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Optimal Power Flow as a Polynomial Optimization Problem

Bissan Ghaddar, Jakub Marecek, Martin Mevissen

Abstract—Formulating the alternating current op-
timal power flow (ACOPF) as a polynomial opti-
mization problem makes it possible to solve large
instances in practice and to guarantee asymptotic
convergence in theory. In this work, we utilize
polynomial optimization to formulate the ACOPF as
a degree two polynomial program and present strong
convexifications of the ACOPF problem. This is done
by adding violated but valid inequalities that tightens
the first order relaxation of the quadratic polynomial
program. We also exploit the polynomial program
structure and use the sparse hierarchy to solve larger
instances to global optimality. Computational results
for both approaches are presented.

Index Terms—Power system management, Power
system analysis computing, Optimization, Numerical
Analysis (Mathematical programming, Method of
moments, Sparse matrices)

I. INTRODUCTION

Optimal Power Flow (OPF) in alternating cur-
rent models (ACOPF) is one of the most important
nonlinear optimization problems. Despite the fact
that ACOPF has been studied since early 1960s
[3] in thousands of papers, the progress has not
been satisfactory. The problem is non-convex due
to the non-linear power flow constraints, and hence
difficult to solve.

There is a great variety [15] of relaxations and
heuristic solution methods available. Such meth-
ods find locally optimal solutions or stationary
points and are not guaranteed to find a global op-
timum. A particularly important line of research
started with the semidefinite programming (SDP)
relaxation of Bai et al. [1]. Lavaei et al. showed
[10], [16] that the solution of the SDP is the global
optimum, under some conditions. Several follow-
up computational studies [5], [12] increased the
dimension of SDP instances that can be solved, in
practice.

Realising that OPF can be modeled as a poly-
nomial program (PP) of degree at most four, we

IBM Research - Ireland, Damastown Industrial Es-
tate, Mulhuddart, Dublin 15. email: bghaddar@ie.ibm.com,
jakub.marecek @ie.ibm.com, martmevi@ie.ibm.com

aim to tackle the problem using methods recently
developed in polynomial optimization. Using this
approach, one can capture the system behavior
accurately, and obtain globally valid lower bounds
and globally optimal solutions, under mild con-
straints. Notably, one can use a wide variety
of objective functions, and incorporate further
constraints easily, without affecting convergence
properties. Computationally, one uses a hierarchy
of SDP relaxations of Lasserre [8] or Waki et
al. [18] to convexify the problem. Unfortunately,
dimensions of the relaxations grow rapidly with
the size of the power system, posing a major
computational challenge.

In this paper, we present two techniques for
tackling the computational challenge. The first
technique uses “cutting surfaces” of Ghaddar et
al. [4], which are valid inequalities, generated
dynamically upon violation at each step of the
algorithm. Instead of increasing the degree of the
non-negative certificates in the hierarchy, the set
of polynomial inequalities describing the feasible
region of the polynomial program is changed in
each iteration, while the degree of the polynomials
is fixed. These valid inequalities yield stronger
convexifications.

The second technique uses the sparse hierarchy
of SDP relaxations of Waki et al. [18], which
are computationally considerably more tractable
than relaxations of the so called dense hierarchy
of Lasserre studied previously [13], [6]. Specif-
ically, the size of the relaxation does not grow
exponentially in the number of buses, but only as
a function of the density of the network. The relax-
ations are equivalent to the Lavaei-Low [10] SDP
relaxation, where it is exact, and provide tighter
relaxations, where it is not. Further, we employ
matrix completion techniques to break down the
largest SDP variable at the price of introducing
additional equality constraints and several smaller
matrix inequalities, to make the approach scale to
power systems with thousands of buses.

Overall, the main contributions of the paper are:



o solve larger instances to global optimality
than those published in the literature

o present stronger convexifications for the OPF
problem than those presented in the literature

o exploit sparsity in existing SDP relaxations
to tackle larger instances

« study the convergence of the sparse hierarchy.

