
RC25489 (WAT1409-048) September 17, 2014
Computer Science

IBM Research Report

WatsonPaths: Scenario-based Question Answering and
Inference over Unstructured Information

Adam Lally, Sugato Bachi, Michael A. Barborak, David W. Buchanan,
Jennifer Chu-Carroll, David A. Ferrucci*, Michael R. Glass,

Aditya Kalyanpur, Erik T. Mueller, J. William Murdock,
Siddharth Patwardhan, John M. Prager, Christopher A. Welty

IBM Research Division
Thomas J. Watson Research Center

P.O. Box 218
Yorktown Heights, NY 10598

* This work was done while at the IBM Thomas J. Watson Research Center

Research Division
Almaden – Austin – Beijing – Cambridge – Dublin - Haifa – India – Melbourne - T.J. Watson – Tokyo - Zurich

WatsonPaths: Scenario-based Question Answering and
Inference over Unstructured Information

Adam Lally1, Sugato Bagchi1, Michael A. Barborak1, David W. Buchanan1,
Jennifer Chu-Carroll1, David A. Ferrucci2, Michael R. Glass1, Aditya Kalyanpur1,
Erik T. Mueller1, J. William Murdock1, Siddharth Patwardhan1, John M. Prager1

Christopher A. Welty1

1IBM Research and IBM Watson Group
Thomas J. Watson Research Center

P.O. Box 218
Yorktown Heights, NY 10598

2 This work was done while at the IBM Thomas J. Watson Research Center

Abstract

We present WatsonPaths
TM

, a novel system that
can answer scenario-based questions, for ex-
ample medical questions that present a patient
summary and ask for the most likely diagno-
sis or most appropriate treatment. WatsonPaths
builds on the IBM Watson

TM
question answer-

ing system that takes natural language questions
as input and produces precise answers along
with accurate confidences as output. Watson-
Paths breaks down the input scenario into indi-
vidual pieces of information, asks relevant sub-
questions of Watson to conclude new informa-
tion, and represents these results in a graphi-
cal model. Probabilistic inference is performed
over the graph to conclude the answer. On a set
of medical test preparation questions, Watson-
Paths shows a significant improvement in accu-
racy over the base Watson QA system. We also
describe how WatsonPaths can be used in a col-
laborative application to help users reason about
complex scenarios.

1 Introduction
IBM Watson

TM
is a question answering system that takes

natural language questions as input and produces precise
answers along with accurate confidences as output (Fer-
rucci et al., 2010). Watson defeated two of the best hu-
man players on the quiz show Jeopardy! in 2011.

Watson has been described (Kelly and Hamm, 2013)
as an opening to the era of cognitive computing: com-
puters that interact in a natural way with humans, assist

human cognition, and learn and improve from interac-
tion. To fulfill this vision, further advances are required.
One such advance is the ability to answer more complex
questions. Another is to allow the user to understand and
participate in the question answering process.

Consider the following questions, one from medicine
and one from taxation:

A 32-year-old woman with type 1 diabetes
mellitus has had progressive renal failure. Her
hemoglobin concentration is 9 g/dL. A blood
smear shows normochromic, normocytic cells.
What is the problem?

I inherited real-estate from a relative who died
5 years ago via a trust that was created before
his death. The property was sold this year after
dissolution of the trust, and the money was put
in a Roth-IRA. Which tax form(s) do I need to
file?

We asked domain experts to describe their approach to
solving such questions. An example from medical ex-
perts is shown in Figure 1. Many drew a graph of initial
signs and symptoms leading to their most likely possible
causes and connecting them to a final conclusion. We no-
ticed that their reasoning process often resembled proba-
bilistic inference.

At the core of Watson’s question answering is a suite
of algorithms that match passages containing candidate
answers to the original question. These algorithms have
been described in a series of articles (Chu-Carroll et al.,
2012; Ferrucci, 2012; Gondek et al., 2012; Lally et al.,
2012; McCord et al., 2012; Murdock et al., 2012a; Mur-
dock et al., 2012b). But, when questions involve complex

Patient has renal failure
Patient’s hemoglobin conc.

Is 9 g/dL [low]

Patient’s blood smear shows

normocytic cells

Patient has anemia

Evidence: “Low

hemoglobin conc.

indicates anemia.”

Evidence: “Erythropoietin is

produced in the kidneys.”

“A 32-year-old woman with type 1 diabetes mellitus has had progressive renal failure…

Her hemoglobin concentration is 9 g/dL... A blood smear shows normochromic,

normocytic cells. What is the problem?

Most likely cause of low hemoglobin conc.

is Erythropoietin deficiency

Patient has normocytic anemia

Evidence: “Normocytic anemia is

a type of anemia with normal

red blood cells.”

Evidence:

“Erythropoietin

deficiency is a cause of

normocytic anemia.”

Patient is at risk for

Erythropoietin deficiency

Figure 1: Simple Diagnosis Graph for a Patient with Erythro-
poietin Deficiency

scenarios, as in the above examples, passage matching
by itself is often insufficient to locate the answer. This
is because scenario-based question answering requires
integrating and reasoning over information from multi-
ple sources. Furthermore, we must often apply general
knowledge to a specific case, as in a medical scenario
about a patient.

