
RC25463 (WAT1405-005) May 2, 2014
Computer Science

IBM Research Report

New Algorithms for the Top-K Planning Problem

Anton V. Riabov, Shirin Sohrabi, Octavian Udrea
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598
USA

Research Division
Almaden – Austin – Beijing – Cambridge – Dublin - Haifa – India – Melbourne - T.J. Watson – Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report for
early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After
outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties). Many reports are available at http://domino.watson.ibm.com/library/CyberDig.nsf/home.

New Algorithms for The Top-K Planning Problem

Anton V. Riabov Shirin Sohrabi Octavian Udrea
IBM T.J. Watson Research Center

PO Box 704, Yorktown Heights, NY 10598, USA
{riabov, ssohrab, oudrea}@us.ibm.com

Abstract
Cost-optimal planning is a variant of a general planning prob-
lem, where all actions have non-negative costs, and the solu-
tion is a valid plan that minimizes the sum of the costs of
all actions included in the plan. In this paper, we propose a
new planning problem formulation, top-k planning, which is
a generalization of cost-optimal planning with applications in
plan recognition, diagnosis, explanation generation, and other
domains. No existing planners can solve this problem out of
the box. We have implemented and compared a total of four
new planning algorithms for top-k planning. Two of the al-
gorithms are based on the k shortest paths algorithm by Epp-
stein and a recently proposed variant of that algorithm for dy-
namic graphs called K∗, by Aljazzar and Leue. We also im-
plemented a branch and bound algorithm, and an iterative re-
planning algorithm based on LAMA. Our experiments show
that the top-k planning problem can be solved efficiently, in
time comparable to cost-optimal planning. We also show that
our implementation of top-k planning based on the K∗ algo-
rithm outperforms other algorithms.

Introduction
The shortest path problem is a problem of finding a path
connecting a given source-destination pair in a graph with
minimum total cost (or length). The all-pair shortest path
requires computation of the shortest path between all pairs
in the graph. Several researches have examined modeling
the planning problem as a shortest path computation in a
graph or more specifically applying the single-source or all-
pair shortest paths algorithm to precompute all shortest paths
(e.g., (Botea and Harabor 2013; Edelkamp and Kissmann
2009)). This eliminates the need to search and can lead to
fast computation of cost-optimal plans. In turn, cost-optimal
planning can also be used for solving a class of preference-
based planning problems (Baier and McIlraith 2008) follow-
ing Keyder and Geffner 2009.

Given an arbitrary number k, the k shortest paths problem
is a problem of finding the k shortest paths from a source
node to a destination node in a graph. This problem has
many applications including path planning (e.g., (Zhu et al.
2013)), video games (Botea 2011), and networking. There
are a number of reasons why a k shortest paths algorithm
could be needed instead of a single shortest path. Comput-
ing k shortest paths can be beneficial, for example, if there
are other types of constraints beyond path costs, but those

constraints are not fully defined or are missing. In addition,
analyzing the k shortest paths can help gain better under-
standing of the properties of the problem and its optimal
solutions. See (Eppstein 1998) for a more comprehensive
discussion of these applications.

In this paper, similar to how the k shortest paths extends
the shortest path problem, we propose the formulation of the
top-k planning problem for cost-optimal planning. We also
propose four planning algorithms for top-k planning based
on existing methods, including k shortest paths computation
for plan cost minimization over the state graph. Unlike opti-
mal planning, where the objective is to find one optimal plan
with minimum cost, we define the top-k planning problem
as the problem of finding a set of k distinct plans with low-
est cost. This set can contain both optimal plans and near-
optimal plans, depending on k, and, by definition, for each
plan in this set all valid plans of lower cost must also be in
the set. To the best of our knowledge we are the first to for-
mulate the top-k planning problem and propose a solution to
finding top-k plans, at least for cost-optimal planning.

We argue that the top-k planning problem has impor-
tant applications, some of which intersect with those of the
k shortest paths problem. In particular, we are interested
in this problem because of its applications in plan recog-
nition, diagnosis of discrete event systems, and explana-
tion generation, all of which can be modeled as planning
problems (e.g., (Ramı́rez and Geffner 2009; Sohrabi, Baier,
and McIlraith 2011)). In these applications it may be im-
portant to not only generate one optimal solution, but a set
of “good” alternatives. In recent work, the need for top-
k planning has been highlighted in the malware detection
problem, where the objective is to explain the sequence of
observations given the system description (Sohrabi, Udrea,
and Riabov 2013). There, top-k plans correspond to alter-
native plausible hypotheses explaining unreliable observa-
tions. Generally, computing top-k plans can help deal with
incompleteness in the domain, imperfect quality measures,
and unreliable knowledge, such as missing or noisy obser-
vations. Hence, we believe top-k planning formulations and
algorithms can provide some of the tools needed for fulfill-
ing the model-lite planning vision (Kambhampati 2007).