Notably, either of the presented techniques im-
proves upon the Lavaei-Low SDP relaxation,
whenever the Lavaei-Low SDP relaxation does not
provide the global optimum.

The rest of the paper is organized as follows.
Section II describes the optimal power flow prob-
lem and presents the various formulations used to
model this problem. Section III discusses the two
proposed schemes. Section IV shows the perfor-
mance of both schemes on two sets of instances.
Finally, Section V provides concluding remarks
and future research directions.

II. OPTIMAL POWER FLOW PROBLEM

In this section we use the same notation used in
[10] and [12]. The topology of the power system
P = (N, E) is represented as an undirected graph,
where each vertex n € N is called a “bus” and
each edge ¢ € FE is called a “branch”.We use
|N| to denote the number of buses and |E| to
denote the number of branches. Let G C N
be the set of generators and £ C N x N be
the set of all branches modeled as II-equivalent
circuits. The matrix y € RIVIXINI represents the
network admittance matrix, whose sparsity pattern
is the same as that of the adjacency matrix of P.
by is the value of the shunt element at branch
(I,m) € E and g, +jby, is the series admittance
on a branch (I,m). Let S§ = P& + jQ¢ be the
active and reactive load (demand) at each bus
k € N and P{ + jQY represent the apparent
power of the generator at bus k£ € (. Define
Vi = RVi + jSVi as the voltage at each bus
k € N and S;,, = P + jQum as the apparent
power flow on the line (I, m) € E. The edge set
L C FE contains the branches (I, m) such that the
apparent power flow limit is less than a certain
given tolerance €. In the next section, we describe
one of the classical formulations of the optimal
power flow problem in detail.

A. Formulation

In this work, we focus on the rectangular power-
voltage formulation. To formulate the ACOPF
model, we define the following parameters:

o P and P are the limits on active
generation capacity at bus k, where P,gni“ =
Prax =0 forall k € N/G.

. Qmm and @Q}** are the limits on reactive
generation capacity at bus k, where Q" =
Qprax =0 forall ke N/G.

. Vkmin and V;"®* are the limits on the absolute
value of the voltage at a given bus k.

o S[3% is the limit on the absolute value of the
apparent power of a branch (I,m) € L.

Let e, be the k" standard basis vector in RN/,
similar to [10], the following matrices are defined

Y = ekefy,
Yim = 2 "t Gim + Gbim)ere] — (gim + Jbum)eren,
_1 §Ryk+yk Syt — k)
Y, = Y
2 (S — i) §R(yk+yk)
V= 1[ (v + i) 3?(yzf—yk)}
2 (R —wr) Sk +40)
kel
M, — [ eke,j 7
Y, = 1 Pe(ylm + ylm) Sy, — ylm)]
T2 (S — i) Rym + k)
Vi = 1 {"(ylm +ub.) Rl — yzm)] '
" 2 m(y?;n - ylm) %(ylm + yzj;n)

Let = be a vector of variables defined as

= [RVix SVi]7T, and let the cost of power
generation be Y., . fr(P) where fi(P]) =
ci(PJ)? —|—c,€P9—i—c8 with ¢, ¢}, ¢? non-negative.
The classical OPF problem can be written as a
polynomial optimization problem of degree 4,

[PP4]
min Z fre(x)
kea
st. P < w(Yixa™) + P < PP @)
Q™ < u(Yiwa”) + Qf < QP @
(Vi™)? < r(Myaz™) < (Vi)? 3)
(w(Yimza"))® + (w(Vimzz"))* < (Si™)°
(C))
The objective function often is the cost
of power generation where fi(x) =



(cr (P + t(Yrza™))? + cp (P + u(Yezz™")) + ).
Constraints (1) and (2) impose a limitation on
the active and reactive power. Constraints (3)
restrict the voltage on a given bus. Constraints
(4) limit the apparent power flow at each end
of a given line. The problem can be modeled
as a rank-constrained problem by defining the
variable W = xzT. Subsequently, one can drop
the rank constraint to obtain the SDP relaxation
[OPF-SDP] as has been done in [10]. Notice
that:

Proposition 1. For every k > 1, there exist an in-
stance of the ACOPF optimization problem [PP4]
with solution z*, such that z < kz < f(z*),
where z is the objective function of the [OPF-
SDP] relaxation [10].