In this paper, we present a new approach that builds on
Watson’s strengths and is in line with the human reason-
ing process we observed. We break down the input sce-
nario into individual pieces of information, ask relevant
subquestions to conclude new information, and combine
these results into an assertion graph. We then perform
probabilistic inference over the graph to conclude the an-
swer to the overall question. This process is repeated to
extend the graph until a stopping condition is met. Be-
cause we use Watson to answer the subquestions, and be-
cause we attempt to construct paths of inference to a final
answer, we call our system WatsonPaths

TM
.

In the WatsonPaths graph, the evidence is drawn from
a variety of sources including general knowledge ency-
clopedias, domain-specific books, structured knowledge
bases, and semi-structured knowledge bases. We were
motivated by the desire to design a solution that could
harness Watson, and we observed that each edge in this
graph could correspond to a question asked of Watson.

An added dimension to WatsonPaths is the ability to
interact with the user. The original Watson system that
won Jeopardy! was largely non-interactive. For many ap-
plications, it is important to engage the user in the prob-
lem solving process. WatsonPaths has the ability to elicit

user input at multiple points of question answering and
decision making to clarify questions, to judge evidence,
and to ask new questions. A key advantage of this ap-
proach is that user feedback can be used as training data
to improve both Watson and WatsonPaths.

2 WatsonPaths Medical Use Case
Although WatsonPaths enables general-purpose
scenario-based question answering, we decided to
start by focusing our attention on the medical domain.
We focused on the problem of patient scenario analysis,
where the goal is typically a diagnosis or a treatment
recommendation.

To explore this kind of problem solving, we obtained
a set of medical test preparation questions. These are
multiple choice medical questions based on an unstruc-
tured or semi-structured natural language description of
a patient. Although WatsonPaths is not restricted to mul-
tiple choice questions, we saw multiple choice questions
as a good starting point for development. Many of these
questions involve diagnosis, either as the entire question,
as in the previous medical example, or as an intermediate
step, as in the following example:

A 63-year old patient is sent to the neurologist
with a clinical picture of resting tremor that be-
gan 2 years ago. At first it was only on the left
hand, but now it compromises the whole arm.
At physical exam, the patient has an unexpres-
sive face and difficulty in walking, and a con-
tinuous movement of the tip of the first digit
over the tip of the second digit of the left hand
is seen at rest. What part of his nervous system
is most likely affected?

For this question, it is useful to diagnose that the patient
has Parkinson’s disease before determining which part of
his nervous system is most likely affected. These multi-
step inferences are a natural fit for the graphs that Wat-
sonPaths constructs. In this example, the diagnosis is the
missing link on the way to the final answer.

3 Scenario-based Question Answering
In scenario-based question answering, the system re-
ceives a scenario description that ends with a punchline
question. For instance, the punchline question in the
Parkinson’s example is “What part of his nervous system
is most likely affected?” Instead of treating the entire
scenario as one monolithic question as would Watson,
WatsonPaths explores multiple facts in the scenario in
parallel and reasons with the results of its exploration as
a whole to arrive at the most likely conclusion regarding
the punchline question. The architecture of WatsonPaths
is shown in Figure 2.

Scenario

Analysis

Assertion

Graph

Input Scenario

Node

Prioritization

Relation (Edge)

Generation

(may ask questions

to Watson)
Repeat until

“completion”

(which may be

Estimate

Confidences

In Nodes

(“Belief Engine”)

(which may be

defined in

different ways)

Hypothesis

Identification

Hypothesis

Confidence

Refinement

(learned model)

Final

Confidences in

Hypotheses

Figure 2: Scenario-based Question Answering Architecture

3.1 Scenario Analysis

The first step in the pipeline is scenario analysis, where
we identify factors in the input scenario that may be
of importance. In the medical domain, the factors
may include demographics (“32-year old woman”), pre-
existing conditions (“type 1 diabetes mellitus”), signs
and symptoms (“progressive renal failure”), and test
results (“hemoglobin concentration is 9 g/dL,” “nor-
mochromic cells,” “normocytic cells”). The extracted
factors become nodes in a graph structure called the as-
sertion graph. The assertion graph structure is defined
in Section 4, while more details of the scenario analysis
process are given in Section 5.

3.2 Node Prioritization

The next step is node prioritization, where we decide
which nodes in the graph are most important for solv-
ing the problem. In a small scenario like this example,
we may be able to explore everything, but in general this
will not be the case. Factors that affect the priority of a
node may include the system’s confidence in the node as-
sertion or the system’s estimation of how fruitful it would
be to expand a node. For example, normal test results
and demographic information are generally less useful
for starting a diagnosis than symptoms and abnormal test
results.