The k shortest paths problem was introduced in (Hoffman
and Pavley 1959) and several efficient algorithms were de-
veloped for it. In particular Yen’s algorithm (Yen 1971) and

several later implementation improvements of it are used to
find ranked loopless paths. Another known algorithm is by
Eppstein 1998, which allows loops and has better perfor-
mance. However, one drawback of Eppstein’s algorithm is
that it requires the graph to be fully defined and available in
memory. The recent extension of the Eppstein’s algorithm
called the K∗ algorithm (Aljazzar and Leue 2011) over-
comes this problem by supporting on-the-fly construction of
the graph and thus allows use of heuristic search, making it
a very strong candidate match for planning problems.

In this paper, we introduce and compare four planning
algorithms for top-k planning: iterative replanning using
LAMA or other existing high-performance planners, branch
and bound, a planning algorithm based on the Eppstein’s k
shortest paths algorithm, and an algorithm based on the K∗
algorithm. We call the top-k planner based on Eppstein’s al-
gorithm, TK, and the planner based on the K∗ algorithm,
TK∗. Note, that our algorithms are based on known exist-
ing methods, but are employed to address the top-k planning
problem. Our experiments show that planning time required
for top-k planning is comparable to cost-optimal planning
that finds a single cost-optimal plan. We also find that TK∗

outperforms all other approaches by a large margin.

Problem Formulation
Top-k planning problem is defined as R′ = (F,A, I,G, k),
where F is a finite set of fluent symbols, A is a set of ac-
tions with non-negative costs, I is a clause over F defin-
ing the initial state, G is a clause over F defining the goal
state, and k is the number of plans to find. The set of plans
π = {α1, ..., αk} is the solution to the top-k planning prob-
lem R′ if an only if each plan αi ∈ π is a solution to the
cost-optimal planning problem (F,A, I,G) and there does
not exists a plan α′ for (F,A, I,G), α′ /∈ π such that
cost(α′) < cost(αi) for all αi ∈ π. It follows that at least
one optimal plan is in the set of plans π if k > 0.

Note, while we indicated that the goal state, G, is in a form
of a final-state goal in the definition of R′, we consider tem-
porally extended goals as well. Temporally extended goals
such as sequence of observations from a system description
either totally ordered or partially ordered can be compiled
away to final-state goal following a compilation technique
discussed in several papers (e.g., (Sohrabi, Baier, and McIl-
raith 2010; Haslum and Grastien 2011)); the temporally ex-
tended goals can be compiled away by an action which en-
forces the temporal sequence of the goal.

Top-k Planning via Iterative Replanning
The first of the four approaches we describe builds upon ex-
isting Planning Domain Definition Language (PDDL) (Mc-
Dermott 1998) planners, extending the applicability of those
planners to top-k planning problems. We have introduced
this approach in prior work as a simple practical solution for
top-k problems (Sohrabi, Udrea, and Riabov 2013). In our
experiments we used LAMA (Richter and Westphal 2010),
as one of the fastest planners available, but the approach
does not depend on the choice of the planner. LAMA can be
used to find cost-optimal plans by modeling costs as domain

variables, and the last returned plan is optimal if LAMA is
given sufficient time to complete the search and exit (this
was confirmed in our experiments).

The main idea is to use a PDDL planner iteratively,
slightly modifying the problem each time, until top-k plans
are found. To solve the top-k planning problem R′ =
(F,A, I,G, k), we solve a sequence of cost-optimal plan-
ning problems Ri = (Fi, Ai, Ii,Gi), starting with finding
the optimal plan of length n for R1 = (F,A, I,G). Then,
given a cost-optimal plan p for Ri, and assuming m prob-
lems were created at a previous iteration, we create a new set
of problems {Rj |j = m+1, ...,m+n)} by modifyingRi by
adding, for each action that occurs in p, a new precondition
that prevents that action from appearing at the same posi-
tion in the new plan. The best solution to the new problems
Rj will be used to find the next-best plan p′. The generated
problems are modified again to generate new problems and
find the next best plan, until k such plans are found. Note
that this algorithm does not find plans that have top-k plans
as their prefixes (i.e., plans that reach the goal more than
once). Overall, solving the top-k planning problem requires
at most O(Nk) replanning iterations, where N is the length
of the longest plan among the top-k plans.

The actions are modified by introducing new predicates
(at-pos ?i) and (next ?i ?j) to keep track of the position of
each action in the plan. For example, the initial state will
include predicates (at-pos p1) (next p1 p2), (next p2 p3),
etc., and for each action the precondition will include (at-
pos ?i) (next ?i ?j), while the effect of the same action will
include (at-pos ?j) (not (at-pos ?i)). This modification does
not change the set of valid plans. However, it allows dis-
abling application of an action by adding a negated precon-
dition: for example, adding (not (at-pos p3)) to an action
will prevent that action from appearing at the third position
in any valid plan.

The outline of this algorithm is presented below.
0. Find plan α for the original problem R.
1. Set π = {α}.
2. Add each action a of α and its position i

S = {(a, i)} to future exploration list L.
3. For each S in L
4. For each (a, i) ∈ S
5. Add negated predicate associated

with a, i to action a.
6. Generate a plan α′ for the new problem

where all actions in S are disallowed.
7. For each action a at position i in α′

8. Add the set S ∪ {(a, i)} to L′.
9. Add one of the plans α′ with minimum cost to π.
10. Replace L with L′.
11. If |π| < k and L 6= ∅ go to step 2.
12. Return π as the solution to the problem.

