
RC25480 (WAT1407-003) July 8, 2014
Mathematics

IBM Research Report

Constraint Qualification Failure in Second-Order Cone
Formulations of Unbounded Disjunctions

Hassan L. Hijazi
NICTA

7 London Circuit
Canberra ACT 2601

Australia
and

The Australian National University
Canberra ACT 0200

Australia

Leo Liberti
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598
USA

Research Division
Almaden – Austin – Beijing – Cambridge – Dublin - Haifa – India – Melbourne - T.J. Watson – Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report for
early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After
outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties). Many reports are available at http://domino.watson.ibm.com/library/CyberDig.nsf/home.



Constraint qualification failure in second-order cone
formulations of unbounded disjunctions

Hassan L. Hijazi · Leo Liberti

July 7, 2014

Abstract This note presents a theoretical analysis of disjunctive constraints fea-
turing unbounded variables. In this framework, classical modeling techniques, in-
cluding big-M approaches, are not applicable. We introduce a lifted second-order
cone formulation of such on/off constraints and discuss related constraint qualifi-
cation issues.

Keywords mixed-integer nonlinear programming · disjunctive programming ·
second-order cone programming · on/off constraints · constraint qualification

1 Introduction

Disjunctions represent a key element in mixed-integer programming. One can start
with basic disjunctions coming from the discrete condition imposed on integer vari-
ables, e.g. (z = 0) ∨ (z = 1), then consider more complex disjunctions of the form
(z = 0∧x ≥ 0)∨ (z = 1∧f(x) ≤ 0). In mixed-integer linear programming, years of
research have been devoted to study disjunctive cuts based on basic disjunctions
in Branch & Cut (BC) algorithms [11,14,2]. For more complex disjunctions, es-
pecially in convex Mixed-Integer Nonlinear Programs (MINLPs), the disjunctive
programming approach [8] consists of automatically reformulating each disjunc-
tion, with the concern of preserving convexity.

In most real-life applications, decision variables are naturally bounded, or can
at least be bounded by a very slack bound without losing any interesting solu-
tions. There are, however, some cases where unbounded variables are necessary. In
both [6] and [12], there appear mathematical programs involving decision variables
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which represent step counters in an abstract computer description. Unbounded-
ness in these directions amounts to a proof of non-termination of the abstract
computer. Artificially bounding these variables deeply changes the significance of
the mathematical program, which implies that these variables should really be
unbounded.

Two main reformulation techniques exist for disjunctions in mathematical
programming. The “big-M” approach introduces large constants allowing to en-
able/disable a given constraint. Convex hull-based formulations, on the other hand,
aim at defining the convex hull of each disjunction.

In this short note, we show that neither of the two approach is suitable for
expressing on/off constraints featuring unbounded variables.

2 Unbounded disjunctions

Given (x, z) ∈ Rn × {0, 1}, we consider general disjunctions of the form:

(z = 0 ∧ f(x) ≤ 0) ∨ (z = 1 ∧ x ∈ Rn) (?)

The general constraint f(x) ≤ 0 can be factored out by introducing an artificial
variable y ∈ R. (?) becomes:

(z = 0 ∧ f(x) ≤ y ∧ y = 0) ∨ (z = 1 ∧ f(x) ≤ y ∧ y ∈ R)

Now, we only need to model the union Γ0∪Γ1, where Γ0 = {(z, y) | z = 0∧y = 0}
and Γ1 = {(z, y) | z = 1 ∧ y ∈ R}.

For any set S, let conv(S) denote the convex hull of S.

Lemma 1 Let Γc = {(y, z) ∈ R2 | 0 < z ≤ 1}. Then conv(Γ0 ∪ Γ1) = Γ0 ∪ Γc.

Proof Refer to [4] (Section 3). An illustration is given in Figure 1. ut
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Fig. 1 The convex hull conv(Γ0 ∪ Γ1) is the shaded region.

Lemma 1 indicates that the convex hull approach for unbounded disjunctions
leads to a non-algebraic description of the feasible region and thus is not useful in
mathematical programming.
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3 A second order cone lifted formulation

In order to have an algebraic description of the disjoint regions, we perform a
further lifting step in variable γ, introducing set Γ :

Γ =


γz ≥ y2,
γ ≥ 0,

z ∈ {0, 1}, y ∈ R, γ ∈ R.

Let proj(z,y) (Γ ) denotes the projection of Γ on the (z, y) subspace.

Proposition 1 We have that projz,y (Γ ) = Γ0 ∪ Γ1.

Proof For z = 0, the constraint γz ≥ y2 forces y = 0, which corresponds to the
definition of Γ0. For z = 1, since γ ≥ 0, the constraint γ ≥ y2 becomes redundant,
thus y can take any value in R matching the definition of Γ1. ut

Notice that the constraint γz ≥ y2 defines a rotated second-order cone in R2

(see Figure 2). It is therefore second-order cone representable [15,1], since it can
be written as 4y2 + (γ − z)2 ≤ (γ + z)2. On the one hand, if z = 1, this region
is delimited by the parabola corresponding to the equation γ = y2, where y is
unbounded. On the other hand, if z = 0 the curve converges to the vertical axis
defined by the system {z = 0, y = 0, γ ≥ 0}.
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Fig. 2 The surface γz = y2.
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4 Constraint qualification

For an extensive study of constraint qualifications, we refer the reader to the
excellent survey by Wang et al. in [16]. We consider the program,

min f(x)
∀i ∈ G gi(x) ≤ 0

x ∈ Rn,
(P)

where G = {1, . . . ,m}, and all functions are assumed to be convex and differen-
tiable.