3.3 Relation Generation
The relation generation step, which is described in more
detail in Section 6, builds the assertion graph. We do
this primarily by asking Watson questions about the fac-
tors. In medicine we want to know the causes of the find-
ings and abnormal test results that are consistent with the
patient’s demographic information and normal test re-
sults. Given the scenario in the Introduction, we could
ask, “What does type 1 diabetes mellitus cause?” We
use a medical ontology to guide the process of formu-
lating subquestions to ask Watson. Relevant factors may
also be combined to form a single, more targeted ques-
tion. Because in this step we want to emphasize recall,
we take several of Watson’s highly-ranked answers. The
exact number of answers taken, or the confidence thresh-
old, are parameters that must be tuned. Given a set of
answers, we add them to the graph as nodes, with edges
from nodes that were used in questions to nodes that were
answers. The edge is labeled with the relation used to
formulate the question (like causes or indicates), and the
strength of the edge is initially set to Watson’s confidence
in the answer. Although Watson is the primary way we
add edges to the graph, WatsonPaths allows for any num-
ber of relation generator components to post edges to the
graph.

3.4 Belief Computation
Once the assertion graph has been expanded in this way,
we recompute the confidences of nodes in the graph
based on new information. We do this using probabilis-
tic inference systems that are described in Section 7. The
inference systems take a holistic view of the assertion
graph and try to reconcile the results of multiple paths of
exploration.

3.5 Hypothesis Identification
As Figure 2 shows, this process can go through multiple
iterations, during which the nodes that were the answers
to the previous round of questions can be used to ask the
next round of questions, producing more nodes and edges
in the graph. After each iteration we may do hypothesis
identification, where some nodes in the graph are identi-
fied as potential final answers to the punchline question
(for example, the most likely diagnoses of a patient’s
problem). In some situations hypotheses may be pro-
vided up front—a physician may have a list of competing
diagnoses and want to explore the evidence for each. But
in general the system needs to identify these. Hypothesis
nodes may be treated differently in later iterations. For
instance, we may attempt to do backward chaining from
the hypotheses, asking Watson what things, if they were
true of the patient, would support or refute a hypothesis.
The process may terminate after a fixed number of itera-
tions or based on some other criterion like confidence in

the hypotheses.
While hypothesis identification is part of WatsonPaths,

it is not described in detail in this paper. In the system
that generates the results we present in Section 10, no hy-
pothesis identification is necessary because the multiple
choice answers are provided. That system always does
one iteration of expansion, both forward from the iden-
tified factors and backward from the hypotheses, before
stopping.

3.6 Hypothesis Confidence Refinement
As described so far, WatsonPath’s confidence in each hy-
pothesis depends on the strengths of the edges leading
to it, and since our primary relation (edge) generator is
Watson, the hypothesis confidence depends heavily on
the confidence of Watson’s answers. Having good an-
swer confidence depends on having a representative set
of question/answer pairs with which to train Watson. The
following question arises: What can we do if we do not
have a representative set of question/answer pairs, but
we do have training examples for entire scenarios (e.g.,
correct diagnoses associated with patient scenarios)? To
leverage the available scenario-level ground truth, we
have built machine learning techniques to learn a refine-
ment of Watson’s confidence estimation that produces
better results when applied to the entire scenario. This
learning process is discussed in Section 8.

3.7 Collaborating with the User
WatsonPaths can run in a completely automated way, as
the Watson question answering system did when playing
Jeopardy! (This is the case for the results presented in
Section 10.) But there are also many interesting possi-
bilities for user interaction at each step in the process.
In this way, WatsonPaths exemplifies cognitive comput-
ing. Our vision for cognitive computing is that the user
and the computer work together to explore a scenario and
reach conclusions faster and more accurately than either
could do alone. We discuss the collaborative learning as-
pects of WatsonPaths in Section 9.

4 Assertion Graphs
The core data structure used by WatsonPaths is the asser-
tion graph. Figure 3 explains this data structure, along
with the visualization that we commonly use for it. As-
sertion graphs are defined as follows.

A statement is something that can be true or false
(though its state may not be known). Often we deal with
unstructured statements, which are natural language ex-
pressions like “A 63-year-old patient is sent to the neurol-
ogist with a clinical picture of resting tremor that began 2
years ago.” WatsonPaths also allows for statements that
are structured expressions, namely, a predicate and argu-
ments. Not all natural language expressions can have a

indicates

patient’s
Substantia

Nigra is
affected

patient has
Parkinson’s

Disease

A 63-year-old patient
is sent to the
neurologist with ...
resting tremor ...
What part of his
nervous system is
most likely affected?

patient
 exhibits
resting
tremor

An edge represents a
relation between the
connected statements.
Agents make assertions
about the truth of these
relations with
confidences. Edge width
represents that
confidence. Gray level
represents the amount
of belief flow.

states

indicates

A node represents a
statement. Types of
statements are input
factors, inferred factors
and hypotheses or
answers. Border
strength visually
represents “belief” the
factor is true in context.

Input
Factor

Inferred
Factor

Hypothesis

Scenario

Relation

Assertion Graph

Figure 3: Visualization of an Assertion Graph. By convention,
input factors are placed at the top and hypotheses at the bottom
with levels of inference factors in between.

truth value. For instance, the string “patient” cannot be
true or false; thus it does not fit into the semantics of an
assertion graph. WatsonPaths is charitable in interpret-
ing strings as if they had a truth value. For instance, the
default semantics of the string “low hemoglobin” is the
same as “patient has low hemoglobin.”