Top-k Planning via Branch and Bound
The second approach we propose for top-k planning prob-
lem is based on branch and bound. Unlike iterative replan-
ning, it does not require solving many similar planning prob-
lems. Branch and bound is a general framework used for
finding optimal solutions in a variety of settings, and it can
be modified for solving top-k problems. The additional ad-
vantage of the general framework is the flexibility it allows
in defining optimization objectives and constraints.

Branch and bound begins by selecting a variable for
branching (e.g., the variable can represent the action applied
at the first step of the plan), creates a search node for ev-
ery feasible value of the variable, and computes lower and
upper bounds on the possible solutions. For example, the
lower bound can be the cost of the selected action and the
upper bound can be infinity. Assuming that a minimization
problem is being solved, search nodes can be pruned if their
lower bound value exceeds already known upper bound on
the solution, or the value of the current best solution. In the
next iteration, which can be done separately for each search
node, the next variable is selected, and the next set of search
nodes is created following the same procedure.

This standard framework can be modified to find top-k
solutions instead of a single optimal solution, by pruning
the search tree based on the k-th best solution found in-
stead of using the value of the best solution. When search
terminates, the remaining k best solutions will be the top
k solutions. In most scenarios, however, this modification
increases the search time, especially for large values of k,
because the search tree cannot be efficiently pruned until k
complete solutions are found.

In our implementation we apply forward branching on op-
erators of the planning problem after grounding. Grounding,
implemented during preprocessing, assigns fixed values to
variables of actions and thus creates multiple operators from
a single action. During this preprocessing, an index of op-
erators is also created, based on the matching between pre-
conditions and effects. To control the potential exponential
explosion of the number operators, we implement ground-
ing based on forward reachability within a relaxed planning
problem without deletes. We note that despite the reduction
in the number operators thanks to reachability analysis, a
significant fraction of operators created during grounding
may still never be explored during search, since action costs
are not accounted for in this process. The fourth approach
we describe further in this paper will improve on this by im-
plementing dynamic grounding.

The final algorithm can be summarized as follows.
0. Read planning problem R′ = (F , A, I, G, k);

Set U = {}, π = {}; Set UB =∞;
Insert a partial plan α = {I} into U.

1. Apply forward grounding to A
to create operator set O.

2. If U is empty, return the set of plans π.
3. Remove a partial plan α from U.
4. If for last state s of α, s ∈ G Then
5. Set π = π ∪ {s}.
6. If |π| > k Then
7. Set π = π \ argmax{cost(α′) | α′ ∈ π}.
8. If |π| = k Then
9. Set UB = max{cost(α′) | α′ ∈ π}.
10. Find operators {o} ⊂ O applicable in s;

Set U = U ∪ {α′ = (α, o) | cost(α′) < UB}.
11. Repeat from step 2.

Note the algorithm assumes that all actions have nonneg-
ative costs, and therefore costs of partial plans can be used
as lower bounds for complete plans in Step 10. In addition,
a variety of heuristics can be used to order the set of partial
plans U in Step 3, and the choice of the heuristic will affect
performance. In our implementation we sort partial plans by
distance to goal computed based on the relaxed formulation

2 20 14
s

t
18 8 11

9 10 25

 15 20 12 7

 13 27 14 15

t

s

 (a) (b)

Figure 1: (a) shows the nodes and edges of a graph with source
node s and terminal node t with edge lengths specified on the
edges; (b) shows the shortest path in bold arrows and the second
shortest path in dashed arrows.

used during grounding. Finally, while we have not done this
ourselves, branch and bound and heuristic search share mul-
tiple features, and modifications for finding top-k plans can
similarly be made to heuristic search algorithms.

Top-k Planning via K Shortest Paths
The cost-optimal planning problem can be modeled as the
problem of finding the shortest path in state space from ini-
tial state to the goal. In this section we build on this idea
by applying Eppstein’s k shortest paths algorithm (Eppstein
1998) in state space to solve the top-k planning problem.
The resulting algorithm is very efficient, but requires the
complete graph of states and actions to be available in mem-
ory. Constructing this graph is expensive in large problems,
and this shortcoming will be addressed using an improved
variant of the algorithm in the approach described in the next
section. In this section we first introduce notation for the k
shortest paths problem, and then describe the planning algo-
rithm based on Eppstein’s k shortest paths.

Background: K Shortest Paths Problem
K shortest paths problem is an extension of the shortest path
problem where in addition of finding one shortest path, we
need to find a set of paths that represent the k shortest paths
(Hoffman and Pavley 1959). Following Eppstein 1998, k
shortest path problem is defined as 4-tuple R = (G, s, t, k),
where G = (V,E) is a graph with a finite set of n nodes
(or vertices) V and a finite set of m edges E, s is the source
node, t is the destination node, and k is the number of short-
est paths to find. Each edge e ∈ E has a length (or weight
or cost), which we denote by l(e). The length of a path p,
l(p), is consequently defined by the sum of its edge lengths.
The distance d(u, v) for any pair of nodes u and v ∈ V
is the length of the shortest path between the two nodes.
Hence, d(s, t) is the length of the shortest path for the prob-
lem R. Figure 1 shows an example from (Eppstein 1998) to
illustrate the terminology. The distance d(s, t) = 55, is the
length of the shortest path shown in bold; the length of the
second shortest path is 58.

