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Abstract— Whilst technology has advanced rapidly over the
last few decades, emergency evacuation procedures have not
kept up-to-date with this technological progress. This paper
explores the benefits of information and communication for
agents in a simple ring network. The majority of the existing
literature focuses on using agent-based simulation models to
predict outcomes. One of the major benefits of this technique
is that it allows the incorporation of many different factors that
drive evacuation outcomes; however, simulation-only techniques
lack power when attempting to explain the relationship between
these factors. This paper provides an analytical framework to
derive closed-form solutions for the relationship between the
time it takes an agent to evacuate, the size of the network, the
number of agents in the network, the level of information avail-
able and the communication broadcast range. Performance is
measured by expected evacuation time and worst-case analysis.

I. INTRODUCTION

Increasing populations and lifestyle choices have led to
an increase in population density in natural disaster prone
regions over the last few decades. This, coupled with an
increase in extreme weather events, has led to more lives
being affected by such disasters [1], [2]. In light of this
trend, there now exists an increasing body of work related
to modelling large-scale evacuation dynamics. This body of
work can be broadly split into three categories: a) network
design, b) optimal path-finding solutions and b) evacuation
behaviour.

The design of a network or the architecture of a building
plays an important role in assisting individuals to evacuate
effectively [3]. For example, contraflow lanes were intro-
duced to augment network capacity when directing traffic
away from a disaster [4]. Helbing et al. [5] discovered that
having a small obstruction in front of doorways, such as a
pillar, could in fact improve evacuation efficiency by slowing
the flow of traffic to avoid congestion.

Many path-finding algorithms have been offered in the
literature, including distributed algorithms [6] and multi-
objective, evolutionary algorithms [7]. Other real-time traffic
models have been developed to guide road-users to help
avoid congestion [8].

In terms of evacuation behaviour, many researchers have
proposed various models for crowd dynamics. Although most
of these models deal with small-scale evacuations, such
as escape from a burning building, many of their findings
can be extended to large-scale scenarios where way-finding
and congestion play a significant role in the probability

of survival. Henderson [9] was the first to model human
crowd motion using gas fluid dynamics. Helbing has also
done extensive work on modelling pedestrian behaviour and
developed a “social force” model in which force equations
from physics are used to model the interactions between
individuals [10], [11], [12]. He and others later extended this
model to include panic as it became clear that it played an
important role in decision-making during emergencies [5],
[13], [14].

Other studies have made use of game-theoretic approaches
which account for the interactions between agents [15],
[16]. This improves the power of behavioural models giving
us more accurate predictions. In particular, these game-
theoretic models have been used to model congestion along
a bottleneck [17], [18], [19], [20], [21], [22], [23], [24] and
exit or route selection [25], [26], [27], [28].

These studies and the various methodological approaches
to evacuation modelling are summarised succinctly in Zheng
et al. [29].

This paper focuses on the role of communication and
information during evacuations. These aspects are discussed
by Corlett et al. [30] in the context of signage for direction-
finding. Others have also looked at what happens when
signage is incorrect or misleading [31], [32]. Whether or not
evacuees heed evacuation instructions and the factors that
affect their level of obedience have also been studied [33],
[34]. Richter et al. [35] ran a simulation study on what would
happen if centralised communications broke down leaving
only localised communication available.

This paper builds on the work of Richter et al. We study
how passing on new knowledge can help others escape. Most
of the existing literature discussed above uses simulations to
test their models. This research provides an analytical model
with analytical results that can be compared and used to
explain the driving factors behind the outcomes observed
from simulated studies.

The remainder of this paper is organised as follows:
Section II describes the model and introduces a ring network
with differing levels of information and communication.
Section III provides the analytical results of the model,
whilst Section IV compares these results and discusses the
implications. Lastly, Section V concludes the paper and
suggests directions for further research.



II. MODEL

Consider a ring network with n nodes, a single entry/exit
point and a single static disruption. The nodes are numbered
1 to n in a clockwise direction, with the entry/exit node, E,
at the nth node. The nodes are connected by edges of unit
length which are labelled using the midpoint between nodes;
e.g. the edge between nodes 1 and 2 is situated at location
1.5. The disruption, X , occurs on an edge located at k. The
agents are located on nodes with agent i located at ai, for
i = 1, 2, . . . ,m. Figure 1 shows an example scenario with
one agent in the network when the disruption occurs.

