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Abstract—Cloud providers apply overbooking to increase
utilization of data center resources. Overbooking is associated
with the risk of over-utilizing cloud resources. In this paper, we
study an admission control technique that permits Cloud over-
booking with bounded probability of resource over-utilization.
The objective is to achieve a specified quality-of-service related
to the probability of resource over-utilization in an uncertain
loading condition, while maintaining high resource utilizations.
Our method relies on an approximation of total resource demand
generated by multiple tasks as a Beta Distribution. We perform a
qualitative study to investigate the efficiency of using our method
on Google Compute Cluster. We disclose empirical observations
on how well the resource utilization can be estimated as Beta
Distribution and we evaluate the effectiveness of the stochastic
admission controller using the same data set.

Keywords—admission control, cloud management, dynamic de-
mand, performance comparison, policies, virtual machines

I. INTRODUCTION

In a Cloud system managing the utilization of physical
resources with effective admission control policies is essential.
Admission control policies ensure that sufficient resources
are available in a cluster to provide fail-over protection and
to ensure that virtual machine resource reservations are re-
spected [1].

The most commonly used admission policy admits a re-
quest (such as a virtual machine or a job) into the Cloud if
its full resource demand can be reserved on some physical re-
source in the Cloud. As resource requests often greatly exceed
their actual time-varying demand, such policy leads to Cloud
resources being under-utilized. Cloud providers want to take
advantage of that unused capacity by resource overbooking.
Overbooking allows the sum of admitted resource requests to
exceed the capacity of physical resources in the Cloud. The
choice of placing a request on a particular physical node is a
decision of the Placement Controller, which is not the subject
of this paper, but has been studied in many publications before.
Here we are concerned with the decision to admit a request
once its suggested physical host is selected. A request needs
to be admitted to at least one physical node, in order to be
admitted into the Cloud.

Overbooking carries with it the risk that the actual demand
will exceed the usable capacity of physical resources leading
to request interruption or poor performance. Admission control
policies that permit overbooking must therefore be selected
such that the risk of overload is minimized.

In general, admission control schemas are either parameter-
based or measurement-based. Parameter-based admission con-
trol schemas are based on apriori knowledge of the input
requests and provide for deterministic guarantees for uninter-
rupted Cloud operations. Examples of this type of admission
control schemas include admitting a request based on its
resource demand characteristics, such as maximum resource
demand or average resource demand. Parameter-based schemas
are easy to implement but their effectiveness is reduced by the
inability to deal with workload variability; incorrect param-
eter settings can lead to under-utilization or over-utilization
depending on actual workload resource demands.

A measurement-based admission control schema, on the
other hand, takes advantage of measurements made in the real
system to guide admission decisions in addition to request pa-
rameters. Such technique can better adapt to workload intensity
and variability. In this paper, we introduce a measurement-
based admission control policy for the Cloud. Our technique
relies on easily available resource utilization measurements.
Each resource in a physical machine has an over-utilization
threshold. When this threshold is exceeded and the resources
are over-utilized for longer periods of time, operations of
physical machines may be interrupted or migration may be-
come necessary. Over-utilization threshold is the maximum
acceptable utilization percentage for a resource. The admission
control policy ensures a stochastic bound on the probability
that a resource is over-utilized.

Each resource is described by the stochastic properties of
its utilization. The probability density function (pdf) of the
utilization of a resource is the convolution of all resource
demands of the accepted requests that utilize that resource.
In such aggregation of independent resource demands, the
probability that the aggregate utilization will reach the sum of
the peak demand is infinitesimally small. Using the pdf of the
aggregated resource utilization in admission criteria provides
for probabilistic guarantees. In mathematical terms, resource k
is stable if its utilization, Uk, satisfies the following constraint,

P (Uk > Uok ) ≤ εo (1)

where Uo is the over-utilization threshold and εo is the
probabilistic bound on over-utilization.

In this study, we approximate the pdf of the aggregated
resource utilization using the first and second moments as
a Beta Distribution. Then, we employ (1) as the admission
criterion to decide if the statistical properties of an arriving
VM request will likely to drive the physical machine into



over-utilization. Thus, we enforce an admission criterion that
guarantees a bound on the probability of over-utilization. We
evaluate our technique using Google Compute Cluster usage
data. The Google Cluster data discloses resource usage by
millions of tasks running on a set of machines hosted in racks
and connected by a high bandwidth network. Our aim is to
verify the Beta Distribution assumption by aggregating usage
of different number of tasks and check if we can fit a Beta
Distribution to the actual resource utilization distribution. We
also compare the over-utilization probability that we estimate
using the Beta assumption with the actual resource over-
utilization in Google Cluster data.