The set of paths P = {p1, p2, ..., pk} is the solution to
the k shortest paths problem R if and only if it is a set of
shortest paths from node s to node t. That is each pi ∈ P ,
1 ≤ i ≤ k, is a path in graph G and there does not exists
a path p′ in graph G, p′ /∈ P such that l(p′) < l(pi) for
all pi ∈ P . That is, there is no path, except amongst the k

42 33 23 7

t

s55 56 36 22

 (a) (b)
 37 19 11 0

3

4 1

10 6

9

Figure 2: (a) shows the shortest path tree T and distance to desti-
nation t; (b) shows the side edges with their associated detour cost.

shortest paths, with better length than any of the paths in the
set P . It follows that at least one shortest path with length
d(s, t) is in the set P if k > 0.

Background: Eppstein’s Algorithm (EA)
Given a k shortest paths problem R = (G, s, t, k), the EA
algorithm first computes a single-destination shortest path
tree with t as the destination (or the reversed single-source
shortest path tree) by applying Dijkstra’s algorithm on G.
The edges in the resulting shortest path tree, T are called
the tree edges while all the missing edges (i.e., the edges
in G − T) are called the sidetrack edges. Each edge in G
is assigned a number that measure the detour cost of taking
that edge. Consequently, the detour cost of the tree edges is
0, while the detour cost of the sidetrack edges is greater than
0. Figure 2 shows the shortest path tree T and the side edges
along with their detour cost of our earlier example.

The EA algorithm then constructs a complex data struc-
ture called path graph P (G) that stores the all paths in G,
where each node in represents a sidetrack edge. This is fol-
lowed by the use of Dijkstra search to P (G) to extract the
k shortest paths. An important property is that given a se-
quence of sidetrack edges representing a path in P (G) and
the shortest path tree T , it is possible to uniquely construct
a s-t path in G. This can be done by using sub-paths from T
to connect the endpoints of sidetrack edges. Given this prop-
erty and the special structure of P (G), it is ensured that the
i-th shortest path in P (G) results in a sidetrack sequence
which can be mapped to the i-th shortest path in G. By con-
struction, P (G) provides a heap-ordered enumeration of all
paths in G, and since every node of P (G) has limited out-
degree (at most 4), the complexity of enumerating paths in
increasing cost order is bounded. The worst-case runtime
complexity of the EA algorithm is O(m + n log n + kn).
This complexity bound depends on a compact representation
of the resulting k paths, and can be exceeded if the paths are
written explicitly, by enumerating all nodes and links, as we
have done in our planner implementation. For more details
see (Eppstein 1998).

Top-k Planning Algorithm Based on EA
Our planning algorithm can be summarized as follows. We
call the top-k planner based on this algorithm, TK.
0. Read planning problem R′ = (F , A, I, G, k).
1. Apply forward grounding to A

to create operator set O.
2. Initialize G = (V ,E): let V = {I}, E = ∅.
3. Let U = {I}.

4. For each state s ∈ U
5. U = U − {s}
6. For each operator o ∈ O

such that s satisfies precondition of o
7. Let s′ = o(s).
8. If edge o(s, s′) 6∈ E Then
9. If s′ 6∈ V Then
10. Let V = V ∪ {s′}, U = U ∪ {s′}.
11. Add o(s, s′) to E.
12. Let cost(o(s, s′)) = cost(o).
13. If U 6= ∅ goto step 4.
14. Apply EA to G to find k shortest paths.

This algorithm consists of three main stages. Step 1 im-
plements action grounding. Steps 2-12 implement forward
search to construct the complete state transition graph G.
Finally, step 13 applies Eppstein’s algorithm to the resulting
graph. Since nodes in G represent states and edges in G cor-
respond to operators, all paths in G correspond to plans in
R′, and paths have the same cost as corresponding plans.
Therefore, the solution produced by Eppstein’s algorithm
can be directly used as a solution to the top-k planning prob-
lem. We note that in our experiments the first two stages,
grounding and creating the state graph, taken together, took
approximately the same amount of time as the last stage.

Top-k Planning via K∗ Search
The major bottleneck of the previous approach is the con-
struction of the complete state transition graph, which may
include a huge number of states that are very far away from
the goal, and would not appear in top-k plans. Planners com-
monly deal with this challenge by relying on heuristic search
algorithms like A∗ to dynamically expand only the neces-
sary portion of the state graph during search, while being
guided by a heuristic toward the goal (e.g., FF (Hoffmann
and Nebel 2001) and Fast Downward (Helmert 2006)), and
the effectiveness of this approach has been proven (Bonet
and Geffner 2001). The K∗ algorithm proposed by Aljazzar
and Leue combines the best of both worlds: it allows con-
structing the graphG dynamically using heuristic-guided A∗
search, while updating its equivalent of P (G) to find k short-
est paths. In addition to eliminating the complete state graph
construction, with K∗ we can ground actions dynamically,
eliminating the expensive grounding stage.