Proof: Let us consider a system, where there
is one slack bus and the Lavaei-Low relaxation
[OPF-SDP] [10] does produce objective function
value z > 1, which is not the global optimum
f(x*). For example, this could be the two-bus
instance of [2]. We can produce a variant of the
instance with a new objective function given by
f'() == C(k)f(-), ie. changing the c?,c},c?
for each generator ¢, to obtain the result when
choosing C(k) sufficiently large. [ |

This motivates research for global optimization
methods beyond SDP relaxation [OPF-SDP].

III. POLYNOMIAL PROGRAMMING APPROACH

The OPF problem is a particular case of a
polynomial optimization problem:

[PP-P] min f(x)

s.t. gi(x) >0 i={1,...,m}

Motivated by the seminal work of Lasserre [8],
there are schemes applying representation theo-
rems from algebraic geometry to characterize the
set of polynomials that are non-negative on a
given domain. The main idea of these schemes
is based on applying representation theorems to
characterize the set of polynomials that are non-
negative on a given basic closed algebraic set
S. We use the following notation: Define deg(f)
to be the degree of the polynomial f(z). Let
Rg[z] := Rglz1, - ,2,] be the set of poly-
nomials in n variables with real coefficients of

degree at most d. Given S C R", define P4(S5)
to be the cone of polynomials of degree at most
d that are non-negative over S. We use X4 to
denote the cone of real polynomials of degree at
most d that are sum-of-squares of polynomials.
S = {X1pi(@)? : pilw) € Ry [a]}, with
N = ("Jdrd). For any G C Ry[z|, we denote
by Sg = {z € R glz) > 0Vg € G}
the basic closed semialgebraic set defined by G.
Taking G = {gi(z) : ¢ = 1,...,m}, we can
rephrase [PP-P] as

[PP-D] max ¢
sit. f(z) — ¢ € Pa(Sg).

Although [PP-D] is a conic problem, it is un-
known how to efficiently optimize over the cone
Pa(Sg). Lasserre [8] introduced a hierarchy of
SDP relaxations corresponding to liftings of poly-
nomial problems into higher dimensions. Lasserre
builds up a sequence of linear semidefinite re-
laxations of increasing size. Under assumptions
slightly stronger than compactness, the optimal
values of these problems converge to the global
optimal value of the original problem, [PP-P]. The
approximation of P4(Sg) used in [8] is the cone

5, where

m

2 =3+ Zgi(x)zrfdeg(gi)a &)
=1

and r > d. The corresponding optimization prob-
lem over S can be written as:

max (6)
v,0i(x)

st. f(x) — ¢ = oo(x) + Z oi(z)gi(x)

00(T) € Br, 0i(T) € B deg(gs)-

Problem (6) can be reformulated as a semidefinite
optimization problem. The computational cost of
the problem clearly depends on both the degree of
the polynomial and the dimension of the problem.
The number of constraints can be large, especially
when many variables and high-degree polynomials
are used. As a result, the matrix inequalities grow
with the value of r. Based on the described
approach, Molzahn and Hiskens [13] and Josz et
al. [6] used [PP4] and applied Lasserre’s hierarchy
to obtain global optimality on instances with up to



5 and 10 buses respectively, where Lavaei-Low is
not globally optimal.

A. Relationship with Lavaei-Low Formulation

In this work, instead of starting with [PP4] and
growing the complexity of the SDP relaxations
by applying the hierarchy, we reduce the OPF
problem to a polynomial program of degree 2:

(& (P)? + ex (B + u(Yiaa™)) + c})

PPin < tr(YyaaT) + P < ppox

QY™ < w(Yiza") + Qf < Q™

(V)2 < w(Mya™) < ()
Pl + Qfy < (Sip)?

P! = u(Yiza™) + P

P, = tr(YlmxxT)

Qim = tr(Yimza®)

The number of variables added in this case is
|G| + 2|L|, which can be small as typically the
number of generators with non-zero c¢; value in
the objective and the number of power flow con-

straints are relatively small.

