributing the storage load over different pages.

5.4 Feature Access Services
FCCE provides multiple services for feature data access.

We highlight three most important services, and describe
their roles.

Registration Service: A central component of FCCE is
the registration service (RS). The RS is used as a map to
locate other services. Because of the potential geographic
distribution of the system, where communication may be

disrupted, a completely centralized service registration sys-
tem was ruled out. Our implementation has an RS on every
node in the system. The local RSes contain only informa-
tion about services that are only available on the local node.
This enables locally contained operations to run even when
the node becomes temporarily isolated or disconnected.

Global information is forwarded to a set of global registra-
tion servers. The actual forwarding is offloaded to the local
registration servers, which are responsible for ensuring that
the information eventually reaches the global servers.

Registration information consists of a set of key/value
pairs. The following example indicates the presence of a tap
service (with identifier tap1) for the data type DNS in the
zone rcx, whose service interface listens on 10.10.0.5:55000.

‘class=tap,type=dns,zone=rcx,tapid=tap1,
address=10.10.0.5,port=55000’

A query to the registration server provides some subset of
the key/values and all entries that match will be returned.
Thus, a query for

‘class=tap,type=dns,zone=rcx,tapid=tap1’

would match the above and return all the values. This func-
tionality is also used to locate where features may reside.

Query Service: The query service provides the most
direct way to access the features in the store, which allows
data consumers to look up the feature store using feature
types (featureID) and query key(s) as query predicates. In
particular, the query service implements the procedure as
sketched in Algorithm 2.

Algorithm 2: Looking up features of interest using
key(s).

combine and encode query key(s) with feature type to
form key set {K}
for each key k ∈ {K} do

R← lookup of feature store using k
if R 6= ∅ then

for every feature value (T, V ) ∈ R do
emit tuple 〈k, (T, V )〉

end for
else

report failure
end if

end for

The query service, co-located at root collector nodes, main-
tains registrations that provide higher level keying informa-
tion about what data is in their feature stores. For exam-
ple, a query service might be registered as a feature store
class (fs), offering the feature IPByNameDate for the date
range between 2013/04/01 and 2013/04/02, where two dif-
ferent query services endpoints (hosted on nodes 10.10.0.6
and 10.10.0.7) offer features for the same date.

‘class=fs,feature=IPByNameDate,date=20130401,
address=10.10.0.6,port=12345’

‘class=fs,feature=IPByNameDate,date=20130401,
address=10.10.0.7,port=12345’

‘class=fs,feature=IPByNameDate,date=20130402,
address=10.10.0.7,port=12345’

A query interface can locate all the query services offering
features with the name IPByNameDate by requesting
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‘class=fs,feature=IPByNameDate’

at the registration service. This query would return the two
registered query service endpoints above. If only information
from the date 2013/04/02 was desired, the query interface
would request

‘class=fs,feature=IPByNameDate,date=20130402’

The query interface then sends the query directly to the
resulting set of query service endpoints, identified by their
IP address and port number. While the registration service
provides a very high performance service, in practice, the
query service would cache lookups and not have to perform
the registration lookup for every query. In the same way,
stores from different tenants can be separated in a multi-
tenant setup.

The subscription service provides access to a near real-
time stream of events ingested into the system. By means
of the get API, a client subscribes to specific collectors that
offer a subscription service. As part of the subscription op-
eration, a client may subscribe by a feature name (featureID)
and a key. Moreover, during subscription, the client may
select value fields and define specific filters as with a regular
query (see §3.3). A subscription server routes the request
to the appropriate collectors (after consulting the registry),
where a forwarding channel to the query processor is estab-
lished. If a new event meets the filter criteria, then the de-
sired fields are selected and forwarded. A dedicated network
connection between the client and the subscription service is
kept alive for as long as the client subscribes to the events.
New events are passed as messages from the service to the
client by means of an underlying subscription protocol.

5.5 Feature Correlation
Correlation is currently provided at the effective edge of

the system. The results of two queries can be joined based
on data fields within the records retrieved. In order to allow
subscription based joins, periodic markers can be emitted to
allow either aggregation, or expiration of older data. Future
work will expand the correlation capabilities, moving it from
the edge closer to the data.

