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Abstract
A controller is implemented to manage memory as an
elastic resource similar to computing cycles for Java ap-
plications. The controller actively arbitrates constrained
memory between collocated JVMs in response to de-
mand. A key aspect of the work is that JVM metrics are
used as proxies for application KPIs so that application
performance instrumentation and modeling are not re-
quired. A metric corresponding to the allocation rate of
memory is derived from the JVM metrics and established
as the measure of application performance and is used as
the effective feedback mechanism to the controller. The
controller is based on a fair share policy in which mem-
ory is distributed to equalize the marginal performance
value to all JVMs. The design is tested for effective-
ness and stability using the suite of SPECjvm2008 and
SPECjbb2005 benchmarks.

1 Introduction

Matching real memory and CPU resources to the time
varying memory-processor demand footprint of applica-
tions is an important element in systems performance
management. Active sharing of processors between ap-
plications within and across virtual machines (VMs) in
response to demand is a mature feature of the operat-
ing systems and hypervisors. Active sharing of mem-
ory (ASM) is the analogous capability where physical
memory pages move seamlessly between applications
and across virtual machines to satisfy demand. This im-
proves system wide memory utilization, or alternatively
increases the application density or workload intensity
hosted on a compute system. ASM is sometimes referred
to as logical memory overcommit as it reduces the total
amount of memory necessary in a system with time vary-
ing workloads from the sum of the maximum demand of
each workload to the maximum of the sum of the work-
loads. ASM is distinguished from paging which requires

saving and restoring state in order to reuse pages from
processes or VMs. Exploiting ASM requires the ability
to identify unused memory in applications and operat-
ing systems and (re)map those pages to collocated ap-
plications, or move them to another VM on a common
hypervisor. This function is widely available at the VM-
hypervisor layer in the commercial space. But support at
the application layer has been lagging as traditional ap-
plication design and coding practice has not emphasized
the need to dynamically return memory from the process
space to the OS.

Widespread use of the Java Virtual Machine (JVM)
as a server application platform creates an opportu-
nity to extend the scope of ASM into the application
layer. Emerging JVM technologies such as heap balloon-
ing [2, 3] and dynamic heap sizing [4] provide mech-
anisms to release committed memory from the virtual
heap space. Given these advances it is an appropriate
time to visit the architecture and control functions re-
quired for an automatic ASM solution that focuses on
Java applications.

This paper describes two novel aspects of JVM mem-
ory management: JVM metrics are shown to be suitable
proxies for application based key performance indica-
tors (KPI); and JVM heap memory is actively sized in
response to resource changes and workload variability
by equalizing the value of memory as indicated by the
JVM metrics. Memory intensive benchmarks from the
SPECjvm2008 [7] suite and SPECjbb2005 [6] are used
to correlatefJVM metrics and application KPIs, and to
evaluate the control system.

2 Background and Related Work

Figure 1 shows the platform used to investigate active
memory sharing (AMS) in a virtual environment. From
a logical perspective, the figure is a tree with applica-
tion JVMs at the top, and the hypervisor memory pool
of a physical machine (PM) at the root. One or more



collocated JVMs is hosted by an operating system (OS).
Each OS apportions its memory pool to processes (JVMs
and other applications), free pools, and system cache. In
turn, the operating systems share the common physical
platform memory in the hypervisor pool. Memory flows
slowly down the tree to the OS and hypervisor pools on
the non-critical path, while the flow of memory up the
tree is on the critical path. This paper focuses on the
upper layer, fairly apportioning memory between collo-
cated JVM based applications in response to workload
changes, memory demand, and changes in OS memory.

Commercial methods are becoming available to re-
lease unused pages backing the JVM heap memory:
VMWare’s EM4J [8] applies a balloon mechanism that
plugs into the JVM and is leveraged in the memory con-
trol work of Ginko [2]. Direct heap resizing is available
in the IBM J9 JVM since version 7.0 [4]. Section 3.2 de-
scribes in detail how we leverage this JVM control knob,
MaxHeapSize to actively control heap memory.