A relation is a named association between statements.
Technically, relations are themselves statements, and
have a truth value. Each relation has a predicate; for in-
stance in medicine we may say that “Parkinsons causes
resting tremor” or “Parkinson’s matches Parkinsonism.”
Typically we are concerned with relations that may pro-
vide evidence for the truth of one statement given an-
other. Although some relations may have special mean-
ings in the probabilistic inference systems, a common se-
mantics for a relation is indicative in the following way:
“A indicates B” means that the truth of A provides an
independent reason to believe that B is true. Section 7
provides more detail on the inference systems.

An assertion is a claim that some agent makes about
the truth of a statement (including a relation). The as-
sertion records the name of the agent and a confidence
value. Assertions may also record provenance informa-
tion that explains how the agent came to its conclusion.

For the Watson question answering agent, this includes
natural language passages that provide evidence for the
answer. When the system is collaborating with a user, it
is crucial to be able to display evidence to the user.

In the assertion graph, each node represents exactly
one statement, and each edge represents exactly one re-
lation. Nodes and edges may have multiple assertions at-
tached to them, one for each agent that has asserted that
node or edge to be true.

We often visualize assertion graphs by using a node’s
border width to represent the confidence of the node, an
edge’s width to represent the confidence of the edge, and
an edge’s gray level as the amount of “belief flow” along
that edge. Belief flow is described later, but essentially it
is how much the value of the head influences the value of
the tail. This depends mostly on the confidences of the
assertions on the edge.

5 Scenario Analysis
The goal of scenario analysis is to identify information
in the natural language narrative of the problem sce-
nario that is potentially relevant to solving the problem.
When human experts read the problem narrative, they are
trained to extract concepts that match a set of seman-
tic types relevant for solving the problem. In the med-
ical domain, doctors and nurses identify semantic types
like chief complaints, past medical history, demograph-
ics, family and social history, physical examination find-
ings, labs, and current medications (Bowen, 2006). Ex-
perts also generalize from specific observations in a par-
ticular problem instance to more general terms used in
the domain corpus. An important aspect of this informa-
tion extraction is to identify the semantic qualifiers asso-
ciated with the clinical observations (Chang et al., 1998).
These qualifiers could be temporal (e.g.,“pain started two
days ago”), spatial (“pain in the epigastric region”), or
other associations (“pain after eating fatty foods”). Im-
plicit in this task is the human’s ability to extract concepts
and their associated qualifiers from the natural language
narrative. For example, the above qualifiers might have
to be extracted from the sentence “The patient reports
pain, which started two days ago, in the epigastric region
especially after eating fatty foods.”

The computer system needs to perform a similar anal-
ysis of the narrative. We use the term factor to denote the
potentially relevant observations along with their associ-
ated semantic qualifiers. Reliably identifying and typing
these factors, however, is a difficult task, because medi-
cal terms are far more complex than the kind of named
entities typically studied in natural language processing.
Our scenario analytics pipeline attempts to address this
problem with the following major processing steps:

1. The analysis starts with syntactic parsing of the nat-

ural language. This creates a dependency tree of
syntactically linked terms in a sentence and helps to
associate terms that are distant from each other in
the sentence.

2. The terms are mapped to a dictionary to iden-
tify concepts and their semantic types. For the
medical domain, our dictionary is derived from
the UMLS Metathesaurus (National Library of
Medicine, 2009), Wikipedia redirects, and medical
abbreviation resources. The concepts identified by
the dictionary are then typed using the UMLS Se-
mantic Network, which consists of a taxonomy of
biological and clinical semantic types like Anatomy,
SignOrSymptom, DiseaseOrSyndrome, and Ther-
apeuticOrPreventativeProcedure. In addition to
mapping the sequence of tokens in a sentence to
the dictionary, the dependency parse is also used
to map syntactically linked terms. For example
“. . . stiffness and swelling in the arm and leg” can
be mapped to the four separate concepts contained
in that phrase.

3. The syntactic and semantic information identified
above are used by a set of predefined rules to iden-
tify important relations. Negation is commonly
used in clinical narratives and needs to be accurately
identified. Rules based on parse features identify the
negation trigger term and its scope in a sentence.
Factors found within the negated scope can then be
associated with a negated qualifier. Another exam-
ple of rule-based annotation is lab value analysis.
This associates a quantitative measurement to the
substance measured and then looks up reference lab
value ranges to make a clinical assessment. For ex-
ample “hemoglobin concentration is 9 g/dL” is pro-
cessed by rules to extract the value, unit, and sub-
stance and then assessed to be “low hemoglobin”
by looking up a reference. Next, the clinical assess-
ment is mapped by the dictionary to the correspond-
ing clinical concept.