Theorem 1. The first level of the hierarchy ap-
proximation of [PP2], [D], is equivalent to the
dual of [OPF-SDP], (i.e., optimization 4 in [10]).

Hence, we apply two techniques to improve on
the bounds obtained by [D]. The first approach
is discussed in the next section where valid in-
equalities are added to [PP2] which are translated
to more variables to [D]. The resulting scheme
improves the [D] relaxation and hence the bound.
In the second approach, we exploit the sparsity
pattern of the two polynomial programs [PP2] and
[PP4] to provide global optimal solutions for the
OPF problem.

B. DIGS Approach

As seen in Section III-A, [PP2] is equivalent to
the Lavaei-Low SDP relaxation. Hence, by adding
valid inequalities to [PP2] one can improve on the
Lavaei-Low bound and in some cases obtain the
global optimum. In this section, we use the first
level of the relaxation of [PP2], i.e. [D], and add

valid quadratic inequalities of the form p(x) > 0.
The approach is generic and can be applied to
general polynomial programs as described in [4].
The idea is that the polynomial p(x) needs to be a
valid inequality and at the same time improve on
the bound of the relaxation. This can be translated
as p € Pa(S) \ K&, where d = 2, the degree of
[PP2], in this case. The iterative scheme can be
summarized as follows:

o Start with Go = G
o Given G; let p; € Pa(Sg) \ K&, define
Giy1 =G, U{p:}.

To be able to generate a polynomial p(z), the
scheme consists of a master problem and a sub-
problem. The master problem is of the following
form

[PP-M] max ¢
st f(z) —p € K&,

where K¢ is as defined in (5) with 7 fixed to d.
[PP-M] provides lower bounds for OPF problem.
The subproblem uses the optimal dual information
from the master problem, Y, to generate poly-
nomial inequalities that are valid on the feasible
region. These valid inequalities are then incor-
porated into the master to construct new non-
negativity certificates, obtaining better approxi-
mations of the OPF. The subproblem is also a
semidefinite program and has the following form:

[PP-S] min (p,Y)
P
st.p € KEP? NRylz].

The iterative scheme terminates when the objec-
tive function of the subproblem is close to 0 [4].
As opposed to the approach proposed in [6], [13],
where 7 is increased when using (6), in DIGS,
r is fixed to d. Consequently, the growth in the
size of the positive semidefinite matrices and the
number of constraints can be significantly lower
as compared to (6).

C. Exploiting OPF Structure

The current scalability of state-of-the-art SDP
solvers limits the tractability of the Lasserre hi-
erarchy even for medium-scale polynomial pro-
grams. One approach to improve the tractability



of the Lasserre hierarchy is to exploit correlative
sparsity of the underlying polynomial optimization
problem due to Waki et al. [18]. Let {Iy} the
set of maximal cliques of the correlative sparsity
pattern graph of [PP2] following the construction
in [18]. The sparse approximation of Py;(Sg) is
K& (I), given by

’CE(I) = Z(ET(IIC) + Z ngT—deg(gj)(Ik))7

k=1 JE€EJk

where X,(I)) is the set of all sum-of-squares
polynomials of degree up to d supported on I
and (Ji,...,Js) is a partitioning of the set of
polynomials {g,}, defining K such that for every
J in Jg, the corresponding g; supported on I;,. The
sparse hierarchy of SDP relaxations is then given
by

max ¢
@0 k()

st f(z)—p=> (ak(x) + > gj(w)aj,k($)>

1 je€Jy

k=
or € Lr((Ix)), 05k € Lr—deg(g)) (k). ()

While (7) provides a weaker relaxation to a PP
than (6) for a fixed relaxation order r in general,
the asymptotic convergence result for the dense
hierarchy extends to the sparse case:

Assumption 1. Let K denote the feasible set of
[PP2]. Let {1}, denote the p maximal cliques of
a chordal extension of the sparsity pattern graph
of the [PP2].