Let F denote the set of feasible points

F = {x ∈ Rn | ∀i ∈ G gi(x) ≤ 0} .

Given a feasible point x̂, A(x̂) denotes the corresponding set of active constraints

A(x̂) = {i ∈ G | gi(x̂) = 0} ,

and D represents the cone of feasible directions at x̂:

D(x̂) = {d ∈ Rn | ∃T > 0 ∀t ∈ [0, T ] x̂ + td ∈ F} .

D is a subset of the cone of tangent directions at x̂, denoted T (x̂). Since F is a
convex set, a direction is tangent to F at x̂ iff it is representable as the limit of a
sequence of feasible directions.

T (x̂) =

{
d ∈ Rn | d = lim

k→∞
dk ∧ dk ∈ D(x̂)

}
Finally, define G(x̂) to be the cone of locally constrained directions at x̂

G(x̂) =
{

d ∈ Rn | ∀i ∈ A(x∗) ∇gi(x̂)>d ≤ 0
}
.

Nonlinear optimization algorithms, and precisely interior point methods, base their
proof of convergence on constraint qualification conditions. In order to reach a
minimum point x∗, the latter should satisfy some regularity conditions. This is
mainly due to the fact that the locally constrained cone at a given point, may be
different from the set of tangent directions (see [13]). In the following, we prove
that this is the case for the second-order cone formulation introduced previously.

Let F be the set given by: 4y2 + (γ − z)2 ≤ (γ + z)2

γ ≥ 0 ∧ 0 ≤ z ≤ 1 ∧ y ∈ R
z = 0

The set F is the interesting part of the feasible region of a typical lower bound-
ing relaxation occurring in a Branch-and-Bound (BB) algorithm on the binary
variables z, along a branch z = 0.

Proposition 2 Points in F are not regular with respect to any constraint quali-
fication.
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Proof Consider a feasible point x0 ∈ F :

y z γ
x0 = ( 0 0 γ0 )

If γ0 = 0, the locally constrained cone of F at x0, is defined as

G(x0) = {d ∈ R3 | d2 = 0, d3 ≥ 0}

The cone of feasible directions at x0 is defined as

D(x0) = {d ∈ R3 | d1 = d2 = 0, d3 ≥ 0}

Note that, since F is convex,

T (x0) = cl (D(x0)) = D(x0) =⇒ T (x0) 6= G(x0),

where cl(·) denotes the closure. If γ0 > 0 the same reasoning applies, with G(x0) =
{d ∈ R3 | d2 = 0} and T (x0) = {d ∈ R3 | d1 = d2 = 0}. Based on [7],
T (x0) = G(x0) is a necessary and sufficient condition for optimal points to be
KKT. Since this weakest possible constraint qualification is not satisfied, the proof
is completed. ut

This is a negative result indicating that all derivative based algorithms may
not converge to the unique global optimal solution, even though the feasible region
is convex. This has been observed in practice on the example below.

4.1 A breach in state-of-the-art solvers?

In order to evaluate the second order cone formulation in practice, we consider the
following simple program:

min x2 + z
s.t. x− 4 ≥ 0 if z = 0,

x ≥ 0,
x ∈ R, z ∈ {0, 1}

(1)

and implement its SOCP reformulation in AMPL [5]:

min x2 + z
s.t. x− 4 ≥ y,

4y2 + (γ − z)2 ≤ (γ + z)2,
γ ≥ 0, x ≥ 0,
(x, y, γ) ∈ R3, z ∈ {0, 1}

(2)

By constraining z = 0, we have 4y2 ≤ 0, implying y = 0 and x = 4, therefore,
the optimal solution value is 1 with x∗ = 0 and z∗ = 1. Program (2) was given to
Cplex 12.6 [10], Gurobi 5.6 [9], and Bonmin 1.5 [3], representing state-of-the-art
solvers. All fail to find the optimal solution. Cplex returns an “unrecoverable fail-
ure”, Gurobi reports an optimal solution of 16, and Bonmin claims the problem is
infeasible. This is mainly due to the fact that branching on z, generates two sub-
problems (z = 0 and z = 1), one of which is irregular as underlined in Proposition
2.
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5 Discussion and Future Perspectives

Constraint qualification failure can lead to irregular situations where optimal so-
lutions do not satisfy the KKT system. Under such circumstances, interior point
methods, relying on the latter system, may fail to converge. In mixed-integer pro-
gramming, branching is performed by introducing linear equations which fix (or
bound) a subset of the discrete variables. While this approach seems harmless in
the linear case, it might produce degeneracy in nonlinear systems.
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