The paper is organized as follows. We introduce a math-
ematical representation for the arriving resource requests
and the associated distribution for the resource demand in
section II. The details of stochastic admission controller is
presented in in section III. Our numerical results for Google
Compute Cluster are presented in section IV. We review the
related work in section V and summarize the conclusion and
future work in section VI.

II. FORMULATION

A. Homogenous System

Consider p homogenous PMs subjected to a stream of
homogenous requests with a Poisson arrival process with
rate λ and a generally distributed lifetime with mean τ . A
PM has K different resource types, each having capacity
Ck, k = 1, 2, · · · ,K. A request has a demand Dk for re-
source k that is generally distributed with distribution function
FDk

(dk) = Pr[Dk ≤ dk], where dk ∈ [Dmin
k , Dmax

k ].
Without loss of generality we assume that Dmin

k = 0 and
Dmax
k > 0. We denote the mean and standard deviation of the

demand for resource k by µDk
and σDk

, respectively. Hence,
the mean offered load for the kth resource is given by

ρk = λ τ µDk
. (2)

Let Znk denote the sum of n independent kth resource de-
mands, i.e. Znk = nDk. Thus, the mean of Znk is E[Znk ] =
n µDk

, the variance is V [Znk ] = n σDk
2, and the probability

distribution, denoted by FZn
k

(zk), is the n-fold convolution.

B. Heterogeneous System

Consider a system that is subjected to I request types. As
before, we have p homogenous PMs. A type i request has a de-
mand of Dik for resource k with mean and standard deviation
of µDik

and σDik
, respectively, and a distribution function of

FDik
(dik) = Pr[Dik ≤ dik], where dik ∈ [Dmin

ik , Dmax
ik ] and

i = 1, 2, · · · , I . We assume that Dmin
ik = 0 and Dmax

ik > 0.
Let λi represent the mean arrival rate for Poisson arrivals and
τi represent the generally distributed mean lifetime of the ith
request type. Hence, the mean offered load for type i for the
kth resource is given by

ρik = λi τi µDik
. (3)

The total mean offered load for resource k is:

ρk =

I∑
i=1

ρik =

I∑
i=1

λi τi µDik
. (4)

Let n = (n1, n2, · · · , nI) denote the number of requests
of each of the I types in the system. Given n, the sum
of independent kth resource demands in the heterogenous
system, Zn

k is given by, Zn
k =

∑I
i=1 ni Dik. The mean of

Zn
k is E[Zn

k ] =
∑I
i=1 ni µDik

, the variance is V [Zn
k ] =∑I

i=1 ni σDik
2, and the probability distribution, denoted by

FZn
k

(zk), is the convolution of FDik
(dik) over i.

III. STOCHASTIC ADMISSION CONTROLLER

An admission controller admits a request into the Cloud
based on some policy P(φ), with a set of parameters φ used
in admission criteria. The parameter set φ includes elements
that characterize the requests, such as the maximum demand,
average demand and elements that characterize the resources in
the Cloud such as resource capacity. If the admission criterion
uses fixed parameter values based on the characterization of
the input request and the Cloud resource, we call the admission
policy parameter-based. On the other hand, if the admission
criterion uses measurements to capture the stochastic nature of
the current state, such as the mean and variance of resource
utilization, we call it measurement-based.

First, for the sake of simplicity, we detail the description
of stochastic admission controller for homogenous system
only. Then, we show later how these can be extended to a
heterogenous system. A request is admitted if the admission
policy allows it given the current state of the system, otherwise
it is rejected. The resulting request rejection probability δ, and
the mean utilization of kth resource Uk are related as

Uk =
(1− δ) ρk
p Ck

. (5)

Admission based on a probabilistic bound over-utilization
can be denoted by P(U∗

k , ε, µk, σk), where U∗
k is the utilization

threshold, εk is the probabilistic bound on the over-utilization
probability for resource k such that the probability of over-
utilization being above U∗

k is limited to εk, and µk and σk are
the mean and standard deviation of the utilization for resource
k, respectively.

In this probabilistic admission policy, the dynamic nature of
resource demand is represented by its mean, µDk

, and standard
deviation, σDk

. The utilization of resource k, Uk, is a random
variable between [0,1]. It is characterized by its mean and
standard deviation, µk and σk, respectively.

Admission criterion for, P(U∗
k , εk, µk, σk), utilizes U∗

k , εk,
µk and σk to make an admission decision. Here µk and
σk are the estimated mean and standard deviation of the
measured utilization of resource k at the request arrival time.
The admission criterion is given by

FZn
k

(U∗
k ) ≥ (1− εk), (6)

otherwise the request is rejected.