Background: K∗ Algorithm
The K∗ algorithm (Aljazzar and Leue 2011) uses many of
the same concepts as in the EA algorithm including sidetrack
edges, detour costs, and the path graph P (G) (although with
a few differences in its construction) and has the same worst-
case complexity as the EA algorithm. However theK∗ algo-
rithm has better performance in practice because unlike the
EA algorithm it does not require the graph G to be com-
pletely defined or available when the search starts. It also
does not perform the all-nodes shortest path computation on
G to compute the shortest path tree T . In short, theK∗ algo-
rithm works as follows. The first step is to apply a forward
A∗ search to construct a portion of graphG. The second step
is suspending A∗ search, updating P (G) to include nodes
and sidetracks discovered by A∗, and applying Dijkstra to
P (G) to extract solution paths and resuming the A∗ search.
The use of A∗ search to dynamically expand G enables the

use of heuristic search and also allows extraction of the so-
lution paths before G is fully explored.

Top-k Planning Algorithm Based on K∗
In the implementation of the planning algorithm we follow
the algorithm structure imposed byK∗, as follows. Note that
we call our top-k planner that is based on K∗, TK∗.

0. Read planning problem R′ = (F , A, I, G, k).
1. Expand the state graph G by using A∗

and applying actions to compatible states
starting from I, and until G is reached.

2. Continue applying A∗ to expand G
until 20% increase in links or nodes.

3. Update P (G) based on new links in G.
4. Apply Dijkstra step

to extract the next path from P (G).
5. If k paths are found
6. Exit.
7. If K∗ scheduling condition is reached
8. Goto step 2.
9. Goto step 4.

The K∗ scheduling condition is evaluated by comparing
the state of A∗ and Dijkstra searches, as defined in K∗ al-
gorithm. It determines whether new links must be added to
G before resuming Dijkstra search on updated P (G). There
is no separate grounding stage, since actions are ground at
the same time when they are applied during A∗ search. The
amount of A∗ expansion required before resuming Dijkstra
(in our implementation, 20%), is an efficiency tradeoff, and
20% is the same value that was used in experiments in the
originalK∗ paper (Aljazzar and Leue 2011). Of course, step
2 may also be completed if no new links can be added.

Overall, due to multiple improvements in efficiency made
possible by this algorithm, TK∗ was the best performing in
our experiments. We also expect that with some work this
approach can be integrated into planners that use A∗ search,
enabling those planners to solve top-k problems.

In our experiments, TK∗ with constant 0 heuristic per-
forms very well, and we have not experimented with other,
potentially better performing heuristics. This is an interest-
ing direction for improvement that could be explored in fu-
ture work. Even though this is not a requirement for K∗ in
general, our implementation requires a consistent heuristic,
which did not allow us to experiment with, for example,
lookahead heuristics. Further, the dynamic grounding pre-
vented the use of heuristics used in the Branch and Bound
approach, since those heuristics require static grounding.

Experimental Evaluation
In this paper we argue that practical solutions can be de-
veloped for the top-k planning problem. To that end, we
have 3 main objectives in our experiments. First, we mea-
sure the change in performance that results from the require-
ment to find top-k plans instead of a single cost-optimal
plan. Second, we compare the performance of four different
approaches we propose. Third, we measure the effect that
increasing the value of k will have on planning time.

Generated Random Problem Instances
The approach we introduced in this paper is general and
can be applied in a variety of applications that require cost-

optimal planning. As a benchmark for performance evalu-
ation, we have generated random instances of varying size
based on the hypothesis exploration problem with unreli-
able observations (Sohrabi, Udrea, and Riabov 2013). This
application provides a good example of a challenging top-
k planning problem, and generated problems typically have
a very large number of possible plans with different costs.
The domain and the generated problems were represented in
a STRIPS-like planning language recognized by our planner,
as well as in PDDL for LAMA.

All generated problems share a planning domain descrip-
tion containing 6 actions and 8 predicates. In this domain,
low costs were assigned to actions used in perfect explana-
tions of observations, and high costs to actions representing
exceptions, such as unexplained observations or state tran-
sitions without observations. To generate a random problem
instance, we generated a random state transition system with
a given number of states.

Malware Detection Instances
In addition to randomly generated state transition systems,
we used the malware detection problem (18 states), as de-
scribed in (Sohrabi, Udrea, and Riabov 2013). In short, the
malware detection problem involves generating hypotheses
about the network hosts by analyzing the network traffic
data. To make this possible, the domain description includes
the states of the host (e.g., infected with malware due to
downloading an executable file or the Command & Control
Rendezvous state via Internet Relay Chat (IRC)) and tran-
sitions between these states and many-to-many correspon-
dence between states and observations. The results for this
domain is shown under the “Malware Domain” rows.

Planning Time for The Top-k Problem
We have varied the size of the problem by changing the
number of the states of the system being modeled (not to be
confused with planning states) and the number of observa-
tions received from the system. For all time measurements
in this paper we used the same Quad-core 2.93 GHz Intel
Xeon X5570 processor with 32 GB RAM and 64-bit Red-
Hat Linux OS.