(1) Then, there is a M > 0 such that || © || <
M for all x € K.
Ordering conditions for index sets as in
Assumption 3.2 (i) and (ii) in [9].
Running-intersection-property,  c.f.
holds for {I}}y.

(i)

(iii) 9],
Remark 1. Note, that K is compact. Therefore,
it is easy to add up to p redundant quadratic
inequality to the definition of K, s.t. Assumption 1
(i) is satisfied. (ii) can be satisfied by construction
and re-ordering of the sets {Iy}i. The running-
intersection-property is satisfied for the maximal
cliques of a choral graph, as pointed out in [7] .
Thus, Assumption 1 is satisfied for [PP2], in case
of the quadratic generation cost objective.

Now, we can formulate the convergence result.

Proposition 2 (Asymptotic Convergence). If As-
sumption 1 holds and the interior of K nonempty,
then there exists a sequence of SDP relaxations
S, such that

(@) inf S, S min([PP2]) as r — 0.
(b) There is no duality gap between S, and S}.
(c) Let y) the optimal solution of S, and §y :=

{yr., :| a |= 1}. If [PP4] has a unique
global minimizer x* € K, then

U = a* as r — 0.

Proof: Corollary of Theorem 3.6 of Lasserre

[9]. ]

Assumption 1 is satisfied in the case of the

generation costs objective of [PP4] and [PP2].

Moreover, for [PP2] the following proposition
holds.

Proposition 3. The sparse SDP relaxation (7) of
order one is equivalent to the first order relax-
ation of the dense Lasserre hierarchy (6) and the
Lavaei-Low relaxation [OPF-SDP].

Proof: Follows from the fact that sparse and
dense SDP relaxation of order 1 are equivalent
for non-convex quadratic optimization problems,
as proven in Section 4.5 of Waki et al. [18] and
the Theorem 1. ]

Remark 2. For a fixed order r, the sparse hi-
erarchy (7) has O(k*") variables, where r the
maximum number of of variables appearing in
the objective or a inequality constraint of PP.
The largest matrix inequality is of size O(K").
This is in contrast to O(n?") variables and matrix
variables of size O(n") in the dense hierarchy (6).
In case the PP is very sparse, i.e., k < n, the size
of the sparse hierarchy is vastly smaller then the
dense one.

IV. NUMERICAL RESULTS

In the computational results, we demonstrate the
performance of both techniques, the digs approach
and the sparsity exploitation approach, in improv-
ing the quality of the SDP relaxation bound. DIGS
is used on the quadratic formulation and improves
the relaxation iteratively and in some cases prove
optimality. On the other hand, SparsePoP is used



TABLE I: WB2 computational results.

DIGS L1 L2 L3
VimaX T Tter s s Time[[Bound Time Bound Time Bound Time
0.976 [905.76 1 0.9 [|905.76 0.2 905.76 0.4
0.983 [905.73 6 5.1 [[903.12 0.2 905.73 1.8
0.989 [905.73 6 4.3 ||900.84 0.1 905.72 1.7 905.73 1.8 :
0.996 [905.73 6 4.6 [|898.17 0.2 905.73 14 905.73 1.6 g
1.002 (905.73 6 4.8 |[895.86 0.2 905.72 1.8 905.73 1.5 H
1.009 (905.73 8 6.4 |[893.16 0.2 905.71 1.9 905.73 0.6 B
1.015 [905.73 6 4.7 |{890.82 0.1 905.71 0.8 90573 0.6
1.022 |905.73 8 6.5 |[890.82 0.2 905.71 2.6 905.73 1.7
1.028 [905.73 8 5.1 ||885.71 0.1 904.59 0.8 905.73 0.8
! ? Twme(sec)A ° ° !
to take gdvantage of the sparse structure of the Fig. 1: WB2 Bounds for V}#*=1.022.
polynomial program to solve the higher order
relatxatlgns in the hllerarchy and ensure global TABLE II: LMBM3 computational results.
optimality for some instances.! The first level of DIGS L L
the SDLI; hIEI;iaIif;y of [PP_Z] fndT[ll:P“'] 18 I'zfelrre(i So@X] Tters s Time[] Bound Time Bound Time
to as L1 an respectively. The second level  —3=s==575188 7 13.3 [[6307.97 03 1029488 1.0
of the hierarchy where r is set to 6 for [PP4] is 3116 | 8179.99 6 112 | 620678 02 8179.99 0.7
referred to as L3. 33.96 | 741494 5 192 || 611971 02 741494 08
36.77 | 6895.19 5 19.5 || 604533 0.3 689519 0.7
39.57 | 6516.17 5 19.8 |[5979.38 0.3 6516.17 0.7
4238 | 623331 5 18.1 |[5919.12 0.2 623331 0.7
A. Small-scale Instances 4518 | 6027.07 5 193 ||5866.68 03 6027.07 08
The first set of instances are small test cases  47.99 | 5882.67 3 12.1|/5819.02 03 5882.67 0.7
widely used in the literature [2]. Two examples 0.79 | 579202 2 9.2 1 5779.34 0.3 5792.02 0.7
y : P 53.60 | 574504 1 07 ||5745.04 03 574504 08