Recent work has studied active JVM memory sizing.
Ginkgo [2] implements an application driven memory
overcommitment system. Salomie [3] designs an ap-
plication level ballooning controller in Xen-based envi-
ronment. CRAMM [9] enables dynamically choosing of
JVM heap sizes to meet workload demand, while avoid-
ing latency in paging. QoE-JVM [5] uses an economic
model for active heap sizing in the Jikes research JVM.

3 Approach

3.1 JVM metrics as proxies for application
performance

There are several reasons to use JVM metrics as proxies
for application performance as developed in Section 4.
Most Java processes and applications do not maintain in-
ternal measures of their rate of progress. When available
the interpretation of the KPI’s often requires domain spe-
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Figure 1: System view of elastic memory

cific knowledge. Processing services often support a mix
of incoming request types each with its own resource re-
quirements. A shift in workload composition can change
KPI’s in a way that needs to be understood by the con-
troller logic.

End-to-end application performance depends compo-
nents other than the JVM. For example, the database tier
may be slowed because of insufficient OS system buffers.
Note that the effect of a slow database on a Java applica-
tion tier is manifest in JVM metrics such as rate of ob-
ject allocation since the application can’t make progress.
Here, the local controller gives the JVM less memory
than if the JVM tier is running at full load. This released
memory makes its way to the database server via the flow
of Figure 1.

3.2 JVM direct page releasing mechanism

The JVM memory control knob leveraged in this work is
the MaxHeapSize parameter of IBM’s J9 JVM. At startup
J9 reserves a contiguous region of virtual process space
for its heap sized by the command line argument -Xmx
which is exposed through JMX as the immutable Max-
HeapSizeLimit . The J9 JVM maintains a second, soft,
heap maximum setting called the MaxHeapSize whose
operation is described in Sciampacone [4]). Basically,
MaxHeapSize can be set via JMX at any time during
JVM execution to a value less than MaxHeapSizeLimit.
When actual heap used drops below MaxHeapSize the
JVM attempts to resize the heap using MaxHeapSize as
the new limit.

4 JVM Metrics and Application Perfor-
mance

This section analyzes the correlation between JVM met-
rics and workload intrinsic performance (e.g., busi-
ness operations per second-bops) for memory in-
tensive benchmarks culled from SPECjvm2008 and
SPECjbb2005. The goal is to utilize the JVM metrics as
proxies for application KPI’s to correctly size or arbitrate
JVM memory.

4.1 Metrics collected from the JVM

Several JVM metrics are exposed through the JMX API,
providing a measure of how the application benefits from
memory.

• Mem-freed - Cumulative number of bytes collected
by the GC since a JVM startup.
• Heap-inuse - Current amount of the heap memory

containing objects with live references.
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Benchmark Commit(MB) Alloc Rate(MB/s)
SPECjbb2005 2000 2400
compiler.compiler 5000 400
derby 2000 1300
scimark.lu.large 2000 20
scimark.sort.large 1000 7
scimark.sparse.large 2000 20
scimark.fft.large 1800 20
crypto.aes 400 300
xml.validation 150 600
xml.xform 200 600
serial 420 300

Table 1: Max memory and allocation rate in benchmarks

• Heap-committed (hpCom) - Physical memory
mapped to the virtual heap.
• GC CPU - The fraction of the system CPU cycles

spent in GC. A decrease in GC CPU often provides
an indication of whether adding memory is benefit-
ing the application.
• Collection rate (coll-rate) - The number of GCs re-

ported by the JVM over the sampling interval. The
algorithm that determines when GC occurs is inter-
nal to the JVM.
• Allocation rate (alloc-rate) - This measure is is de-

rived from the inuse-heap and mem-freed metrics.
It is the rate of memory allocated during an interval
and is computed in the sample interval [t1, t2] using
the allocated bytes;
alloc-rate = [ heap-inuse(t2) - heap-inuse(t1) + mem-
freed(t2) - mem-freed(t1) ] / [( t2− t1]

Allocation rate depends jointly on application de-
mand, and the ability to satisfy the demand. Further-
more, it is a complementary measure to the GC CPU
and GC collection rate metrics. If the JVM heap alloca-
tor is slowed down because of low memory, that latency
translates at the application code to time spent in the Java
’new’ memory allocation operator.