Performance is measured by the distance travelled to exit
the network. We assume that agents travel at the same speed,
hence distance is a sufficient measure and is comparable to
time.
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Fig. 1. A single agent with one disruption in a ring network.

A. Levels of Information

The level of information available to the agent will deter-
mine the heuristic used to find the exit. Three information
levels and their associated heuristics are explored. There
are obviously infinitely many other heuristics that can be
examined, however we believe the ones discussed cover a
suitable range of knowledge from complete information to
having only minimal information. The information levels
and their associated heuristics are described below. We
assume that agents enter the network and initially travel in
a clockwise direction.

1. Complete information (C): The agent knows the
size and structure of the network and the location of the
disruption. The agent will choose the direction that avoids
the disruption.

2. Network information (N): The agent knows the size
and structure of the network, but not the location of the
disruption. The agent will choose the direction closest to
the exit, however they might encounter the disruption and
be required to turn back. If the agent is equal distance from
the exit, then the agent chooses their direction randomly.

3. Historical information (H): The agent does not know
the location of the disruption and only knows the path they
have already travelled. The agent will opt to backtrack in

the event of an emergency rather than to explore new nodes
unless stopped by the disruption.

B. Communication

In this model we also allow agents to communicate. Let us
call the agent who discovers the disruption the “discoverer”
and all other agents are “receivers”. The discoverer will
immediately broadcast the location of the disruption upon
discovery. The broadcast range is a distance α to either side
of the agent. This range of communication is defined as “α-
hop communication”. The discoverer continues to broadcast
until they exit the network. We assume that this broadcast
range does not wrap around the network at the exit node.

We also introduce the concept of a “communication zone”.
This is the section of the network where communication
is potentially beneficial. Similarly, we define the “non-
communication zone” to be the portion of the network where
communication will not benefit the agents. The separation of
these zones depends on the information level of the agents.

As we increase the number of agents in the model, the
combinations to consider under a discrete system becomes
increasingly unwieldy. Therefore, when analysing commu-
nication outcomes with m-agents for m ≥ 3, we alter our
model to consider an interval of unit length on [0, 1] with
agents arriving via a Poisson process with arrival rate λ. The
exit is now simultaneously located at 0 and 1 and agents are
assumed to enter the interval at position 0 and initially travel
from left to right at a constant pace. This process continues
until the disruption occurs, after which arrivals cease. In
addition to this process, we also assume that communication
is propagated instantaneously; that is, any agent within the
range of a broadcasting agent will automatically begin to
broadcast the information themselves without delay.

We begin our analysis from the time the disruption occurs.
At this point, agent i is located on the interval at ai ∈ [0, 1]
for all i ∈ {1, 2, . . . ,m}. The disruption also sits on this
interval, but is assumed not to be at the exit. It is located at
k ∈ (0, 1).

Figure 2 shows a graphical representation of the model in
its interval form. Moving from left to right is the equivalent
of travelling clockwise around the previous network. In this
example, the agents have historical information, hence they
will attempt to exit by initially travelling to the left. For
any agent i located at ai ∈ (k, 1), they would ordinarily
encounter the disruption and be forced to backtrack if
communication was not available. Since communication can
benefit these agents, the communication zone is given by
the interval (k, 1) and the non-communication zone is the
remaining interval [0, k].

0 k 1 

communication zone 

E X E 

non-communication zone 

Fig. 2. An interval representation with historical information.



Section III provides our derived expressions for the dis-
tance travelled to exit and Section IV evaluates the impor-
tance of information and communication by performing some
comparative statistics.

III. RESULTS

In this section, we derive the expressions for the expected
distance travelled to exit by an agent as a function of the
size of the network, n, the location of the disruption, k, the
initial location of each agent i when the disruption occurs,
ai for all i ∈ {1, 2, . . . ,m} and their information level, I . In
addition, when communication is available, these expressions
for distance will depend on the broadcast range, α, and the
arrival rate of agents to the network, λ.