6. EVALUATION
Over the last few years, we have gained significant expe-

rience when designing and optimizing FCCE, and deploying
it in various production environments. In this section, we
report the results of a comparative performance evaluation
and a deployment of FCCE in a production environment.
Moreover, we provide descriptions, results, and experiences
of how we apply FCCE in cyber security analytics with two
concrete use cases in one of our deployments and with a data
set publicly available.

6.1 Storage and Retrieval Performance
We first compare the performance of FCCE and a conven-

tional key-value store in terms of data storage and retrieval
efficiency. We compared FCCE with Redis [12], a repre-
sentative key-value storage system featuring state-of-the-art
performance [28, 36]. To generate realistic workloads, we
used Yahoo Cloud Serving Benchmark (YCSB) [25], a widely
adopted framework for performance evaluation of key-value
stores. YCSB offers common set of workloads consisting of
CRUD operations, e.g., create, read, update, and delete.
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Figure 6: Throughput Comparisons

Setup: We performed our evaluation on a machine with
two 2.53 GHz Intel Xeon quad core CPUs and 96 GB of
RAM running CentOS 5.8. We used the latest stable ver-
sion 2.8.6 of Redis with snapshotting disabled. We config-
ured the workloads of YCSB for 60% reads, 30% updates,
and 10% inserts, which were similar to the workloads of our
DNS analytics. In order to avoid contention for resources
with YCSB, we ran YCSB on a separate machine with two
2.67 GHz Intel Xeon hexa core CPUs and 96 GB of RAM
running CentOS 5.8. Our data set consisted of 8 million
1 KB records, and overall 10 million operations were per-
formed. The resulting size of the feature store in FCCE was
9.6 GB, and Redis consumed 20 GB of memory. We tested
with varying number of client threads, e.g., 1, 2, 4, 8, 10,
12, 16, 20, and 24, to measure scalability with increasing
amount of load.

Results: Figure 6 shows the throughput of FCCE and
Redis. The highest throughput of FCCE was 51,807 opera-
tions/sec in 4 thread configuration, and the highest through-
put of Redis was 28,693 operations/sec in the 20 thread con-
figuration. Overall, FCCE achieved 1.6–5.4x higher through-
put than Redis.

Figure 7 depicts read, update, and insert latency of FCCE

and Redis. Latency was the average response time of oper-
ations, and is measured in microseconds. For all three kinds
of operations, FCCE had much lower latency than Redis. For
read and update operations, the latency of FCCE decreased
as the number of threads increased up to 4. With 8 or more
client threads, the latency of FCCE slightly increased and
became stable, which explains the decrease in throughput.
For insert operations, the latency of FCCE gradually de-
creased as we increased the number of client threads. For
all three kinds of operations, the latency of Redis showed
similar patterns, e.g., the latency steadily decreased with an
exception of the increase at 12 thread configuration.

6.2 Real-world Deployment
In one of our deployments of FCCE in a large production

network with over 150,000 workstations, we ingest a variety
of network monitoring related data. The nodes deployed are
geographically distributed so that processing can be placed
close to the data sources. Eight nodes are used for ingest-
ing live raw data. The features are forwarded to a single
central node which de-duplicates the merged stream of fea-
tures. This is then forwarded to 5 nodes for final persistent
storage. The persistent stores provide the historical query
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Table 1: Currently deployed data sources and data rates.

Data Type Number of sources Events/day
Data/day

gzipped uncompressed
DNS messages 6 1250 M 64 GB 250 GB
Firewall logs 1 860 M 30 GB 200 GB
IPS alerts 2 26 M 4 GB 34 GB
HTTP headers 2 2 M 200 MB 1 GB
Proxy logs 1 200 M 30 GB 140 GB
VPN 1 1 M 40 MB 400 MB
Total 2.3 B 128 GB 625 GB
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service. The hardware resources of these nodes vary but all
have at least 12 cores and 96GB of RAM. The persistent
stores have fiber attached storage with multiple terabytes of
disk space.