4.2 Memory intensive workloads
Two benchmark groups are used to establish the corre-
lation of the JMX metrics and workload performance.
SPECjvm2008 contains over 20 individual benchmarks
that cover a wide range of applications. Of these, the 10
which use more than 128MB of committed heap are con-
sidered memory intensive. The excluded set in this group
use less than 50MB opt committed heap. SPECjbb2005
is representative of a traditional transactional workload.

The benchmarks selected are summarized in Table 1.
They cover a range of committed heap size from 128MB
to 5GB, and allocation rates from 10MB/s to over 1GB/s.
All benchmarks are CPU intensive and multithreaded.

4.3 Results

The correlation between the SPECjvm2008 benchmark
KPIs and the JVM metrics is explored as a function of
the MaxHeapSize (MB) parameter as the JVM control
knob. Figures 2, 3, 4, and 5, are representative data sets
the workloads. In each figure, the SPECjvm2008 perfor-
mance number (bops) recorded during the runs is shown
in (a). The corresponding JVM metric averages are dis-
played in subplots: (b) - GC CPU (%); (c) - collection-
rate (ct/s); (d) - allocation rate (MB/s); and (e) - commit-
ted physical memory (MB). These data also indicate the
open loop response the MaxHeapSize input control.

The derby database benchmark of Figure 2(a) typi-
fies workloads exhibiting the threshold memory pattern.
Here, most of the gain in application performance oc-
curs within a critical heap size, after which the value of
adding memory is low.

Derby also illustrates an interesting behavior with re-
spect to committed memory within the threshold pattern.
The region at the right hand side of Figure 2(e) shows
that as the heap maximum is increased beyond the critical
region, the JVM continues to commit real memory and
grow the heap well into the low benefit region. Doubling
the memory by incrementing the MaxHeapSize control
value 1GB provides less than 2% performance improve-
ment. This memory greedy pattern is also observed in the
scientific benchmarks grouped together in Table 1. For
example, in the large FFT benchmark of Figure 3, the
JVM commits about 1GB of memory beyond the point
of improving performance. Systems executing this work-
load pattern benefit from limiting MaxHeapSize to avoid
consuming physical memory.

The xml.validation benchmark (Figure 4(a)) also typi-
fies the threshold pattern, but is not memory greedy. Fig-
ure 4 shows that the JVM only committed 150MB.

In contrast, the compiler benchmark of Figure 5 ben-
efits proportionally to the maximum heap memory con-
trol parameter. The behavior is monotonic, but there is
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Figure 2: The SPECjvm derby workload typifies the
threshold pattern and is memory greedy
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Figure 3: Scientific benchmarks such as this FFT tend to
fit the memory greedy pattern.

a region of less performance gain between around 1GB
and 3GB sandwiched between larger slopes of the per-
formance - heap memory relation. The compiler perfor-
mance plateaus at about 4.8GB from our experiments,
just beyond the right end of the plot.

Additional insight is obtained by correlating the JVM
metrics with the SPECjvm2005 and SPECjvm2008 KPI
(e.g.bops). The correlation coefficients are shown in Fig-
ure 6 for the alloc-rate, gc-cpu, and coll-rate measures.
The weakest correlations for all three JVM metrics are
observed for the scientific benchmarks typified in the
FFT benchmark of Figure 3. The lower correlation does
not imply that the JVM metrics are not suited as input
data to the active memory control system. In the case
of the scimark.fft.large benchmark, the data of Figure 3
are flat and so the jitter contributes significantly to the
correlation calculation.

These experiments suggest that decisions about the
benefit to the application of additional memory be made
on the basis of the observed change in JVM metrics as
memory is added to the JVM, rather than on the met-
ric values themselves. Consider the threshold pattern of
Figure 2. Adding memory clearly benefits the applica-
tion, as indicated by the concurrent improvement in allo-
cation rate.
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Figure 4: The SPECjvm2008 xml.validation benchmark
exhibits a threshold pattern, but is not memory greedy

Figure 6 suggests the allocation rate is the single
most consistent indicator of workload performance. The
only benchmark where its correlation is significantly de-
pressed relative to the other metrics is for the sci.lu.lg
benchmark. Closed loop studies in Section 5 further val-
idate the choice of allocation rate as the best single proxy
for application performance.