A. Single Agent without Communication

We begin by analysing the distance travelled by a single
agent under the discrete formulation as a function of n, k, a1
and I . Since no communication is available to a lone agent,
we make the assumption that the agent will only turn back if
they reach the disruption and no sooner. Let dIai denote the
distance it takes agent i to reach the exit, given information
level I .

Under complete information, there are two possible cases:

dCa1 =

{
a1, a1 < k (1a)
n− a1, a1 > k (1b)

Equation (1a) arises when the agent travels anticlockwise
to exit, whilst (1b) is when the agent travels in a clockwise
direction to exit. There is no need to account for when a1 = k
since the agent is assumed never to be at the location of the
disruption.

Randomising over the possible starting locations of the
agent and the disruption, we can calculate the expected
distance to exit for a single agent with no communication.
We introduce k̂ = k+ 1

2 to facilitate summation over whole
indices.

E
[
dCa1

]
=

1

n2

 n∑
k̂=1

 k̂−1∑
a1=1

a1 +

n∑
a1=k̂

(n− a1)


=
n2 − 1

3n
(2)

With network information, there are four cases to consider:

dNa1 =


a1, a1 ≤ 1

2n and a1 < k (3a)
a1 + n− 2k, a1 ≤ 1

2n and a1 > k (3b)
2k − a1, a1 >

1
2n and a1 > k (3c)

n− a1, a1 >
1
2n and a1 < k (3d)

Equation (3a) represents the situation where the agent
attempts to exit by travelling in an anticlockwise direction
and is not impeded by the disruption. In (3b), the agent also
initially travels anticlockwise, but encounters the disruption
and is forced to turn around. Equations (3c) and (3d) begin
with the agent travelling clockwise. The agent avoids the
disruption in (3c), but encounters it in (3d).

Due to symmetry, we can construct the expected distance
travelled simply by looking at half the network. We consider
the case where k ≤ n

2 . Recall that if the agent is located

at the midpoint of the network, they will choose their initial
direction randomly with equal probability.

E
[
dNa1 | k̂

]
=

1

n

 k̂−1∑
a1=1

a1 +

n
2
−1∑

a1=k̂

(
a1 + n− 2

(
k̂ − 1

2

))

+
1

2

(
3n

2
− 2

(
k̂ − 1

2

))
+

1

2

(
n− n

2

)
+

n∑
a1=

n
2
+1

(n− a1)


=

1

n

[
n− 2nk̂ +

1

2
− 2k̂ + 2k̂2 +

3n2

4

]
(4)

E
[
dNa1

]
=

1

n2

 n∑
k̂=1

(
n− k̂ +

1

2
− 2k̂ + 2k̂2 +

3n2

4

)
=

5n2 − 2

12n
(5)

By symmetry, the expression found in (4) is the same for
the case when k > n

2 . Therefore, in (5), when randomising
over the location of the disruption, only the expression in (4)
needs to be summed over.

For historical information, since the agent will always
choose to backtrack first, there are only two possible sce-
narios for the distance travelled to exit.

dHa1 =

{
a1, a1 < k (6a)
a1 + n− 2k, a1 > k (6b)

In (6a), the disruption is not encountered, but in (6b), the
disruption is found and the agent must turn back.

We assume that if the agent is at the exit, they will
simply leave the network rather than go back the way they
came. This gives us the following expression for the expected
distance travelled under historical information.

E
[
dHa1

]
=

1

n2

 n∑
k̂=1

 k̂−1∑
a1=1

a1 +

n−1∑
a1=k̂

(
a1 + n− 2

(
k̂ − 1

2

))

+
n∑

a1=n

0

)]

=
4n2 − 3n− 1

6n
(7)

Section IV-A uses these results to compare the effect of
information on an agent’s ability to exit a ring network
efficiently.

B. Two Agents with Communication

Here we introduce a second agent into the network and
allow for localised communication between the agents. For
simplicity, we will only look at the case where the agents
have historical information. Note that with complete informa-
tion, communication will not have any effect on the agents.