The key to implementing the stochastic admission con-
troller is the knowledge of FZn

k
(U∗

k ). We approximate the
probability distribution function (pdf) of Uk as a Beta Dis-
tribution. The Beta Distribution is a family of continuous
probability distributions defined on the interval [0,1] by two
positive shape parameters, denoted by α and β. Hence, we



characterize the utilization Uk with two parameters, αk and
βk, associated with the first and second moments of Uk.

The values of αk and βk are computed from the estimated
mean and variance values of the utilization of resource k in
the PM as:

αk = R̄k

(
R̄k(1− R̄k)

S̄2
k

− 1

)
, (7)

βk = (1− R̄k)

(
R̄k(1− R̄k)

S̄2
k

− 1

)
, (8)

where R̄ and S̄ are estimations for µk and σk, respectively.
Hence the cumulative distribution function FZn

k
(Uk) for the

utilization of resource k is expressed as:

FZn
k

(Uk, αk, βk) = B(Uk, αk, βk)/B(αk, βk), (9)

where B is the Beta function. P does not need to be adjusted
as the workload characteristics change, since it is dynamically
adjusted with the measured statistical properties of resource
utilization. The predefined parameters U∗

k and εk are set by the
Cloud manager depending on the specifications of the physical
machine.

In the heterogenous load case, admission controller still
admits a request into a PM based on n = (n1, n2, · · · , nI),
the number of requests of each type in the PM at the time of
admission policy P(φ) is applied. Hence, the convolution in
Equation 6 is over the vector n rather than the scalar value n.

IV. NUMERICAL RESULTS

We use Google Compute Cluster data, which is available
online1, to support our assumption on representing resource
utilization by Beta Distribution, and to estimate the mean and
the standard deviation of real workloads to experiment the
performance of stochastic admission controller. In this section,
we first give explanation on Google Compute Cluster data, then
detail our estimation method.

A. Google Compute Cluster Data

In this section, we describe the large scale Google pro-
duction workload trace (version 2)2 that is recently made
publicly available by Google. Google Cluster is a set of
machines hosted in racks and connected by a high bandwidth
network. A cell is a group of machines, which share a single
cluster management system, that places requests on to physical
machines [2]. Google published 2 traces of their computing
cells, which both contain usage trace, system resource and
machine characteristics. The trace that we study in this section
(version 2) represents 29 days worth of cell information on a
single cluster collected in 500 time points.

Table I shows the content of available data that can be
downloaded from Google’s website. Some folders (job events,
task constraints, task events, task usage) contain 500 csv files
in time series form. Machine attributes and machine events
folders contain single csv file to describe the properties of
the machine attributes and events. The downloaded data also
contains “schema.csv” file which describes the column names

1http://code.google.com/p/googleclusterdata/
2https://code.google.com/p/googleclusterdata/wiki/TraceVersion2

TABLE I: Contents of Google Cluster Trace

Folder name Format
job events time series
machine attributes properties- single file
machine events properties- single file
task constraints time series
task events time series
task usage time series

in each file for all sub-folders. Before we start describing how
we benefit from the Google Cluster data for our work, let us
first highlight the statistical properties of the data, how it is
stored and what is publically made available by Google.

Workloads (requests) arrive to a cell in the form of jobs
where job consists of one or more tasks. Each task has resource
requirements that are used by the Google scheduler to place the
tasks onto physical machines. Every job and every machine in
the dataset are represented by a unique 64-bit identifier (job ID
and machine ID) whereas tasks are indexed as 0-based indices
for the job they are associated with [3]. There are total of
2,012,242 observations recorded in the trace where there are
672,074 unique Job IDs [3]. In job events dataset, there are
933 unique users and 183,955 unique job names and logical
job names [3].

Each machine in the machine events dataset has a unique
machine ID. There are total 12,583 unique machine IDs [3].
Machine events stores two capacity values; CPU and memory
which are normalized physical capacity of each machine in the
cell (between [0,1]). There are three different level of CPU core
capacities which are [0.25, 0.50, 1] and there are ten different
memory capacities which are [0.0308, 0.0616, 0.1241, 0.2493,
0.2498, 0.4995, 0.5000, 0.7490, 0.9678, 1.0000].

The task usage dataset consists of 500 csv files. Each
record in the tables has a timestamps attribute, which is in mi-
croseconds since 600 seconds before the beginning of the trace
period, and is recorded as a 64-bit integer [2]. Task usage table
records the mean and the maximum resource usage for CPU,
memory, and disk (labels are CPU usage, memory usage, disk
I/O time) for the period of time that the monitoring is done.
Each measured records is extracted from typically 300 seconds
time interval. Most of the resource usage measurements and
requests have been scaled by Google by an unknown linear
transformation function due to confidentiality reasons. CPU is
measured in CPU core- seconds/second, memory in bytes, and
disk time fraction in I/O seconds/second.