5 Active JVM Memory Control

The objective of the memory controller is to leverage
the JVM performance metrics of the prior section (esp.
allocation-rate) to fair share the available memory be-
tween collocated JVMs. The fair sharing condition de-
fines the distribution of memory between JVMs at a
given workload so that: equal changes in the MaxHeap-
Size of each JVM result in equal changes in the rela-
tive performance of each JVM. The relative performance
slope (S) for each JVM (j) is defined as the slope of the
curve of the application performance (Pj) against Max-
HeapSize, normalized by the performance value:

S j =
∆Pj

∆MaxHeapSize j
× 1

Pj
.

The controller attempts to actively set MaxHeapSize j
such that S j is the same for all j.

JVM metrics are used to measure the application per-
formance Pj. Section 4 identified allocation rate as a
strong candidate for an application performance proxy.
The open loop and offline data are now used to evaluate
the JVM metrics in our slope equalizing algorithm. For
example, the Specjvm2008 benchmark KPI data in Fig-
ures 5(a) and 4(a) is compared against the JVM metrics
of Figures 5(b-d) and 4(b-d) in the algorithm to estab-
lish which single metric compares best to the fair sharing
point given by the actual benchmark KPI numbers.

Figure 7 illustrates the equalization of relative per-
formance slopes using data from the SPECjvm2008
xml.validation and compiler.compiler benchmarks (Fig-
ures 4 and 5). The horizontal and vertical axes are the
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Figure 5: SPECjvm2008 compiler.compiler benefits up
to about 5GB of memory

4



0

0.2

0.4

0.6

0.8

1

co
mpile

r
derb

y

xm
l.x

form

xm
l.v

ali
d

se
ria

l

cry
pto.ae

s

sc
i.lu

.lg

sc
i.s

p.lg

sc
i.ff

t.lg

sc
i.s

ort.l
g

sp
ec

jbb20
05

C
or

re
la

tio
n 

C
oe

ffi
ci

en
t

 

 

col−rate
gc−cpu
alloc−rate

Figure 6: Correlation between SPEC performance and
JVM metrics
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Figure 7: Memory balancing results using measured data
for 3 JVM metrics and the SPECjvm performance values.

target value of the MaxHeapSize control parameter com-
puted by the algorithm for each application JVM. Each
data point represents the MaxHeapSizes that equalize
the S j for a given total memory. The total memory
varies from 200MB on the left to 800MB on the right.
The solid line labeled SPEC KPI is the reference curve
showing the ideal apportionment using the application
(i.e.SPECjvm2008) KPIs. The three other lines corre-
spond to the GC-CPU, collection rate, and allocation
rate metrics. The data show that the allocation-rate met-
ric produces the closest agreement with the SPEC KPIs.
This result supports the correlation analysis of Figure 6.
Similar results are achieved using other workloads of Ta-
ble 1.

5.1 Controller architecture
Figure 8 is a component diagram of the measure-analyze-
control cycle that tracks workload memory demand and
actively sets the MaxHeapSize parameter of each JVM.
On the right of the figure is the data collector which uses
JMX to poll the data from the JVM. The typical polling
interval is 5 seconds.

The JVM metrics are fed into the control module on
the left which has three logical components: the slope
evaluator; the Compute Next MaxheapSize module that
estimates the next MaxHeapSize value based on the cur-
rent state; and the dither function. The data collec-
tor and controllers for collocated JVMs run in a single
lightweight JVM process use less than 0.1% CPU and
20MB of memory.
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Figure 8: Main components of the memory controller.

5.2 Evaluating relative performance

A key function of the controller is to measure the slope
of the allocation rate against the MaxHeapSize parame-
ter at the current workload. To accomplish this, the con-
troller modulates the MaxHeapSize parameter about its
current target value. In this Dithering [10] technique, the
MaxHeapSize is varied faster than the system response
through a range about the target MaxHeapSize. The
JVM metrics are sampled at limit points of this dithering
range. Expanding the dither range too far results in os-
cillations in JVM performance, while reducing it yields
a slower control speed. Empirically, a reasonable trade-
off is achieved with the lower point at 80% of the current
target MaxHeapSize, and the upper point at 120%.