We will derive our expressions from the point of view
of agent 1. Since the agents are symmetric, all expressions
derived for agent 1 will be the same for agent 2. We
distinguish the distance travelled with communication by
denoting it dI,αai . There are four possible cases to consider



here:

dH,αa1 =



a1, a1 < k (8a)
a1 + n− 2k, k < a1 < a2 ≤ n (8b)
a2 + n− 2k

−min {α, (a1, a2)} , k < a2 < a1 < n (8c)
0, a1 = n (8d)

Equation (8a) represents the case where agent 1 exits
without encountering the disruption. The distance travelled
in this case does not depend on the location of agent 2. In
(8b), agent 1 discovers the disruption before agent 2, hence
agent 1 will need to backtrack and cannot benefit from com-
munication (although agent 2 will). Equation (8c) represents
the case where agent 1 can benefit from communication since
agent 2 discovers the disruption first and can communicate
this to agent 1 before agent 1 reaches the disruption. Finally,
(8d) represents the case where agent 1 is already at the exit
when the disruption occurs and hence will simply leave the
network immediately.

Due to the minimum function in (8c), the expected dis-
tance equation becomes a piecewise function.

E
[
d
H,α
a1
| k̂
]

=
1

n2

 n∑
a2=1

k̂−1∑
a1=1

a1 +

n∑
a2=1

n−1∑
a1=k̂

(
a1 + n− 2

(
k̂ −

1

2

))

−



α∑
i=0

i
(
n− k̂ − i

)
+

n−k̂∑
j=α+1

α
(
n− k̂ − j

)
, α ≤ n− k̂

n−k̂∑
i=0

i
(
n− k̂ − i

)
, α > n− k̂

 (9)

For brevity, we have excluded the terms where agent 1 is
at the exit and the distance travelled is zero. The first line
of the piecewise component in equation (9) refers to when
the broadcast range is not large enough to immediately cover
the entire communication zone. The indices i and j represent
the possible distances between the agents, namely (a1−a2),
with

(
n− k̂ − i

)
and

(
n− k̂ − j

)
representing the number

of occurrences for each distance i and j. When the broadcast
range is large enough such that the receiver becomes aware
of the disruption immediately as it is discovered, i.e. α ≥
(a1 − a2), the receiver will save a distance of (a1 − a2),
which is given by and dependent on i. This is seen through
the first term in the first line of the piecewise component.
When the broadcast range is not large enough for the receiver
to be immediately aware of the disruption as it is discovered,
then the distance the receiver saves is only equal to α.
This is represented by the second term in the first line of
the piecewise function. The second line of the piecewise
component represents the case where the broadcast range
is larger than the communication zone. In this situation, the
receiver will always be immediately aware of the disruption
as it is discovered and hence will save a distance of (a1−a2),
which again is given by i.

We can now randomise over the location of the disruption
to get an expression for the expected distance to exit as
a function of n and α. Rearranging the conditions in the
piecewise function to give k̂ ≤ (n − α) and k̂ > (n − α),

respectively, we use these as the bounds on our summation
indices for our randomization over k̂.

E
[
dH,αa1

]
=

n−α∑
k̂=1

E
[
dH,αa1

| k̂ ≤ (n− α)
]
+

n∑
k̂=n−α−1

E
[
dH,αa1

| k̂ > (n− α)
]

=
α4 − 4α3n+ 2α3 + 6α2n2 − 6α2n− α2 − 4αn3

24n3

+
6αn2 + 2αn− 2α+ 15n4 − 10n3 − 3n2 − 2n

24n3
(10)

Section IV-B discusses how the expected distance travelled
is affected by the broadcast range.

C. m-Agents with Communication

In this section, we look at how information propagates
as the number of agents in the system increases. We now
consider an interval to facilitate our calculations, as discussed
in Section II-B. Again for simplicity, we will only consider
historical information in this section.

Let there be m agents in the system when the disruption
occurs, where m ≥ 3. To calculate the expected distance
to exit per agent, we decompose our interval into its com-
munication and non-communication zones. We are able to
treat these zones separately due to the memorylessness of
the Poisson process. Due to the independence of these two
zones, when randomising over the number of agents in the
system, we can simply multiply the probabilities of there
being mC agents in the communication zone and mNC agents
in the non-communication zone, where mC +mNC = m.

Firstly consider the non-communication zone and let TH,αmNC

be the total distance travelled by all the mNC agents in the
zone given historical information and a broadcast range of α.
Since communication does not play a part in this zone and
the agents are identical and independent, the total expected
distance travelled by the agents is equivalent to the expected
distance travelled for a single agent multiplied by the number
of agents in the zone.