At this point, we should have all the information to
identify factors and their semantic qualifiers. We have
to contend, however, with language ambiguities, errors
in parsing, a noisy and non-comprehensive dictionary,
and a limited set of rules. If we were to rely solely on
a rule-based system, then the resulting factor identifica-
tion would suffer from a compounding of errors in these
components. To address this issue, we employ machine
learning methods to learn clinical factors and their se-
mantic qualifiers in the problem narrative. We obtained
the ground truth by asking medical students to annotate
clinical factor spans and their semantic types. They also
annotated semantic qualifier spans and linked them to

factors as attributive relations.
The machine learning system is comprised of two se-

quential steps:

1. A conditional random field (CRF) model (Lafferty
et al., 2001) learns the spans of text that should be
marked as one of the following factor types: finding,
disease, test, treatment, demographics, negation, or
a semantic qualifier. Features used for training the
CRF model are lexical (lemmas, morphological in-
formation, part-of-speech tags), semantic (UMLS
semantic types and groups, demographic and lab
value annotations), and parse-based (features asso-
ciated with dependency links from a given token).
A token window size of 5 (2 tokens before and af-
ter) is used to associate features for a given token. A
BIO tagging scheme is used by the CRF to identify
entities in terms of their token spans and types.

2. A maximum entropy model then learns the relations
between the entities identified by the CRF model.
For each pair of entities in a sentence, this model
uses lexical features (within and between entities),
entity type, and other semantic features associated
with both entities, and parse features in the depen-
dency path linking them. The relations learned by
this model are negation and attributeOf relations
linking negation triggers and semantic qualifiers (re-
spectively) to factors.

The combined entity and relation identification models
have a precision of 71% and recall of 65% on a blind
evaluation set of patient scenarios found in medical test
preparation questions. We are currently exploring joint
inference models and identification of relations that span
multiple sentences using coreference resolution.

6 Relation Generation
The scenario analysis component described in the previ-
ous section extracts pertinent factors related to the patient
from the scenario description. At this stage, the assertion
graph consists of the full scenario, individual scenario
sentences, and the extracted factors. An indicates rela-
tion is posted from a source node (e.g., a scenario sen-
tence node) to a target node whose assertion was derived
from the assertion in the source node (e.g., a factor ex-
tracted from that sentence). In addition, a set of hypothe-
ses, if given, are posted as goal nodes in the assertion
graph.

The task of the relation generation component is to (1)
expand the graph by inferring new facts from known facts
in the graph and (2) identify relationships between nodes
in the graph (like matches and contraindicates) to help
with reasoning and confidence estimation. We begin by
discussing how we infer new facts for graph expansion.

6.1 Expanding the Graph with Watson
In medical problem solving, experts reason with chief
complaints, findings, medical history, demographic in-
formation, and so on, to identify the underlying causes
for the patient’s problems. Depending on the situation,
they may then proceed to propose a test whose results
will allow them to distinguish between multiple possi-
ble problem causes, or identify the best treatment for the
identified cause, and so on.

Motivated by the medical problem solving paradigm,
WatsonPaths first attempts to make a diagnosis based on
factors extracted from the scenario. The graph is ex-
panded to include new assertions about the patient by
asking questions of a version of the Watson question an-
swering system adapted for the medical domain (Ferrucci
et al., 2013). WatsonPaths takes a two-pronged approach
to medical problem solving by expanding the graph for-
ward from the scenario in an attempt to make a diagnosis,
and then linking high confidence diagnoses with the hy-
potheses. The latter step is typically done by identifying
an important relation expressed in the punchline question
(e.g., “What is the most appropriate treatment for this pa-
tient” or “What body part is most likely affected?”). This
approach is a logical extension of the open-domain work
of Prager et al. (2004), where in order to build a profile
of an entity, questions were asked of properties of the en-
tity and constraints between the answers were enforced
to establish internal consistency.

The graph expansion process of WatsonPaths begins
with automatically formulating questions related to high
confidence assertions, which in our graphs represent
statements WatsonPaths believes to be true to a certain
degree of confidence about the patient. These statements
may be factors, as extracted and typed by the algorithm
described in Section 5, or combinations of those factors.

To determine what kinds of questions to ask, Watson-
Paths can use a domain model that tells us what relations
form paths between the semantic type of a high confi-
dence node and the semantic type of a hypothesis like a
diagnosis or treatment. For the medical domain, we cre-
ated a model that we called the Emerald, which is shown
in Figure 4. (Notice the resemblence to an emerald.) The
Emerald is a small model of entity types and relations
that are crucial for diagnosis and for formulating next
steps.

We select from the Emerald all relations that link the
semantic type of a high-confidence source node to a
semantic type of interest. The relations and the high-
confidence nodes then form the basis of instantiating the
target nodes, thereby expanding the assertion graph. To
instantiate the target nodes, we issue WatsonPaths sub-
questions to Watson. All answers returned by Watson
that score above a pre-determined threshold are posted
as target nodes in the inference graph. A relation edge

Figure 4: The Emerald

resting tremor that
began 2 years ago

At physical exam, the
patient has an

unexpressive face and
difficulty in walking,

and...

At first it was only the left
hand, but now it

compromises the whole arm

A 63-year old patient is
sent to the neurologist
with a clinical picture of

resting tremor that
began 2 years ago

unexpressive
face

compromises
the whole arm

difficulty in
walking

Substantia
Nigra Cerebellum Caudate

NucleusPonsLenticular
Nuclei

Parkinson’s
disease

Huntington’s
disease

Progressive
supranuclear

palsy
Cerebellar
diseases

Parkinson
disease

Diffuse
lewy body
disease

Figure 5: WatsonPaths Graph Expansion Process

is posted from the source node to each new target node
where the confidence of the relation is Watson’s confi-
dence in the answer in the target node.