Figure 9 illustrates operation of the collection of data
using dithering when running the derby benchmark as
memory is removed from the system. Each subfigure is
a snapshot showing the allocation rates measured at the
ends of the dither range, and at the current MAxHeap-
SizeTarget. The three dither points are acquired on se-
quential measurement cycles about 5 seconds apart. This
means that in a snapshot the three points are not necessar-
ily at 80%, 100% , and 120% of the target MaxHeapSize
as the target may have changed at each measurement cy-
cle. Consequently, the three measured dither-points in
the curve window may not lie on a locally convex curve.
This situation is improved by relying more on the latest
measurements than on older ones.

Figure 9 shows there are critical and noncritical re-
gions of control. In the critical region, at the bottom of
the figure, the slope is steep indicating the high value of
additional memory to the application. In the noncritical
region at the top of the figure, memory is not as valuable.
Fortunately, the main difficulties caused by noise and jit-
ter in measuring slope occur in the noncritical region of
controller operation where the slope is low.
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5.3 Memory balancing methodology
The ’Compute next MaxHeapSize’ module of Figure 8
determines the next set of target MaxHeapSize values to
input into the JVMs based on the current system state
based on the following procedure:

1. Check the available OS memory - If it has been
modified, that memory is apportioned to the JVMs
according the principle of equalizing the slopes.

2. Adjust the target MaxHeapSize - The current algo-
rithm uses an iterative, greedy procedure to estimate
the new set of HeapSizeMax values that equalize
the slopes. At each step, memory is moved from
the JVM with the lowest slope to the JVM with the
steepest slope. The iterative computation is ended
under either of two conditions: i) for any JVM,
memory is only changed when within the upper and
lower dither points; ii) the deviation from the equal
slope condition no longer improves.

3. Select the dither points for each JVM- The direction
and value of the dither is chosen for each JVM so
that at any time the sum does not exceed the total
available memory. Figure 11 shows the phase offset
between the dithering pattern two located JVMs.

4. Execute the new MaxHeapSize target for each JVM.

5.4 Experimental results
The controller is evaluated using collocated JVMs run-
ning the SPECjvm2008 derby and the SPECjbb2005
transactional benchmarks. Figure 10 shows the alloca-
tion rate of each benchmark. The total memory con-
straint for the two JVMs is 1.5 GB.

The system state is held constant for 580 seconds
with SPECjbb2005 using 10 warehouses. The variabil-
ity in allocation rate during this period is due to different
phases in the underlying workload. At 580s, the number
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Figure 9: Snapshots of the dithering points.
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Figure 11: The MaxHeapSize control parameter includ-
ing dithering for the Derby and SPECjbb workloads.

of SPECjbb2005 warehouses doubles to 20, introducing
a step like change in the demand for memory. An 80s
period of exponentially decaying oscillatory behavior in
the control system occurs during the transition to the new
operating point. The process CPU followed a similar pat-
tern (not shown in the figure), with about a 13% shift
from Derby to SPECjbb2005.

Figure 11 shows the corresponding control signal of
MaxHeapSize sent to JVMs during runs. The dither sig-
nal is clearly seen imposed on the average MaxHeapSize
control signal. Comparing the strength of the dither to
the allocation rate data, Figure 10 indicates the dither
does not affect the application performance, as desired.
Experiments using the SPECjvm2008 compiler.compiler
and SPECjbb2005 yielded comparable results.

6 Conclusion

JVM metrics are shown to work well as proxies for appli-
cation KPIs so that application performance instrumenta-
tion and modeling are not required. This expands the ap-
plicability and ease of resource arbitration between col-
located Java applications.

The control system of Section 5 is successfully applied
in actively apportioning memory between collocated
Java applications whose internal functions are largely un-
known. Results show the response time to a step in work-
load intensity is of order of 80 seconds.
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