E
[
TH,αmNC

| k,mNC
]
= mNC

∫ k

0

1

k
a da (11)

=
mNC × k

2
(12)

In equation (11), a is the location of a representative
agent when the disruption occurs such that 0 < a < k.
It also represents the distance travelled by this agent in
order to reach the exit. Since our agents enter the interval
via a Poisson process, each agent’s location is uniformly
distributed in our system and by extension, on the interval
of the non-communication zone, [0, k).

The probability of having mNC agents in this zone is

P (MNC = mNC) =
(kλ)

mNC e−kλ

mNC!
(13)

where λ is the arrival rate of the Poisson process. Equation
(13) is derived from coverage processes found in [36].



Randomising over the number of agents in the non-
communication zone, we get

E
[
TH,αmNC

| k
]
=

∞∑
mNC=0

E
[
TH,αmNC

| k,mNC
]

P (MNC = mNC)

=

∞∑
mNC=0

mNC × k
2

× (kλ)
mNC e−kλ

mNC!

=
λk2

2
(14)

To calculate the total expected distance travelled by agents
in the communication zone, we need to consider the be-
haviour of the agent closest to the disruption separately,
since they will become the discoverer of the disruption
and communication will not benefit them. We separate our
expression into the expected distance travelled when there is
one agent in this zone versus when there are multiple.

The expected distance travelled for one agent is

E
[
TH,αmC

| k,mC = 1
]
=

∫ 1

k

1

1− k
[(a− k) + (1− k)] da

=
3(1− k)

2
(15)

We can similarly deconstruct the expression for the ex-
pected distance travelled when there is more than one agent
in the communication zone.

E
[
T
H,α
mC

| k,mC > 1
]

=

∫ 1

k

E
[
T
H,α
mC

| k,mC > 1, y
]
fY (y) dy

=

∫ 1

k

[
(y − k) + (1− k) +

(mC − 1)

2

[
3y − 4k + e

−αλ
(1− y) + 1

]]
×
mC (1− y)mC−1

(1− k)mC
dy

=
mC(1− k)

[
e−αλ (mC − 1) +mC + 5

]
2 (mC + 1)

(16)

where y represents the location of the discoverer and fY (y)
is the probability density function for the minimum order
statistic with mC observations and uniformly distributed,
independent random variables. In order to calculate the
expectation in (16), the coverage of the broadcast needs to
be taken into account. Due to page limitations, we will not
go into the calculation here.

Below, we use equations (15), (16) and (13) to calculate
the total expected distance travelled by agents in the com-
munication zone, given k.

E
[
TH,αmC | k

]
= E

[
TH,αmC | k,mC = 1

]
P (MC = 1) +

∞∑
mC=2

E
[
TH,αmC | k,mC > 1

]
P (MC = mC)

=
4e−(1−k)λ − 2e−(1−k+α)λ

2λ

+
e−αλ

[
λ2(1− k)2 − 2λ(1− k) + 2

]
2λ

+
λ2(1− k)2 + 4λ(1− k)− 4

2λ
(17)

Putting both zones together, the total expected distance
travelled by all agents in the network is

E
[
TH,αm | k

]
=

∞∑
mC=0

∞∑
mNC=0

P(MC = mC)P(MNC = mNC)

×
(
E
[
TH,αmC | k

]
+ E

[
TH,αmNC | k

])
=

4e−(1−k)λ − 2e−(1−k+α)λ

2λ

+
+e−αλ

[
λ2(1− k)2 − 2λ(1− k) + 2

]
2λ

+
λ2(2k2 − 2k + 1) + 4λ(1− k)− 4

2λ
(18)

Again, for brevity, the specifics of this calculation will be
omitted and can be sought from the authors, if desired.

It turns out that the expression for the expected distance
travelled to exit per agent can be derived analytically, how-
ever the exact form is ungainly and difficult to interpret.
Hence, in this paper, we use an approximation for this
average by taking the total expected distance travelled by
all agents (18) and dividing it by the expected number of
agents in the network, λ. Due to symmetry, all agents have
the same expected distance to travel.