are considered, where in each example some of
the parameters are modified according to [6].
DIGS and SparsePoP results are presented for
these examples and bold entries indicate that the
objective value is optimal.

Example 1. The first example is an instance with
two buses [2] where the maximum voltage on
the second bus varies from 0.976 to 1.028 (see
Table I). From Figure 1, it can be seen that after
adding one inequality (i.e., one iteration of DIGS),
the Lavaei-Low bound improves significantly. The
optimal value is obtained in 8 iterations.

Example 2. The second example is LMBM3 with
3 buses [11]. The results from Table Il indicate
that both approaches are successful in provid-
ing the optimal solution of these problems when
Lavaei-Low relaxation is not exact.

IThe two techniques are implemented in MATLAB running
on a Red Hat Linux PC with a 3.5Ghz processor. The DIGS
approach is implemented using APPS [4] and SparseColO was
used for exploiting d- and r-space sparsity in the master and
the subproblem. Exploiting sparsity of polynomial program
[PP4] is done using SparsePoP [19]. To solve the resulting
SDP relaxation for both approaches, SeDuMi [17] is used as
the SDP solver. All test instances are taken from [2] and [14].

B. Large-scale Instances

The second set of problems consists of larger
instances. These instances are taken from [14].
Table III presents computational results for L1 and
L2. L1 captures the Lavaei-Low dual relaxation
and obtains the same bounds and has similar
computational performance. For instances larger
than 39 buses only L1 can be solved, as L2 be-
comes computationally expensive for SparsePoP.
Using DIGS, optimality of case9mod is proven
in 3 hours and 7 iterations while for casel4mod,
DIGS performed 2 iterations in a time limit of 5
hours and improved the Lavaei-Low bound. For
instances larger than 30 buses DIGS was not able
to improve on the SDP relaxation due to time
limitations.

DIGS and exploiting sparsity are able to im-
prove on the Lavaei-Low relaxation for small-
to medium-scale instances and global optimality
was proven for instances up to 39 buses. The
main drawback of DIGS is that the subproblem
is generic and hence is expensive to solve.



TABLE III: Computational results for IEEE and Polish network instances.

L1 L2
Instance Bound Dim  Time Bound Dim Time
case9mod 2753.23 588x168 0.6 || 3087.89 1792x 14847 17.5
casel4mod 7792.72 888x94 0.9 || 7991.07 7508 x 66740 904.2
case30mod 576.89 4706 x 684 3.8 578.56 36258x49164 13740.0
case39 41862.08 7282758 2.2 || 41864.18 26076x215772 4359.1
case57 41737.79 13366356 32 * *
casel18 129654.62 56620x 816 6.1 * *
case300 719711.63 3620761938 13.6 #* *
case2383wp | 1.814x 106 22778705x47975 3731.5 * *
case2736sp | 1.307x106 30019740x 57408 3502.2 * *

V. CONCLUSION

In this work, we propose to formulate the
optimal power flow as a polynomial program-
ming problem, as well as two techniques which
make the resulting SDP relaxations tractable for
medium- and large-scale instances. This approach
makes it possible to change objective functions
and constraints rather freely, without any need to
change the approach to solving the modified or
extended variants. Additionally, binary variables
can be included, e.g., to model discrete decisions
in transmission switching.