B. Statistics on Resource Usage Data

We want evaluate if a real-life workload characteristics
can be correctly represented as a Beta Distribution. For this
purpose, we analyze a representative sample of jobs/tasks from
Google data set. Google Cluster contains multiple job types
[4], which differ in resource consumption and duration. Our
objective is not characterizing these types - we aim for a
representative mix, and therefore our samples are randomly
selected. Here we show how such samples are extracted from
the Google data set.

Figure 1 plots the aggregated CPU usage in core-hours
for average of 17 jobs that involve 18 tasks at a given time
over 500 snapshots in 29 days among total of 1,771 unique



jobs consisting of 3,061 tasks that are running on a particular
machine with an ID “351618647”. Here, the available CPU
usage data is converted into to core-hours metric from core-
seconds per second. The core-hours is the product of average
CPU usage and its duration (duration is 300 seconds = 5
minutes) and divided by 12 since records are collected for
5 minute intervals. The GB-hours for memory is calculated
in a similar way. As it is shown in Figure 1, the variation of
CPU usage is high compare to memory usage over the same
period as shown in Figure 2. The coefficient of variation for
CPU usage is found to be 15%. Investigating the reason for
the fluctuation (steadyness) in the CPU (memory) usage is not
the scope of this paper. Our main focus is to investigate how
effectively we can approximate the distribution of resource
utilization as a Beta Distribution by using Google usage data.
Then, using this approximation to show that we can reduce
the probability of over-utilization by using the stochastic
admission controller developed by Unuvar et al. [5].
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Fig. 1: CPU usage for average of 18 tasks, mean = 1.95,
variance= 0.3
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Fig. 2: Memory usage for average 18 tasks, mean = 2.27,
variance = 0.05

As shown by Figure 1 and 2, the variation of CPU usage
is more compared to that of memory usage. In the rest of
the paper, we study the CPU usage utilization since; 1-Due to
its dynamic nature, CPU usage will need a better stochastic
admission controller, 2-CPU is the bottleneck resource rather
than memory most of the time.

C. Fitting Sample Usage Data to Beta Distribution

In this section, we explain the method of calculating the
CPU utilization from the sample usage data and using this

utilization data to fit a Beta Distribution. In order to calculate
the utilization of a resource, the machine resource capacities
need to be known exactly. Since Google did not publish
the exact machine capacities but published the normalized
values, we cannot use that information directly to calculate
the resource utilization. Rather, we take the maximum resource
usage throughout the 29 days of time span and set that level of
utilization to be 90% for the CPU utilization. Google reports
that not all of the resource capacity is available to the tasks
therefore 10% of the machine is assumed to be reserved for
the cluster scheduler and operating system [2]. For example,
for the same sample (average of 17 jobs involving 18 tasks
running on machine ID= “351618647”), the maximum CPU
usage over 29 days is 3.97 core-hours. We set the usage of
3.97 core-hours to be 90% utilization and normalize the rest
of the usage data by dividing to 3.97/0.9. Since actual resource
consumption is done by the tasks, we will be using only the
number of tasks rather than number of jobs through the rest of
the paper. Figure 3 plots the distribution of the CPU utilization
for 29 days when calculated by using the 18 tasks on average.
Table II shows the general statistics for the usage of 18 tasks,
transformed to utilization data, in each row. There are total of
500 observations since we calculate the resource utilization at
every data measurement point.

Fig. 3: CPU utilization for 29 days by 18 tasks on average,
mean = 0.49, variance = 0.02

TABLE II: Summary statistics for CPU utilization for average
of 18 tasks

Variable Observations Min Max Mean Std. dev.
CPU utilization 500 0.124 0.901 0.49 0.14

Next, we calculate the shape parameters for Beta Distribu-
tion from the mean and the standard deviation of the sample
as described in section III. Table II shows the mean CPU uti-
lization and the standard deviation for the 500 sample as 0.49
and 0.14 respectively. By substituting the calculated mean and
the standard deviation to Equation 7 and 8, we estimate Beta
Distribution shape parameters as follows: α = 5.76, β = 5.93.
Figure 4 depicts the Q-Q plot showing how well this estimation
is, based on our sample. Q-Q plot is a probability graph that
graphically compares two probability distributions by plotting
their quantiles against each other, [6]. If the two distributions
being compared are similar, the plotted points in the Q-Q plot
will approximately lie on y = x line. As Figure 4 shows, the



estimation of the parameters are fitting to y = x line indicating
that the estimated shape parameters are well chosen.