In addition to asking questions from scenario factors,
WatsonPaths may also expand backwards from hypothe-
ses. The premise for this approach is to explore how a
hypothesis fits in with the rest of the inference graph. If
one hypothesis is found to have a strong relationship with
an existing node in the assertion graph, then the proba-
bilistic inference mechanisms described in 7 allow belief
to flow from known factors to that hypothesis, thus in-
creasing the system’s confidence in that hypothesis.

Figure 5 illustrates the WatsonPaths graph expansion
process. The top two rows of nodes and the edges be-
tween them show a subset of the WatsonPaths assertion
graph after scenario analysis, with the second row of
nodes representing some clinical factors extracted from

the scenario sentences.
The graph expansion process identifies the most confi-

dent assertions in the graph, which include the four clin-
ical factor nodes extracted from the scenario. These four
nodes are all typed as findings, so they are aggregated
into a single finding node for the purpose of graph expan-
sion. For a finding node, the Emerald proposes a single
findingOf relation that links it to a disease. This results in
the formulation of the subquestion “What disease causes
resting tremor that began 2 years ago, compromises the
whole arm, unexpressive face, and difficulty in walk-
ing?” whose answers include Parkinson disease, Hunt-
ington’s disease, cerebellar disease, and so on. These
answer nodes are added to the graph and some of them
are shown in the third row of nodes in Figure 5.

In the reverse direction, WatsonPaths explores rela-
tionships between hypotheses to nodes in the existing
graph based on the punchline question in the scenario,
which in this case is “What part of his nervous system is
mostly likely affected?” Assuming each hypothesis to be
true, the system formulates subquestions to link it to the
assertion graph. Consider Substantia nigra. WatsonPaths
can ask “In what disease is substantia nigra most likely
affected?” A subset of the answers to this question, in-
cluding Parkinson’s disease and Diffuse Lewy body dis-
ease are shown in the fourth row of nodes in Figure 5.

6.2 Matching Graph Nodes
When a new node is added to the WatsonPaths asser-
tion graph, we compare the assertion in the new node
to those in existing nodes to ensure that equivalence rela-
tions between nodes are properly identified. This is done
by comparing the statements in those assertions: for un-
structured statements, whether the statements are lexi-
cally equivalent, and for structured statements, whether
the predicates and their arguments are the same. A more
complex operation is to identify when nodes contain as-
sertions that may be equivalent to the new assertion.

We employ an aggregate of term matchers (Murdock
et al., 2012a) to match pairs of assertions. Each term
matcher posts a confidence value on the degree of match
between two assertions based on its own resource for de-
termining equivalence. For example, a WordNet-based
term matcher considers terms in the same synset to be
equivalent, and a Wikipedia-redirect-based term matcher
considers terms with a redirect link between them in
Wikipedia to be a match. The dotted line between
Parkinson disease and Parkinson’s disease in Figure 5
is posted by the UMLS-based term matcher, which con-
siders variants for the same concept to be equivalent.

7 Confidence and Belief
Once the assertion graph is constructed, and some ques-
tions and answers are posted, there remains the problem

of confidence estimation. We develop multiple models of
inference to address this step.

7.1 Belief Engine

One approach to the problem of inferring the correct hy-
pothesis from the assertion graph is probabilistic infer-
ence over a graphical model (Pearl, 1988). We refer to
the component that does this as the belief engine.

Although the primary goal of the belief engine is to in-
fer confidences in hypotheses, it also has two secondary
goals. One is to infer belief in unknown nodes that are
not hypotheses. These intermediate nodes may be im-
portant intermediate steps toward an answer; by assign-
ing high confidences to them in the main loop, we know
to assign them high priority for subquestion asking. An-
other secondary goal is to support the user interface (see
Section 9). Among inference algorithms that perform
well in terms of accuracy and other metrics, we try to
make choices that will make the flow of belief intuitive
for users. This facilitates the gathering of better oppor-
tunistic annotations, which improves future performance.

To execute the belief engine, we first make a work-
ing copy of the assertion graph that we call the inference
graph. A separate graph is used so that we can make
changes without losing information that might be use-
ful in later steps of inference. For instance, we might
choose to merge nodes or reorient edges. Once the infer-
ence graph has been built, we run a probabilistic infer-
ence engine over the graph to generate new confidences.
Each node represents an assertion, so it can be in one of
two states: true or false (“on” or “off”). Thus a graph
with k nodes can be in 2k possible states. The inference
graph specifies the likelihoods of each of these states.
The belief engine uses these likelihoods to calculate the
marginal probability, for each node, of it being in the
true state. This marginal probability is treated as a confi-
dence. Finally, we read confidences and other data from
the inference graph back into the assertion graph.