Table 1 presents the results of comparison between ap-
proaches described in this paper. For all algorithms except
iterative replanning, we measured time it took to find top
k = 50 plans. For iterative replanning (“LAMA top-1” col-
umn in the table), we measured the duration of a single iter-
ation, i.e., solving one cost-optimal planning problem using
LAMA, while at least k = 50 iterations will be required
for the top-k problem (and in the worst case, exponentially
more). Conveniently, this also helps compare planning time
of top-k and regular cost-optimal planning. During measure-
ment we enforced a limit on planning time of 300 seconds,
and the instances where this limit was exceeded are indi-
cated by “-” in the table. For LAMA the time we report is
the time that it took for LAMA to terminate (i.e., exhaust the
search space) and hence its last returned plan is cost-optimal
or top-1. The “-” entries indicate that LAMA was not able to
find the cost-optimal plan or terminate its search before the
time limit is reached.

LAMA, top-1 Branch & Bound, top-50 TK, top-50 TK ∗, top-50
Problem size Min Avg Max Min Avg Max Min Avg Max Min Avg Max

Malware Domain, 5 obs. 0.52 0.64 1.16 0.11 0.22 0.39 0.06 0.07 0.09 0.04 0.06 0.08
10 states, 5 obs. 0.35 0.52 1.68 0.08 0.13 0.22 0.05 0.05 0.06 0.03 0.04 0.06
50 states, 5 obs. 0.94 1.08 1.17 0.36 0.56 0.97 0.18 0.21 0.24 0.06 0.08 0.10

100 states, 5 obs. 2.64 2.95 3.20 1.45 2.49 4.19 1.03 1.23 1.47 0.18 0.22 0.25
Malware Domain, 10 obs. 0.69 0.75 0.86 0.28 3.67 10.33 0.09 0.12 0.15 0.06 0.07 0.11

10 states, 10 obs. 0.40 0.47 0.54 0.64 0.97 1.59 0.06 0.07 0.08 0.04 0.06 0.07
50 states, 10 obs. 1.50 1.89 2.37 1.46 7.86 37.04 0.42 0.51 0.60 0.10 0.12 0.13

100 states, 10 obs. 5.20 6.27 9.14 5.88 21.08 51.93 2.62 3.43 3.97 0.21 0.35 0.55
Malware Domain, 20 obs. 1.06 1.37 2.10 1.49 - - 0.19 0.27 0.33 0.08 0.12 0.38

10 states, 20 obs. 0.50 0.71 0.94 7.24 31.13 132.34 0.10 0.13 0.15 0.06 0.09 0.37
50 states, 20 obs. 3.50 4.48 6.65 11.20 77.11 300.08 1.36 1.72 2.02 0.17 0.21 0.30

100 states, 20 obs. 12.08 20.11 28.01 51.14 - - 8.52 10.55 12.10 0.46 0.66 0.82
Malware Domain, 60 obs. 2.93 4.30 7.04 25.05 - - 1.06 1.45 2.15 0.08 0.15 0.23

10 states, 60 obs. 1.98 2.65 3.22 - - - 0.44 0.54 0.70 0.14 0.17 0.20
50 states, 60 obs. 18.93 61.96 134.84 - - - 9.49 12.52 15.48 0.35 0.60 0.80

100 states, 60 obs. 107.39 - - - - - 56.52 75.17 102.63 1.12 2.07 2.81
Malware Domain, 120 obs. 6.63 10.23 16.93 - - - 4.61 5.77 8.94 0.15 0.26 0.47

10 states, 120 obs. 5.83 9.28 22.23 - - - 1.81 2.40 3.27 0.27 0.33 0.41
50 states, 120 obs. 69.98 - - - - - 40.42 51.91 70.16 0.90 1.51 2.23

100 states, 120 obs. - - - - - - 229.22 294.80 - 2.81 5.35 7.68

Table 1: Relative performance: Minimum, maximum and average planning time, in seconds, for 15 instances of each size.

The results were obtained on the same problem instances,
and help illustrate the advantages and disadvantages of the
algorithms we evaluated. While iterative replanning is the
easiest to implement and may perform well in practice on
small instances, it is by far the worst performing, as ex-
pected. Iterative replanning results were omitted from Ta-
ble 1 to save space, but they can be easily estimated based
on “LAMA top-1”, by multiplying the time of one iteration
by a very optimistic estimate of the minimum number of iter-
ations (in this case, 50). Branch and bound generalizes for a
variety constraints and objective functions, but as expected,
it is not as fast as specialized shortest paths algorithms.

The unexpected result is how well TK and TK∗ perform,
in comparison with the time it takes LAMA to find a single
plan. While our implementation of the Eppstein’s algorithm,
very fast on small problems, is limited on large problems by
the requirement to create the complete planning state graph,
TK∗ does not have that limitation, and performs much bet-
ter. For example, for the largest problem size of 100 sys-
tem states and 120 observations, TK∗ is on average 55 times
faster by the next fastest approach, TK.

We note that TK∗ is the only approach that implements
dynamic grounding. In our experiments action grounding is
responsible for roughly half of the planning time of k short-
est paths algorithm, and since the same grounding imple-
mentation is used for branch and bound, it suffers the same
performance penalty.