Fig. 4: CPU Utilization for average of 18 tasks fit to Beta
Distribution parameters

Further, Table III shows additional parameters of the input
data and the estimated Beta Distribution function related to;
the first (mean), second (standard deviation), third (skewness)
and fourth (kurtosis) moments. Skewness is a measure of
symmetry, or more precisely measure of the lack of symmetry
where Kurtosis is a measure of whether the data is peaked or
flat relative to a Normal Distribution, [7]. Kurtosis coefficient
measures heavy tails, sharp peaks or flat tops. As it is supported
by Q-Q plot, the mean and the standard deviation are very well
estimated however the skewness and the kurtosis coefficients
are not well estimated for this sample data. The result of not
being able to fit skewness and kurtosis coefficients well is seen
in Figure 5 where we plot the actual sample distribution and the
estimated Beta Distribution in the form of histogram. As Figure
5 supports, the mean and the variance of Beta Distribution and
the actual sample are quite similar however, the skewness and
kurtosis which are extensions of third and fourth moments, are
not fitted perfectly to the CPU utilization sample.

TABLE III: Statistics estimated on the input data and computed
using the estimated parameters of the Beta Distribution

Statistics Data Parameters
Mean 0.490 0.493
Variance 0.019 0.020
Skewness (Pearson) 0.601 0.015
Kurtosis (Pearson) 0.160 -0.408

Figure 6 is another way to visualize the distribution of
actual CPU utilization values and the estimated Beta Distri-
bution function. Even though the Beta shape parameters fit
perfectly, the skewness and the peak of actual data and the
estimated Beta Distribution do not quite match. We further
perform Kolmogrov-Smirnov (K-S) test to understand if this
graphical conclusion is valid at 0.05 significance level. We
use Kolmogrov-Smirnov test to compare the fit of actual CPU
utilization sample to estimated Beta Distribution sample. The
K-S test is one of the most useful and general nonparametric
methods for comparing the empirical distribution functions,
[8]. K-S test measures a distance between these empirical dis-
tributions by drawing samples from the same null distribution
of the desired statistics, defined in null hypothesis. We state

Fig. 5: Histogram of actual CPU Utilization for average of 18
tasks and fitted Beta Distribution

Fig. 6: CPU Utilization fit to Beta Distribution for average of
18 tasks

our null and alternative hypothesis as:

H0 : The sample follows a Beta Distribution
Ha : The sample does not follow a Beta Distribution.

K-S test result is as follows: D value is 0.084, p − value
is 0.002 and the significance level, α is 0.05. D value is the
maximum difference in cumulative fraction thus small D value
is expected while comparing similar distributions. The result
of K-S test is usually interpreted by the p − value and the
significance level, α. As the computed p − value is lower
than the significance level α = 0.05, one should reject the
null hypothesis H0, and accept the alternative hypothesis Ha

for this particular test. The risk to reject the null hypothesis
H0 while it is true is lower than 0.05%. This result indicates
that Beta Distribution is not a good fit for the average of 18
tasks worth of usage data. This may be caused by the lack of
representative usage sample. In other words, the convolution
of the usage distribution of 18 tasks did not fit to a Beta
Distribution. In order to minimize the uncertainty caused by
the smaller subsets, we increase our task sample size to 49,
88 and 154. We show that as we sample the usage data
from more tasks uniformly, the resource utilization fits to Beta
Distribution better. The results of larger samples are described
in the next section.

D. Effect of Sample Size on Beta Fitness Test

Even though the utilization distribution for 18 task usage
on average graphically looked like an “almost” good fit to Beta



(a) CPU Utilization fit to Beta Distribution
parameters for average of 49 tasks

(b) Histogram of actual CPU Utilization and
fitted Beta Distribution for average of 49
tasks

(c) CPU Utilization fit to Beta Distribution
for average of 49 tasks

(d) CPU Utilization fit to Beta Distribution
parameters for average of 88 tasks

(e) Histogram of actual CPU Utilization and
fitted Beta Distribution for average of 88
tasks

(f) CPU Utilization fit to Beta Distribution
for average of 88 tasks

(g) CPU Utilization fit to Beta Distribution
parameters for average of 154 tasks

(h) Histogram of actual CPU Utilization and
fitted Beta Distribution for average of 154
tasks

(i) CPU Utilization fit to Beta Distribution for
average of 154 tasks

Fig. 7: Q-Q plot, CPU utilization & Beta Distribution fit and observed & theoretical utilization for 29 days for usage of 49, 88
and 154 tasks

Distribution, the fit, however, did not pass the K-S test at 0.05
significance level. We believe this is caused by the random
selection of 18 tasks, which was not representative enough for
the general workload to convolute as Beta Distribution. In this
section, we perform the Beta fit method described above on
3 different samples separately. We randomly, on average, first
select 49 then 88 and finally 154 tasks over 29 days to see if
higher sample sizes would fit utilization to Beta Distribution
better. We aggregate the usage of the tasks at each day over
29 days for every sample. We again set the maximum usage
level over 29 days to be 90% resource utilization to leave 10%
of the capacity for cluster management & operating systems.