There are some challenges in applying probabilistic in-
ference to an assertion graph. Most tools in the infer-
ence literature were designed to solve a different prob-
lem, which we will call the classical inference problem.
In this problem, we are given a training set and a test set
that can be seen as samples from a common joint distri-
bution. The task is to construct a model that captures the
training set (for instance, by maximizing the likelihood
of the training set), and then apply the model to predict
unknown values in the test set. Arguably the greatest
problem in the classical inference task is that the struc-
ture of the graphical model is underdetermined; a large
space of possible structures needs to be explored. Once
a structure is found, adjusting the strengths is relatively
easier, because we know that samples from the training
set are sampled from a consistent joint distribution.

In WatsonPaths, we face a different set of problems.
The challenge is not to construct a model from training
data, but to use a very noisy, already constructed model to
do inference. Training data in the classical sense is absent
or very sparse; all we have are correct answers to some
scenario-level questions. An advantage is that a graph
structure is given. A disadvantage is that the graph is
noisy. Furthermore, it is not known that the confidences
on the edges necessarily correspond to the optimal edge
strengths. (In the next section, we address the problem
of learning edge strengths.) Thus we have the problem
of selecting a semantics—a way to convert the assertion
graph into a graph over which we can do optimal proba-
bilistic inference to meet our goals.

After much experimentation, the primary semantics
used by the belief engine is the indicative semantics: If
there is a directed relation from node A to node B with
strength x, then A provides an independent reason to be-
lieve that B is true with probability x. Some edges are
classified as contraindicative; for these edges, A pro-
vides an independent reason to believe that B is false
with probability x. The independence means that multi-
ple parents R can easily be combined using a noisy-OR:

(1−
∏
r∈R

(1− r)) =
⊕
r∈R

r

The graph, so interpreted, forms a noisy-logical
Bayesian network (Yuille and Lu, 2007). The strength
of each edge can be interpreted as an indicative power, a
concept related to causal power (Cheng, 1997), with the
difference that we are semantically agnostic as to the true
direction of the causal relation. Formally, the probability
of a node being “on” (true) is given by

P (x|Rx, Qx) =

[⊕
r∈Rx

(srpr)

] 1−
⊕

q∈Qx

(sqpq)


where P (x) is the probability of node x being on, Rx

is the set of indicative parents of x, and Qx is the set of
contraindicative parents. The parent’s state is represented
by pr: 1 if the parent is on, and 0 otherwise. The value sr

represents the strength of the edge from the parent to x.
In other words, the probability that a node x is on is the
noisy-OR of its active indicative parent edge strengths
combined via a noisy-AND-NOT with the noisy-OR of
its active contraindicative parent edge strengths.

For instance, if the node resting tremor indicates
Parkinson disease with strength 0.8, and the node diffi-
culty in walking indicates Parkinson disease with power
0.4, then the probability of Parkinson disease will be
(1 − (1 − 0.8)(1 − 0.4)) = 0.88. If so, then the edge
with strength 0.9 to Parkinson’s disease will fire with

probability 0.88 · 0.9 = 0.792. In this way, probabil-
ities can often multiply down simple chains. Inference
must be more sophisticated to handle the graphs we see
in practice, but the intuition is the same.

An example that adds sophistication to the inference is
an “exactly one” constraint that can be optionally added
to multiple-choice questions. This constraint assigns a
higher likelihood to assignments in which exactly one
multiple choice answer is true. Because of these kinds
of constraints, and because of the fact that the graphs
contain directed and undirected cycles, we cannot sim-
ply calculate the probabilities in a feed-forward manner.
To perform inference we use Metropolis-Hastings sam-
pling over a factor graph representation of the inference
graph. This has the advantage of being a very general
approach—the inference engine can easily be adapted to
a new semantics—and also allows an arbitrary level of
precision given enough processing time.

Users and annotators report that they find the indica-
tive semantics intuitive, and it performs at least as well as
other semantics in experiments. One of the first seman-
tics we tried was undirected pairwise Markov random
fields. These performed poorly in practice. We hypoth-
esize that this is because important information is con-
tained in the direction of the edges that Watson returns:
Asking about A and getting B as an answer is different
from asking about B and getting A as an answer. An
undirected model loses this information.

The indicative semantics is a default, basic semantics.
The ability to reason over arbitrary relations makes the
indicative semantics robust, but it is easy to construct ex-
amples in which the indicative semantics is not strictly
correct. For instance, “fever is a finding of Lyme disease”
may be correctly true with high confidence, but this does
not mean that fever provides an independent reason to
believe that Lyme disease is present, with high probabil-
ity. Fever is caused by many things, each of which could
explain it. We are currently working on adding a causal
semantics in which we use a noisy-logical Bayesian net-
work, but belief flows from causes to effects, rather than
from factors to hypotheses. Edges are oriented accord-
ing to the types of the nodes: Diseases cause findings but
not vice-versa. Currently this does not lead to detectable
improvement in accuracy and we expect that we need to
improve the precision of the rest of the system before it
will show impact.

7.2 Closed-Form Inference

The inference method in Section 7.1 obtains the strengths
of edges directly from the confidence values on Watson’s
answers to subquestions, which depend on having a rep-
resentative training set of subquestion/answer pairs. We
have also developed inference methods where each edge
has a feature vector (produced by Watson or any other re-

lation generator) and we express the confidence in each
hypothesis as a closed-form, parameterized expression
over the feature values. We can then optimize the param-
eters on a training set of scenarios and correct diagnoses
(see Section 8).