E
[
dH,αa1 | k

]
= E

[
dH,αai | k

]
, ∀ i ∈ {1, 2, . . . ,m}

' 1

λ
E
[
TH,αm | k

]
=

4e−(1−k)λ − 2e−(1−k+α)λ

2λ2

+
e−αλ

[
λ2(1− k)2 − 2λ(1− k) + 2

]
2λ2

+
λ2(2k2 − 2k + 1) + 4λ(1− k)− 4

2λ2
(19)

Sensitivity analysis showed that the error from approxima-
tion was negligible and tends towards zero as λ increases.

Finally, we randomise (19) over k.

E
[
dH,αai

]
=

∫ 1

0

E
[
dH,αai | k

]
fK(k) dk

=
6e−(1+α)λ − 12e−λ + e−αλ

(
λ3 − 3λ2 + 6λ− 6

)
6λ3

+
2
(
λ3 + 3λ2 − 6λ+ 6

)
6λ3

(20)

Again, we assume that the disruption is uniformly dis-
tributed across the interval which is of unit length, hence
fK(k) = 1.

Section IV-C discusses how the expected distance travelled
will vary depending on the density of the agents in the
system.

IV. DISCUSSION

In this section, we discuss comparative statistics and
analyse the effect of information, the broadcast range and
the density of agents on the expected travel distance.

A. Comparison of Information Levels

For a more meaningful interpretation of the expressions
from Section III-A, we take the ratio of these expressions
with respect to one another. We also look at the value of
these ratios as the size of the network gets very large.



Using complete information as a baseline, we can compare
how much worse network information is by dividing (5) by
(2) and taking the limit as n→∞.

lim
n→∞

E
[
dNa1
]

E
[
dCa1
] = lim

n→∞

(
5n2 − 2

4n2 − 4

)
= 1.25 (21)

On average, as the network size gets large, network
information performs 25% worse than complete information.
Figure 3 shows the convergence of this ratio as the network
size increases.

10 20 30 40 50
n

1.250

1.255

1.260

1.265

1.270

EAda1
N E

EAda1
CE

Fig. 3. Network information versus complete information.

Doing the same for historical information by dividing (7)
by (2) and taking the limit as n→∞, we get

lim
n→∞

E
[
dHa1
]

E
[
dCa1
] = lim

n→∞

(
4n+ 1

2n+ 2

)
= 2 (22)

As the network size gets large, historical information will,
on average, cause the agent to travel twice the distance
as with complete information. Figure 4 shows this ratio
as it converges from below. This implies that historical
information performs worse as the network size increases.
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Fig. 4. Historical information versus complete information.

For completeness, one can do the same comparison for
historical information versus network information. On aver-
age, historical information performs 60% worse than network

information as the network size tends to infinity. This con-
vergence occurs from below, again showing that historical
information performs worse as the network size increases.

We also analyse how detrimental having incomplete in-
formation is to the distance travelled in the worst case.
These results are calculated by choosing a starting location
for the agent that would result in the shortest distance to
exit under complete information and the largest distance
to exit for the comparison information level using (1), (3)
and (6). For network information, an agent will travel up to
three times the distance than with complete information as
the network size gets large. If an agent only has historical
information, the agent will travel 2(n−1) times the distance
than with complete information. This factor clearly worsens
linearly with the size of the network, therefore the larger the
network, the more detrimental it is for an agent with only
historical information in the worst case. We should note that
these worst case scenarios only occur with probability 1

n2 ,
so despite their undesirable implications, their occurrences
are fortunately rare.

B. Broadcast Range
We compare the distances travelled with and without

communication and observe what happens as the network
size gets large. To do this, we need to consider the broadcast
range as a proportion of the network size. Let β = α

n for
0 ≤ α ≤ n and divide (7) by (10), then we have

lim
n→∞

E
[
dHa1
]

E
[
dH,βa1

] =
16

15− 4β + 6β2 − 4β3 + β4
(23)

For notational convenience, let g(β) = lim
n→∞

E[dHa1 ]
E[dH,βa1 ]

.