Table IV shows the general statistics for the usage of,
49, 88 and 154 tasks, transformed to utilization data, in each
row. As we sample usage from more tasks, the mean CPU
utilization approaches to 50% and the standard deviation re-
mains around 0.15. By using the calculated mean and standard

TABLE IV: Summary statistics for CPU utilization levels for
usage of 49, 88 and 154 tasks

Sample Variable Obs. Min Max Mean Std. dev.
49 tasks CPU Utilization 500 0.085 0.900 0.500 0.169
88 tasks CPU Utilization 500 0.088 0.901 0.504 0.151
154 tasks CPU Utilization 500 0.091 0.900 0.516 0.142



deviation values in Table IV, we estimate the shape parameters
for three usage samples. The estimation of shape parameters
for samples of 49, 88 and 154 tasks is more accurate than 18
task sample. Table V lists the estimated and actual values for
mean, variance, skewness and kurtosis for 3 samples.

TABLE V: Statistics estimated on the input data and computed
using the estimated parameters of the Beta Distribution

Experiment Statistics Data Parameters
49 tasks Mean 0.500 0.495

Variance 0.029 0.028
Skewness (Pearson) 0.202 0.012
Kurtosis (Pearson) -0.674 -0.543

88 tasks Mean 0.504 0.490
Variance 0.023 0.023
Skewness (Pearson) 0.340 0.021
Kurtosis (Pearson) -0.415 -0.461

154 tasks Mean 0.516 0.500
Variance 0.020 0.020
Skewness (Pearson) 0.374 0.000
Kurtosis (Pearson) -0.274 -0.416

Figure 7 shows the Q-Q plot, distribution of the actual CPU
utilization and the estimated Beta Distribution for all samples.
As Figure 7a, 7d and 7g show, the Q-Q plot is almost on
y = x line, indicating that the shape parameter estimations are
very accurate for all 3 samples. Further, Figure 7b, 7e and 7h
depicts the actual data distribution and the Beta Distribution
in the form of histogram. In all 3 samples, estimated Beta
Distribution, in graphical comparison, seem to be a good fit.
In Figure 7c, 7f and 7i, we see the Beta function over the actual
data distribution which visually support Beta Distribution fit
argument again.

Even though the Figure 7 supports the Beta Distribution fit
graphically, we still perform the K-S test to see how well the
Beta Distribution fit to our samples. Table VI shows that with
sample of 49 tasks, the p − value is 0.098 meaning that as
the computed p− value is greater than the significance level
α = 0.05, one cannot reject the null hypothesis H0. The risk
to reject the null hypothesis H0 while it is true is 9.76%. For
the sample of 88 tasks, the computed p− value is still higher
than the significance level therefore one cannot reject the null
hypothesis, H0 again. The risk to reject the null hypothesis
H0 while it is true is 19.61%. For the sample of 154 tasks,
the value of p−value is even higher indicating that the better
uniform sampling represent the workload characteristics better
thus the Beta Distribution fit is more accurate. In the 154 tasks
case, as the computed p−value is greater than the significance
level α = 0.05, one cannot reject the null hypothesis H0. The
risk to reject the null hypothesis H0 while it is true is 20.93%.

TABLE VI: Kolmogorov- Smirnov Test

Test Result 49 tasks 88 tasks 154 tasks
D 0.055 0.051 0.048
p− value 0.098 0.150 0.196
α 0.05 0.05 0.05

The above analysis showed that the quality with which the
Beta Distribution fits the distribution of Uk depends on the
number of request random variables included in the convo-
lution. In practical terms, this means that in a system where

a physical compute node can host a large number of tasks
simultaneously, the Beta Distribution is a good representation
of the utilization generated by the convolution of these tasks.

E. Estimation Error for Stochastic Admission Controller

Given the Beta Distribution of resource usage, it is useful to
consider the potential benefit a stochastic admission controller
could bring when applied to a particular system and how the
inaccuracy resulting from using Beta as an approximation can
affect this result. To this end, we compare the actual over-
utilization observed in Google data set with the estimation
thereof computed by the stochastic admission controller under
Beta assumption.