In Table 1, we report the different data types along with
the number of sources (taps), the average number of in-
serted events per day, and the average amount of raw data
processed per day. In addition, we also monitor a number
of lower volume data feeds, such as DHCP and ARP traffic,
as well as periodic batch data sets, such as web proxy logs,
wireless network authentication logs, and workstation asset
management databases. Incorporating all of these disparate
data types into a single FCCE deployment as normalized fea-
tures allows us to easily correlate across multiple features.

In the remainder of this section, we report performance
metrics we measured in our deployment:

Insertion rate: In our real-world deployment, where we
ingest DNS requests and replies, we measured insertion rates
with a mean of over 113,000 events per second. In addition,
in this environment, we observe periodic burst rates as high
as 200,000 events per second, to which our deployment scales
well.

Data reduction: To demonstrate the amount of reduc-
tion that can occur in our deployment, one month of DNS of
data collected from one of our DNS taps was processed. The
raw data consisted of more than 2 billion records, requiring
as much as 240 GB of unstructured storage. The resulting
feature store, including meta data to facilitate searching,
used 6.6 GB and contained 300 million unique features.

Data retrieval and query response times: In con-
trast to a conventional key-value store, FCCE offers a set of
unique functionalities, including feature collection and corre-
lation. We thus further divide the empirical evaluation into
two parts: one part that compares FCCE against alternative
systems in their common functionalities, e.g., data storage
and retrieval, in §6.1, and another part that evaluates the
functionalities unique to FCCE, e.g., feature correlation in
cyber security analytics, in §6.3.

6.3 FCCE in Cyber Security Analytics
As an example of how we can utilize our deployment of

FCCE, we present two use cases. The first use case is a
simple analytic for detecting fluxing domain names [33] over
some time period indicating potential botnet activity. In the
second use case, we demonstrate how we identify devices
in our network looking up such fluxing domain names by
correlating DNS lookups with DHCP and asset database
information.

Detection of fluxing domain names: We implemented
an application analytic on top of FCCE, that looks for DNS
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Table 2: DNS data set for APT infection discovery

# Queries # Responses Size (gz)
Feb. 2013 2,267,510,219 2,329,277,927 69.5 GB
Mar. 2013 1,539,510,477 1,555,669,803 48.3 GB

Total 3,807,020,696 3,884,947,730 117.8 GB

names that have multiple IP addresses across multiple coun-
tries. We acknowledge, that this analytic is too simplistic
for exact matches in practice, but will return a small subset
of candidate names for further in-depth analysis.

To achieve this extraction, our analytic first pulls all of the
country codes from a date range. This query is covered by
the DNS feature CCByDate. With the results from this query
at hand, the analytic creates a filter CC, Date and queries
for all the names in each country code on each date in the
feature NameByCCDate. The analytic then reorganizes the
result by domain names, and reduces the list down to those
names that have more than some threshold set of countries
associated with them. At this point, we have already re-
duced the set of candidate domain names to a much smaller
set. Applying additional rules on IP addresses returned and
corresponding autonomous system (AS) numbers, through
similar queries, reduces the set further to the set of poten-
tial fluxing domain names.

We measured the query response times for the two main
queries described above on a single HS22 blade in our eval-
uation testbed. The first query (CCByDate), over a range of
5 days in February 2012, took less than 1 second (on average)
and returned 565 records. The second query (NameByCCDate)
completed in 17 seconds (on average) and returned more
than 500,000 records.

Identification of devices querying fluxing names:
Having a set of fluxing domain names, it is critical to iden-
tify which devices in the monitored environment were query-
ing them. Because most environments often utilize DHCP
for assigning IP addresses, using only IP addresses to iden-
tify devices in historical data becomes ineffective. This is
why feature correlation in FCCE is a crucial functionality in
analytics. Using FCCE, we are able to correlate across vari-
ous data sources (including DHCP messages), and create an
identity trail for every DHCP-configured device.

For this purpose, we can ask for all the dates that a fluxing
domain name was queried using DateByName feature. Using
the results of this, we can ask for all of the clients using
ClientByNameDate. This returns a set of IP addresses for the
clients. The next translation is to hardware MAC addresses
using MACByIPDate. Finally, using features extracted from
a work station asset management database, we can request
DeviceIDyMACDate, and identify the owner of the device us-
ing OwnerByDeviceIDDate.