The Impact of the Value of K
Above, we showed that TK and TK∗ scale well with increas-
ing problem size. Notably, these planners also scale well
with increasing k. To measure this, we rerun the same exper-
iments with k=1000, and these results, along with the results
for k=50 from Table 1, for the two best planning approaches,
are presented in Table 2.

As previously shown for TK and TK∗, while TK∗ is faster
overall, it is more sensitive to the value of k, and larger val-

ues lead to somewhat longer planning times. For example,
for the largest problem of 100 states and 120 observations,
for k=1000 the average planning time increases by 70%
compared to k=50. TK spends significant time upfront com-
puting a shortest path tree covering the entire state graph,
but finding individual plans after that is very fast, and dif-
ference in planning time between k=50 and k=1000 for TK
is negligible. For the same problem size, average planning
time increases only by approximately 1%.

Conclusions
Our work on top-k planning is motivated by a specific ap-
plication where finding multiple high-quality plans is re-
quired, namely hypothesis exploration for malware detec-
tion (Sohrabi, Udrea, and Riabov 2013). We proposed a new
top-k plans formulation for cost-optimal planning, which
can be used in this and other applications.

Generating diverse plans is a notable related work (e.g.,
(Myers and Lee 1999; Srivastava et al. 2007; Nguyen et al.
2012)). However, rather finding a representative set of plans,
our approach focuses on computing top-k plans. Also, gen-
erating Pareto frontiers or a Pareto set (e.g., (Sroka and Long
2012; Khouadjia et al. 2013)) is related. Like diverse plans,
this work does not focus on finding all top-k plans in any
of the dimensions of the objective function, instead mul-
tiple diverse plans from a Pareto optimal curve are found.
Furthermore, we do not rely on additional objectives to find
near-optimal plans with a single objective.

We have implemented and evaluated four top-k planning
algorithms, two based on the k shortest paths algorithm by
Eppstein and its successor K∗. We also compared the result
of these algorithms with the result of computing top-k plans
from our iterative replanning and branch and bound algo-
rithms. The results show that computation of top-k plans is
comparable to the computation of a single cost-optimal plan.
Additionally, we found that our top-k planning system based
on the K∗ algorithm, TK∗, is as expected, the most promis-

TK, top-50 TK, top-1000 TK ∗, top-50 TK ∗, top-1000
Problem size Min Avg Max Min Avg Max Min Avg Max Min Avg Max

10 states, 5 obs. 0.05 0.05 0.06 0.27 0.29 0.35 0.03 0.04 0.06 0.21 0.24 0.28
50 states, 5 obs. 0.18 0.21 0.24 0.42 0.45 0.48 0.06 0.08 0.10 0.24 0.28 0.41

100 states, 5 obs. 1.03 1.23 1.47 1.30 1.47 1.74 0.18 0.22 0.25 0.41 0.44 0.47
10 states, 10 obs. 0.06 0.07 0.08 0.42 0.49 0.53 0.04 0.06 0.07 0.32 0.38 0.42
50 states, 10 obs. 0.42 0.51 0.60 0.83 0.94 1.10 0.10 0.12 0.13 0.43 0.48 0.53

100 states, 10 obs. 2.62 3.43 3.97 3.09 3.85 4.44 0.21 0.35 0.55 0.67 0.75 0.81
10 states, 20 obs. 0.10 0.13 0.15 0.90 0.96 1.03 0.06 0.09 0.37 0.72 0.74 0.78
50 states, 20 obs. 1.36 1.72 2.02 2.23 2.56 2.85 0.17 0.21 0.30 0.81 0.89 0.93

100 states, 20 obs. 8.52 10.55 12.10 9.33 11.44 12.96 0.46 0.66 0.82 1.10 1.36 1.49
10 states, 60 obs. 0.44 0.54 0.70 2.69 2.95 3.34 0.14 0.17 0.20 1.98 2.10 2.24
50 states, 60 obs. 9.49 12.52 15.48 11.82 14.95 18.33 0.35 0.60 0.80 2.24 2.52 2.75

100 states, 60 obs. 56.52 75.17 102.63 57.93 77.72 106.43 1.12 2.07 2.81 2.96 4.07 4.73
10 states, 120 obs. 1.81 2.40 3.27 6.58 7.18 7.84 0.27 0.33 0.41 4.07 4.24 4.44
50 states, 120 obs. 40.42 51.91 70.16 45.92 57.22 75.92 0.90 1.51 2.23 4.67 5.40 6.01

100 states, 120 obs. 229.22 294.80 412.89 234.58 300.41 419.97 2.81 5.35 7.68 6.55 9.13 11.37

Table 2: The impact of the value of k: Minimum, maximum and average planning time, in seconds, for 15 instances of each size.

ing direction for top-k planners, and in our implementation
it performed more than 100 times faster than all other al-
gorithms (in part due to faster grounding). To conclude, the
contribution of this paper is: 1) the formulation of the top-
k planning problem and its reduction to a k shortest paths
computation in a graph, 2) comparison of four implementa-
tions of the top-k planner, 3) experimental evaluation of per-
formance of our implementations on synthetic benchmarks
derived from a real-world scenario.