The stochastic admission controller has two parameters: the
over-utilization threshold and the probabilistic bound on the
over-utilization as defined in section III. Figure 8 shows the
Beta Distribution that fitted over the actual usage for 154 tasks
data. For example, if the over-utilization threshold is set to 0.8
by the user, the probability of over-utilization -regardless of the
admission controller- is estimated as P (UCPU ≥ 0.8) = 0.024
-the green portion of the Beta curve in Figure 8. The stochastic
admission controller bounds the over-utilization probability to
a user selected parameter, the probabilistic bound, by rejecting
the arrivals that would potentially increase the likelihood of
over-utilization beyond the selected parameter. Thus, the better
the Beta Distribution fit, the closer the approximation of
over-utilization upper bound is performed by the stochastic
admission controller.

As an example, with estimated Beta Distribution for the
usage data, stochastic admission controller ensures that the
probability of over-utilization (over-utilization being 0.8) as
2.4%. This can be verified by equation (6). The actual dis-
tribution of CPU, however, is higher than the over-utilization
threshold 4.4% of the time. Hence, the stochastic admission
controller under-estimates the over-utilization by 2.0% for the
154 task sample. Table VII shows that as the beta fit gets
better (higher p − value in K-S test), the error in estimating
over-utilization probability decreases.

TABLE VII: Error in estimating P (UCPU ≥ 0.8)

Sample size p− value Actual prob. Estimated prob. Error
18 tasks 0.002 0.066 0.011 0.055
49 tasks 0.096 0.064 0.031 0.033
88 tasks 0.15 0.042 0.016 0.028
154 tasks 0.196 0.044 0.024 0.020

Since Beta Distribution underestimates the over-utilization
probability, the stochastic controller will deliver higher ratio of
over-utilization samples than its theoretical goal. At the same
time, the controller is unlikely to reject requests unnecessarily.
The knowledge of the direction in which the controller is likely
to err, should be helpful in adjusting its parameters to obtain
the desired system behavior.

F. Implementing Stochastic Admission Controller on Google
Compute Cluster

In this section, we apply the stochastic admission controller
to Google data set and measure its effectiveness.
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Fig. 8: Estimated and actual probability of over-utilization

We apply the controller to 30,000 task arrivals randomly
selected from Google data set over 29 day time span. There are
154 tasks on average running in the system (same distribution
of tasks in Figure 8). As the first step of the analysis we
calculate the mean and the standard deviation of resource
demands of each task. Then, given the parameters of individual
task distributions, we apply the controller criterion to decide
the admission or the rejection of each task. Rejected tasks are
removed from the distribution and do not contribute to the total
resource usage in the resultant distribution. This way we end
up with two data sets: the original data set of 30,000 tasks
from Google data and the resultant distribution with a subset
of these tasks accepted by our controller.

Stochastic admission controller, changes the shape of the
utilization distribution. For example, in Figure 8 if an ad-
mission controller policy on CPU, P(0.8, 0.01, 0.516, 0.142)
was applied, then almost half of the actual data points beyond
the green dashed line would not have been accepted into the
system. This would change the shape of the actual distribution
yielding a change in the estimated Beta Distribution. The
new curve would have a longer tail then the current one
which would decrease the likelihood of over-utilization of the
resources significantly.

Figure 9 shows the distribution of actual tasks’ contribution
to utilization without the admission controller and with the
admission controller. After applying the stochastic admission
controller, P(0.8, 0.01, µ, σ), where µ and σ are calculated at
every new arrival, we see that for the green bars, the probability
of over-utilizing the CPU is 0.018. For the blue distribution,
which is the utilization level without the admission controller,
the probability of over-utilizing the CPU is 0.044. With the
admission controller, 1.8% of time, this particular sample of
tasks may over-utilize the machine. Even though the ε for the
upper bound on probability of over-utilization is defined in the
policy as 0.01, we were able to bound the probability of over-
utilization by 0.018 due to estimation error shown in Table
VII.

Table VIII shows the effect of the stochastic controller
for various values of over-utilization probability bounds, ε. It
demonstrates that increasing ε leads to lower request rejection
rate and higher over-utilization probability. It also shows that
our technique adjusts to different settings of ε although it
does not perfectly achieve ε, and that it consistently delivers
improvement in over-utilization probability relative to the
system with no admission controller.