The sequence of queries can be processed very quickly,
even for a popular domain name. For example, in less than
20 seconds, we could identify all the clients who looked
up “www.google.com.” during the entire month of January
2012, and map their IP addresses to their MAC addresses,
and then to their device IDs.

6.4 Applications
To evaluate the applicability of FCCE for processing di-

verse types of data, we applied FCCE to the advanced persis-
tent threat (APT) infection discovery challenge using DNS
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Figure 8: DNS requests during a day (February 2013 data
was used, and each line denotes the number of requests for
each day. NameByClient and DateByName features were cor-
related.)

data1 hosted by Los Alamos National Laboratory. In the
challenge, we were given two months of real DNS logs col-
lected at a large site. The logs were 117.8 GB of gzipped
logs consisting of 7.7 billion DNS queries and responses. De-
tailed breakup of the DNS data set is described in Table 2.
The logs also contained DNS requests from several simulated
APT attacks. The simulated APT attacks were performed
in three steps: (a) infecting a host with an initial vector,
such as phishing email with a link to a malicious site, (b)
downloading and executing malicious software (malware),
and (c) establishing command and control (C&C) commu-
nications, such as periodic callbacks to a C&C server. Then,
the goal of the challenge was to develop techniques to de-
tect malicious external domain names used in the simulated
attacks and compromised hosts using the DNS logs.

We processed the “custom” DNS logs using a Perl script
to extract features in a CSV format, and built a feature
store using FCCE. The resulting feature store contained 9
features, including NameByClient and DateByName; the size
of the feature store was 45 GB. The throughput of FCCE

was 219,000 operations/sec when we built the feature store
with eight extractors on a machine with two 2.40 GHz Intel
Xeon deca core CPUs and 512 GB of RAM running CentOS
6.5.

In order to differentiate machine-generated DNS requests
from human-generated DNS requests, we first investigated
“business hours”. By correlating NameByDate and ClientBy-
Name features, we plotted a graph showing the number of
DNS requests during a day. As shown in Figure 8, the
request pattern during weekdays was clearly distinguished
from the request pattern during weekends, and business
hours during weekdays were noticeable.

We then focused on detecting periodic callbacks generated
by a machine at step (c) of the attacks. We observed that
machine-generated periodic callbacks left DNS requests with
regular intervals in DNS logs unlike human-generated DNS
requests. We obtained DNS request history of a client using
NameByClient feature while specifying a date using ++where
query modifier. We then grouped domain names to acquire
a list of timestamps of DNS queries for each domain name.
It took 1.4 second to retrieve one day of query history of

1http://cps-vo.org/node/3453/og-panel/6
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Figure 9: Periodic callbacks with a missing event (Beaconing
pattern was detected using NameByClient feature.)

a client using FCCE (on average at a cold cache). Based
on the list of timestamps, we calculated the number of DNS
queries, the duration of DNS queries (e.g., how long the call-
backs lasted), and the periodicity score of DNS queries for
each domain name. When measuring a periodicity score,
we adapted an algorithm from [35] to mitigate errors caused
by oscillating and noisy (e.g., missing DNS request due to
power outage) events. For example, Figure 9 shows peri-
odic callbacks we detected where the first callback started at
5:53pm and lasted for 6 hours with about 19 minutes period.
Note that one periodic callback was missing at 7:29pm. We
flagged strictly periodic callbacks spanning over one hour.

In order to distinguish periodic callbacks by malicious pro-
grams from periodic requests by benign programs (e.g., cron
jobs for software updates), we measured “reputation” of do-
main names. For this purpose, we used lifetime of domain
names (DateByName), e.g., malicious domains might be used
only for a short period of time to avoid blacklisting, and
popularity (ClientByName), e.g., domain names queried by
majority of hosts may be benign. One caveat is that our
approach for measuring reputation was limited because the
given DNS logs were not raw DNS data, instead they were
pre-processed by dns_parse2 and redacted to conceal the
original domain names, IPs, and DNS server information.
Therefore, we could not leverage other valuable information,
such as external URL blacklists (e.g., spamhaus), country
and Autonomous Systems distribution, Time To Live val-
ues (e.g., lower TTL for resilience against blacklisting), and
string characteristics (e.g., random URL strings often gen-
erated by domain name generators of bots).