References
Aljazzar, H., and Leue, S. 2011. K*: A heuristic search al-
gorithm for finding the k shortest paths. Artificial Intelligence
175(18):2129–2154.
Baier, J., and McIlraith, S. 2008. Planning with preferences. AI
Magazine 29(4):25–36.
Bonet, B., and Geffner, H. 2001. Planning as heuristic search.
Artificial Intelligence 129(1-2):5–33.
Botea, A., and Harabor, D. 2013. Path planning with compressed
all-pairs shortest paths data. In Proc. of the 23rd Int. Conference
on Automated Planning and Scheduling (ICAPS), 293–297.
Botea, A. 2011. Ultra-fast optimal pathfinding without runtime
search. In Proc. of the 7th AAAI Conference on Artificial Intelli-
gence and Interactive Digital Entertainment (AIIDE), 112–127.
Edelkamp, S., and Kissmann, P. 2009. Optimal symbolic planning
with action costs and preferences. In Proc. of the 21st Int. Joint
Conference on Artificial Intelligence (IJCAI), 1690–1695.
Eppstein, D. 1998. Finding the k shortest paths. SIAM Journal on
Computing 28(2):652–673.
Haslum, P., and Grastien, A. 2011. Diagnosis as planning: Two
case studies. In Int. Scheduling and Planning Applications woRK-
shop (SPARK), 27–44.
Helmert, M. 2006. The Fast Downward planning system. Journal
of Artificial Intelligence Research 26:191–246.
Hoffman, W., and Pavley, R. 1959. A method for the solution of
the nth best path problem. Journal of the ACM 6(4):506–514.
Hoffmann, J., and Nebel, B. 2001. The FF planning system: Fast
plan generation through heuristic search. Journal of Artificial In-
telligence Research 14:253–302.
Kambhampati, S. 2007. Model-lite planning for the web age
masses: The challenges of planning with incomplete and evolving
domain models. In Proc. of the 22nd National Conference on Arti-
ficial Intelligence (AAAI), 1601–1604.

Keyder, E., and Geffner, H. 2009. Soft Goals Can Be Compiled
Away. Journal of Artificial Intelligence Research 36:547–556.
Khouadjia, M. R.; Schoenauer, M.; Vidal, V.; Dréo, J.; and Savéant,
P. 2013. Pareto-based multiobjective AI planning. In Proc. of the
23rd Int. Joint Conference on Artificial Intelligence (IJCAI), 2321–
2327.
McDermott, D. V. 1998. PDDL — The Planning Domain Defini-
tion Language. Technical Report TR-98-003/DCS TR-1165, Yale
Center for Computational Vision and Control.
Myers, K. L., and Lee, T. J. 1999. Generating qualitatively different
plans through metatheoretic biases biases. In Proc. of the 16th
National Conference on Artificial Intelligence (AAAI), 570–576.
Nguyen, T. A.; Do, M. B.; Gerevini, A.; Serina, I.; Srivastava, B.;
and Kambhampati, S. 2012. Generating diverse plans to handle un-
known and partially known user preferences. Artificial Intelligence
190:1–31.
Ramı́rez, M., and Geffner, H. 2009. Plan recognition as planning.
In Proc. of the 21st Int. Joint Conference on Artificial Intelligence
(IJCAI), 1778–1783.
Richter, S., and Westphal, M. 2010. The LAMA planner: Guiding
cost-based anytime planning with landmarks. Journal of Artificial
Intelligence Research 39:127–177.
Sohrabi, S.; Baier, J.; and McIlraith, S. 2010. Diagnosis as planning
revisited. In Proc. of the 12th Int. Conference on the Principles of
Knowledge Representation and Reasoning (KR), 26–36.
Sohrabi, S.; Baier, J. A.; and McIlraith, S. A. 2011. Preferred
explanations: Theory and generation via planning. In Proc. of the
25th National Conference on Artificial Intelligence (AAAI), 261–
267. Accepted as both oral and poster presentation.
Sohrabi, S.; Udrea, O.; and Riabov, A. 2013. Hypothesis explo-
ration for malware detection using planning. In Proc. of the 27th
National Conference on Artificial Intelligence (AAAI), 883–889.
Srivastava, B.; Nguyen, T. A.; Gerevini, A.; Kambhampati, S.; Do,
M. B.; and Serina, I. 2007. Domain independent approaches for
finding diverse plans. In Proc. of the 20th Int. Joint Conference on
Artificial Intelligence (IJCAI), 2016–2022.
Sroka, M., and Long, D. 2012. Exploring metric sensitivity of plan-
ners for generation of pareto frontiers. In Proc. of the 6th Starting
AI Researchers’ Symposium (STAIRS), 306–317.
Yen, J. 1971. Finding the k shortest loopless paths in a network.
Management Science 17:712–716.
Zhu, A. D.; Ma, H.; Xiao, X.; Luo, S.; Tang, Y.; and Zhou, S.
2013. Shortest path and distance queries on road networks: towards
bridging theory and practice. In ACM SIGMOD Int. Conference on
Management of Data (SIGMOD), 857–868.