Fig. 9: Distribution of CPU utilization with and without the
stochastic admission controller

TABLE VIII: Stochastic Admission Controller with different
ε bounds one probability of over-utilization

ε P (UCPU > 0.8) with P (UCPU > 0.8) without Rejection %
admission controller admission controller

0.005 0.012 0.044 10.83%
0.01 0.018 0.044 8.27%
0.02 0.038 0.044 4.12%

V. RELATED WORK

The problem of admission control in data centers, and
in the Cloud in general, has been addressed from different
angles. In [9], a data center that is subjected to a stream
of VM requests of different types is considered. In practice,
the demand varies over time, suggesting the inclusion of the
variability in demand when admitting a VM. In [10], this
variability in CPU usage enabled the overbooking of resources.
[11] allowed overbooking to improve the Cloud utilization
with an admission controller that monitors the infrastructure
capacities.

Fundamentally, admission control is similar in many ways
to loss systems. In such systems, a collection of resources
with some capacities are provided to a stream of requests,
where each request specifies its resource demand. Typically,
the resource demand is fixed. Even in this case, and given
Poisson arrivals of requests and generally distributed request
residence times, the probabilistic analysis, say to evaluate the
loss probability, which corresponds to the rejection rate in
admission control, is challenging due to the need to compute
a normalizing constant [12]. To overcome this challenge,
asymptotic approximations have been obtained for load factors
that correspond to light, critical, and overload conditions [13].

Beta Distributions are a type of probability distribution that
is commonly used to describe uncertainty about a fraction or
a prevalence. In general, the data that comes from surveys,
experiments, or computer executions helps us to describe
the uncertainty. Quality Control [14], epidemiology, disease
control [15], economics [16], risk analysis [17] are some of
the areas where Beta Distribution is often used to measure un-
certainty. In our paper, we use the Beta Distribution to measure
the uncertainty regarding Cloud resource over-utilization.

Google Compute Cluster data properties, how to access and
process the data, are documented in [2]. Statistical analysis,
such as workload characteristics for the same dataset is studied



by [3] and for a similar Google production data by [4]. In
[4], authors used k-means clustering to group the similar
workloads together thus help schedular to understand the
behavior of the workloads better. We benefit from both [3]
and [4] while deriving simple statistics and conclusions about
the characteristics of the data.

Back to the Cloud computing environment, the variability
in demand depends on the nature of the resource. For example,
for the CPU resource on a PM, the total CPU demand of all
VMs hosted on that CPU may very well exceed 100%. This
will simply result in congestion and degraded performance.
However, for the memory resource, such an overload is unac-
ceptable since it may lead to crashing. Hence, a method for
estimating the probability of overload is crucial in deciding on
admitting a VM into the system. And, that is exactly the goal
of this paper.

VI. CONCLUSION AND FUTURE WORK

There are certain conveniences in assuming that the aggre-
gated resource usage distribution in a Cloud machine follows
a Beta Distribution. Beta is a family of distributions with
two parameters where the parameters are associated with the
first and the second moments of the resource usage. Thus,
it covers a wide range of usage distribution possibilities. In
addition, an expression for over-utilization probability can also
be expressed conveniently when the resource usage distribution
is assumed to be Beta. The stochastic admission control
policy that we introduced in section III bounds the specified
over-utilization probability to a user selected level. In this
study, we evaluate the stochastic admission policy against
the real usage data produced in a Google Compute Cluster.
The resource usage data that is obtained from Google Cluster
suggests that a Beta Distribution is a good fit for the resource
utilization distribution, provided that enough number of tasks
are aggregated. Thus, our stochastic admission policy can be
effectively applied against the usage data that we extracted
from Google Cluster.

We observe that the resource demand distribution of small
number of tasks may not always satisfy the K-S criterion
for Beta Distribution fit. This corresponds to the cases where
machines with smaller capacities are used to run the tasks
or resource demands are big or not granular enough to fit
large number of tasks in one machine. Thus, we conclude
that when the number of tasks running on a single machine
is large enough, then the resource utilization distribution fits
Beta Distribution better. As a result, the stochastic admission
controller gives more reliable over-utilization bounds. When
the number of tasks is not large enough, on the other hand,
the stochastic admission controller under estimates the over-
utilization probability.

Our experiment with Google Cluster data shows that the
resource distribution consistently fits to Beta Distribution when
the number of tasks running on a single machine is above
50 and the stochastic admission controller bounds the over-
utilization probability better. Our future work will focus on
statistical analysis of the Google Cluster data to determine
the conditions around the number of tasks running in a single
machine to justify the Beta assumption.

The stochastic admission controller avoids over-utilization
with certain confidence. When the stochastic admission con-
troller is implemented based on the Beta assumption, the
admission controller is found to be over-confident against over-
utilization compared to the actual usage distribution when Beta
assumption fails. This can be avoided if we can fit the tails
of the distribution better. We are working on modifying our
approach to find a Beta Distribution that fits better at the upper
tail. This will help improving the confidence for avoiding over-
utilization.
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