Finally, FCCE took 6 minutes using 40 processes to detect
the simulated APT attacks from one day of DNS logs, where
we checked 62,867 distinct clients against 177,190 domain
names.

7. RELATED WORK
In the big data era, analytics systems are facing signifi-

cant challenges of collecting, storing and analyzing enormous
amount of historical and real-time data. In the cyber secu-
rity domain, for instance, timely and in-depth response to
security incidences often demands data storage systems to
support both (near) real-time access to large volume of in-
coming data flow and fast retrieval of stored data spanning
over large time windows. Existing work are often designed
only for one of these requirements.

Traditional relational database management systems (e.g.,
MySQL, PostgreSQL, DB2, and Oracle) often do not scale
well and suffer from significant storage overhead when per-
forming large scope operations and transactions. Early work
that attempted addressed the limitations focused on improv-

2https://github.com/pflarr/dns parse

ing distributed query processing [34] and distributed trans-
actions [32]. More recent work built highly scalable and
available database clusters by partitioning and replicating
tables over multiple servers, as exemplified by development
of MySQL Cluster, VoltDB [39], Clustrix [6], ScaleDB [15]
and ScaleBase [14]. Although these systems provide sup-
ports for rich schemas, SQL-like interfaces, and an ACID
(atomicity, consistency, isolation, and durability) transac-
tion support, they are not very efficient when executing large
scope operations, e.g., join and transactions spanning sev-
eral nodes, due to the communication and two-phase commit
overhead.

Changes in data access patterns and needs for good scal-
ability in simple read/write operations over large number
of nodes motivated the paradigm shift towards so-called
“NoSQL” data stores. NoSQL data stores feature a sim-
ple call-level protocol (as opposed to a SQL binding) and
capabilities of efficiently using a distributed index for data
storage [20]. NoSQL systems achieve much higher scalabil-
ity and performance by relaxing ACID guarantees. For ex-
ample, many systems [3, 29] provide only eventually consis-
tentcy where updates are eventually propagated to all nodes;
however, out-of-date read is possible during the propagation.

A widely used model among NoSQL systems is a key-value
store where a key is associated with a value for all the data.
Key-value stores deliver a high read/write speed with low
latency. One of the popular key-value stores is Redis [12],
an open source key-value in-memory database. Redis can
achieve extremely high performance when the durability of
data is not necessary (Redis offers snapshotting for data
persistence). Similarly, Memcached [31], Membrain [9] and
Couchbase [7] also feature in-memory indexing systems with
different methods for persistence and replication. The main
limitation of these in-memory key value store is that the ca-
pacity of the database is limited by the available physical
memory. There are also many key value stores that persist
data on hard drives. For instance, Tokyo Cabinet [16] is
a high performance key-value store with various plugins to
support reliable data persistence on different media. Project
Voldemort [11] is an open source key-value store written
in Java. It supports multi-version concurrency control for
updates and transparent recovery of failure nodes. Hyper-
Dex [30] is a novel key-value store that exploits hyperspace
hashing to provide a unique search primitive enabling not
only retrieval based on primary key but also efficient queries
on secondary attributes .

Basic key-value stores are extended by allowing storage of
more complex or nested values. For example, Riak [13] is
an open-source distributed key value store similar to Vold-
ermort with support for JSON-based object and indices on
primary keys. SimpleDB [2], Amazon’s cloud DB service,
groups data into domains, and multiple indexes are built on
the attributes to support select operations. Amazon also of-
fers a similar NoSQL database service called DynamoDB [1]
with better scalability and low-latency responses. CouchDB [4]
and MongoDB [10] are open source document stores which
support ”document collection” (similar to SimpleDB’s do-
main) with richer data models. PNUTs [24] is a parallel and
geographically data storage developed in Yahoo!. It achieves
massive scalability by relaxing consistency guarantees and
providing simpler relational model to users. The success
of Google BigTable [22] motivated development of several
similar systems, including HBase [19], HyperTable [8], and
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Cassandra [3]. They share similar data models (rows and
columns) and achieve high scalability by splitting both rows
and columns over multiple nodes. They differ mainly in the
their concurrency mechanisms. Specifically, Cassandra pro-
vides weak multi-version concurrency while HBase and Hy-
perTable enable strong concurrency via locks and logging.
Recently, there is a growing trend of building layer on top
of existing NoSQL data stores to bring them functionally
closer to traditional relational databases in terms of consis-
tency and transaction support. For instance, Megastore [18]
and Spanner [26] were two systems built by Google on top of
BigTable and provide synchronous replication, strong con-
sistency across datacenters and support for fully serializ-
able ACID. In addition, Spanner also provides a SQL-based
query language to facilitate the application development. G-
Store [27] was built on top of HBase and provided multi-key
consistency support (as oppose to the single-key atomic ac-
cess provided in previous systems such as Bigtable, PNUTS,
etc). CloudTPS [41] is a scalable transaction manager built
on HBase and SimpleDB to allow cloud database services
to execute ACID transactions of web applications. Spin-
naker [37] utilizes Paxos-based replication protocol to pro-
vide either strong or time-line consistency on reads. Com-
paring with Cassandra which guarantees only weak eventu-
ally consistency, Spinnaker is shown to achieve similar read
speed with minimum write overhead.