Partially differentiating (23) with respect to β, we get

∂g(β)

∂β
= − 64 (β − 1)3

(15− 4β + 6β2 − 4β3 + β4)2
≥ 0, for β ∈ [0, 1]

(24)

Unsurprisingly, (24) shows that as the broadcast range
increases as a proportion of the network size, the ratio
of expected distance travelled without communication on
the expected distance travelled with α-hop communication
increases. This implies that as the broadcast range increases
as a proportion of the network size, communication becomes
more valuable. This relationship can be clearly seen in Figure
5.

Plugging β = 0 into (23), we find that when the agents
must meet in order to communicate, then having no commu-
nication increases the expected distance travelled by 6.7%
compared to when they are able to communicate. When
β = 1 and communication is guaranteed immediately, then
on average, having no communication increases the agents’
expected travel distance by 14.3%.

C. Number of Agents

This section explores what happens to the expected travel
distance per agent as the density of agents along the interval
increases.
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Fig. 5. No communication versus α-hop communication as β increases.

Figures 6 and 7 show the behaviour of the approximated
expected distance to exit per agent, randomised over k, as the
intensity rate and the broadcast range increase, respectively.
In Figure 6, we fix α = 0.2 and in Figure 7, we fix λ = 10.
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Fig. 6. Approximate expected distance to exit per agent as λ increases.
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Fig. 7. Approximate expected distance to exit per agent as α increases.

From our approximated values, when α = 0.2 and λ = 1,
an agent will, on average, travel a distance of 0.63 units to
exit an interval of unit length. If we increase the intensity rate
to λ = 100, an agent will now, on average, travel a distance
of 0.34 units to exit. This is a reduction of 45.2% from when
λ = 1. This reduction slows dramatically with increasing
λ as the effectiveness of communication diminishes once
everyone knows about the disruption.

Similarly, when we fix λ = 10 and set α = 0, an agent
will, on average, travel a distance of 0.54 units to exit an
interval of unit length. If we increase the broadcast range
to cover the whole interval, i.e. α = 1, then an agent will,
on average, travel 0.42 units to exit. This is a reduction in
distance travelled of 23.2%.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we introduced a simple model of information
and communication in the event of an emergency. We have
provided various measures of performance and investigated
the importance of information and some factors that impact
the effectiveness of communication using analytical results.

This research has shown that different levels of informa-
tion can impact an agent’s ability to escape an emergency
situation. Unsurprisingly, the more information an agent has
regarding their surroundings and the disruption, the easier it
is for the agent to find the optimal path to exit the system.

Given that information matters, it is natural to ask: what
if we can pass this information on? We found that commu-
nication between agents could further reduce the distance
travelled to exit. Agents were able to broadcast the location
of the disruption once they discovered it so other agents did
not need to discover the disruption themselves to determine
the best direction to exit.

We also found that the average distance travelled decreased
as the available broadcast range increased. This is intuitive,
since the larger the communication range, the sooner other
agents will hear about new information, saving them from
potentially wasting time by travelling in the wrong direction.
In reality, increasing or maintaining the size of the broadcast
range can be costly and further work could be done on mod-
elling the trade-off between the size of the broadcast range
and its cost, e.g. limited battery life on the communication
device. This could lead to an “optimal” broadcast range that
could be employed.

We also explored the effect of having many agents in the
system on the effectiveness of communication. We found that
the denser the agents were in the system, the easier it was
for information to propagate and hence allowed the agents to
exit more efficiently. Again, this continued improvement as
we pack more agents into the system seems unrealistic. As
further work, congestion can be introduced into the model
to counteract the benefits of communication propagation,
which could suggest there might be an “optimal” number
of agents to be allowed in the system at any one time. This
has implications for setting capacity restrictions in buildings
and population limits in natural disaster prone communities.

The ring model developed in this paper is obviously
simplistic and could be extended to a larger, more connected
network with more exits and dynamic disruptions. Despite its
simplicity, many high-rise buildings and store layouts have
been known to mimic this ring design with a single exit,
albeit with a layered approach for each storey.

This paper has shown that information can be invaluable in
helping agents escape in an emergency situation. Increasing
the ability to communicate and facilitating the propagation of



information can also increase the chances of survival. Mobile
apps that improve localised communication in the advent of
centralised communication failure is one way of achieving
this. This work highlights the importance of assessing the
technology available today and ensuring we are making
the most of the capabilities on offer in order to maximise
evacuation success and minimise the risk to individuals due
to a lack of information.
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