We show that the proposed approach extends
the Lavaei-Low SDP relaxation. For several in-
stances, where the Lavaei-Low relaxation is not
exact, we provide provide globally optimal so-
lutions for the first time. Further research could
focus on specializing the subproblem of DIGS to
power flow problems, such that instances of larger
sizes can be solved. Another research direction
is to take advantage of the inequality generation
and sparsity simultaneously, which could lead to
further savings in terms of computational time.
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APPENDIX A
PROOFS

Proof of Theorem 1: Notice that the variables
in [PP2] are x, P/, and Py, and Q;,,,. However,
not all the monomials appear in the polynomial
formulation and hence using the first level of the

hierarchy, KCf,, where r = 2 one can approximate
[PP2]:
max ¢
s.t. Z (ci(P/,f)2 + cu (P 4+ r(Veza™)) + cg) —
keG
keG (I,m)€eL
+ ) NP = P - u(Veaa™))
keN
+ Z A (=P 4 P+ tr(Yiza™))
keN
+ 3 7 (QF™ — Qf — tr(Vaza™))
keN
+ Z 7= QM + Qf + (Vi)
keN
+ 3 V) — w(MiaT))
keN
+ Z B, (( —V2 pte(Myaa ™))
keN
+ Y am(Si)? = Pl — Qi)
(I,m)eL
+ Z b (P — tr(Yyzz') — P)
keG
+ Z Clm(le - tr(}/lmﬂij))
(I,m)eL
+ Z dlm (le — tr(?'lmfl'T))

(I,m)eL

where A(z), B(PY), Ci(Pim, Qim) are poly-
nomials that are sum of squares as a function of
z, P?, and Py, and @, respectively. That is

A(z) = zA2", By(P?) = {1 ] B [ ! r, and

I P
1 1
Cim(Pim;Qim) = |Pwm| B |Pum| , where
le le

A, By, and Cy,, are positive semidefinite matrices
of dimension 2|N| x 2|N|, 2 x 2 and 3 x 3
respectively. The variables A]“Ak’ik’l]dﬁlﬁﬁk
and a;,, are non-negative variables. By equating
the coefficients of the monomials of the above

problem, we rewrite it as

max ¢
s.t. Z c,lkad + Z 02 — ¢

keG keG

=3B+ Y i+ Y NP - )
keG (L,m)eL keEN

+ 3 NPT P+ 3 A (@ - Q)
keN keEN

+ >, QUM+ QD) + D m(V)?
keN keN

=2 w3 (ST - 3 bePE
keN (I,m)eL keq

Z c’fYk =A-— Z (XkYk + A Y — Vi Yk

keN kEN

- Z (Clm}/lm + dlmf/lm)

(1,m)€eL
0=2B+b, ci=B
0= cim + 2012 0 = dim +2CL2
0=20% 0= —amm +Cia
0=—aim +Cio
A, By, Cim = 0.

By substituting some of the variables:

[D] max Zc;lcP,g—o— Zc(,i - ZB}QO —

keG kEG kEG (I,m)eL
=Y MNP =P = > M=
keEN keN
de d
_Z’Yk _Qk)_Zlk(_
keN keN
= (V) Z (V)2
kEN kEN
— > (S =Y 2B R
(1,m)eL kEG
st A= Z (CIfYk + MY — A Ye + 7, Y
kEN

,lkffk + T (VkmaX)Q N ﬁk(‘/vkmin)2 . 2Bi2Yk)

(I,m)eL
=B 0=2073
B -t =0
A7 Bka Clm = 0.

which is equivalent to optimization problem 4
described in [10] (i.e., the dual of [OPF-SDP])
and exhibits the same structure. [ |

> o
P];nin + Pllci)

e