Both traditional DBMSs and recent NoSQL data stores
are designed for storing relatively static records and pro-
cessing queries and transactions. However, many applica-
tions e.g., security threat detection, market analysis often
require support for near real-time processing of rapidly in-
coming data streams. To address these new challenges, a
number of data stream management systems have been de-
veloped. For example, STREAM [40] was a stream data
management system providing a SQL-like declarative query
language. It also featured intelligent resource management
and dynamic approximation of results based on current load.
TelegraphCQ [21] implemented a data flow engine on top of
the PostgreSQL code base, and supported continuous query
processing over data stream with the use of highly adap-
tive query optimization techniques for evaluating multiple
queries over data stream. NiagaraCQ [23] was a contin-
uous query system designed for monitoring dynamic web
contents. Its queries were expressed based on XML and
XML-QL rather than SQL. Motivated by these research
prototypes, some commercial streaming systems have also
been developed. Notably, IBM InfoSphere Streams [38], Mi-
crosoft StreamInsight [17], and Twitter Storm [5] are all
highly scalable platforms to support continuous analysis of
massive data volumes and heterogeneous data types.

FCCE differs from previous systems in that its unique ar-
chitecture design provides a unified interface for both his-
torical and real-time analytics. At the core of FCCE, a
distributed key-value store allows highly scalable and low-
latency access to large volume of historical data. At the
upper layer, the rich query and subscription interfaces pro-
vide versatile supports for a wide range of real-time analytic
applications.

8. FUTURE WORK & CONCLUSIONS
We plan to extend the presented FCCE with several inter-

esting features as we continue to push into the limits of its
current capabilities:

• Raw data archive and retrieval: Once correlated
features are retrieved, often-times it is desirable to in-
spect the related raw data. It is an open topic how
to effectively reference and retrieve raw data that re-
lates to query results. We currently able to create fea-
tures that allow us to quickly identify the regions of
files which contain the records we are interested in.
However, our current compression methods for the raw
data prevents rapid seeking to the regions. When a
large number of raw data files must be accessed, the
amount of time required becomes quite large.

• Feature balancing: We are including functions to
monitor and automatically balance features across dis-
tributed feature stores to distribute load and further
reduce latency of complex queries.

• In-store correlation: We are working to include in-
store correlation capabilities into the feature store. This
will further reduce latency and allow for highly-complex
queries satisfying minimal latency.

In this paper, we presented the design, implementation,
and evaluation of FCCE, a highly scalable, low-latency, and
distributed feature collection and correlation engine. FCCE

is built on top of a customized key-value data store and offers
a comprehensive framework for efficient feature extraction,
aggregation, storage, and retrieval. FCCE also provides a
set of versatile APIs that allows efficient feature correlation
across different data sets. FCCE has been deployed in our
production network for over 2 years ingesting more than 2
billion network events per day and providing low-latency re-
sponses to queries for a variety of analytics jobs. In particu-
lar, we demonstrated, with real-world use cases, that FCCE

yielded superior performance over existing approaches and
excelled in the very challenging cyber security domain by
helping to pull out security intelligence bits hiding in the
noise of big data.
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