To illustate the idea we describe in detail one such
model, the Noisy-OR Model, which is based on the same
intuition is the indicative semantics just described.

We first convert the assertion graph to a directed
acyclic graph (DAG). The assertion graph is not, in gen-
eral, free of cycles. Additionally, the assertion graph con-
tains matching relations, which are undirected. To form a
DAG, the nodes in the assertion graph are first clustered
by these matching relations, and then cycles are broken
by applying heuristics to re-orient edges to point from
factors to hypotheses.

The confidence in factors extracted by Scenario Anal-
ysis is 1.0. For all other nodes the confidence is defined
recursively in terms of the confidences of the parents and
the confidence of the edges produced by the QA system.
Let the set of parents in the DAG for a node n be given
by a(n). The feature vector the QA system gives for
one node, m, indicating another, n, is given by λ(m,n).
Then the confidence for a non-factor node is given below.
The learned weight vector for the QA features is ~q.

P (n) =
⊕

ai∈a(n)

σ(~q · λ(ai, n)) · P (ai)

where σ(x) denotes the sigmoid function.

σ(x) =
1

1 + e−x

The noisy-OR combination is most sensible when the
sources of evidence are independent. When there are
two edges leading from the same inference node (which
may be the result of merging two or more assertion graph
nodes) to the node under consideration, these edges are
combined by max rather than noisy-OR.

In addition to the Noisy-OR model, we have also de-
veloped the following:

• The Edge Type variant of the Noisy-OR model con-
siders the type of the edge when propagating con-
fidence from parents to children. The strength of
the edge according to the QA model is multiplied
by a per-edge-type learned weight, then a sigmoid
function is applied. In this model, different types of
sub-questions may have different influence on con-
fidences, even when the QA model produces similar
features for them.

• The Matching Model estimates the confidence in
a hypothesis according to how well each factor in

the scenario, plus the answers to forward questions
asked about it, match against either the hypothe-
sis or the answers to the backward questions asked
from it. We estimate this degree of match using the
term matchers described Section 6.2.

• The Feature Addition Model uses the same DAG as
the Noisy-OR model, but confidence in the interme-
diate nodes is computed by adding the feature val-
ues for the questions that lead to it and then applying
the logistic model to the resulting vector. An effect
is that the confidence for a node does not increase
monotonically with the number of parents. Instead,
if features that are negatively associated with cor-
rectness are present in one edge, it can lower the
confidence of the node below the confidence given
by another edge.

• The Causal Model attempts to capture causal se-
mantics by expressing the confidence for each can-
didate as the product over every clinical factor of the
probability that either the diagnosis could explain
the factor (as estimated from Watson/QA features),
or the factor “leaked” - it is an unexplained obser-
vation or is not actually relevant.

In the closed-form inference systems described, there
is no constraint that the answer confidences sum to one.
We implement a final stage where features based on the
raw confidence from the inference model are transformed
into a proper probability distribution over the candidate
answers.

8 Learning over Assertion Graphs
Inference methods like those described in the previous
section depend on the strengths of edges created from
the answers to subquestions. WatsonPaths uses super-
vised machine learning to learn these edge strengths from
training data. There are two different kinds of training
data that we can employ:

• Scenario question training data includes complete
scenarios, questions about those scenarios, and an-
swers to those questions (e.g., a detailed description
of a patient, a question asking what is wrong with
the patient, and the correct diagnosis).

• Subquestion training data includes simpler, atomic
questions and answers to those questions (e.g.,
“What diseases cause joint pain?” and some an-
swers to that question).

The WatsonPaths process that we have described up to
this point assumes that we first train a subquestion an-
swering model using subquestion training data and use
the outputs of that model as confidences for inference.

But we have found that this approach has limitations,
due in part to issues with our existing subquestion train-
ing data (described in Section 10). This approach also
suffers from the limitation that it only uses information
internal to the subquestion answering system. Some in-
ference methods have parameters that are not based on
subquestions. For example, some approaches develop a
model for the degree that two nodes match or the im-
portance of a given node. A simple baseline for node
importance is to give all nodes either equal weight or a
weight based on a single simple statistic like IDF (inverse
document frequency). A simple model for matching can
take the confidence from a single term matcher thought
to be generally effective. Graph-based features like these
can be useful in combination with subquestion answering
features for inference model learning.

Therefore, we have added a final step to the process
that makes use of the scenario question training data. Us-
ing the assertion graphs that WatsonPaths has built for
each scenario question, our goal is to learn a model that
produces a probability distribution over answers with as
much of the mass as possible concentrated on the correct
answer. This learning is challenging because each asser-
tion graph contains very different nodes and edges from
the others, even different numbers of nodes and edges.
Fortunately, the edges in these graphs do share a com-
mon set of features, such as question answering features,
matching features, and node type features.

A complication is that Watson has a large quantity
of question answering features, and many of them have
similar purposes; e.g., many features independently as-
sess whether the answer has the desired type (Murdock
et al., 2012b). There is a subtle and indirect connection
between the behavior of the subquestion answering sys-
tem and the final answers to scenario question training
data; this makes it very hard for a learning system us-
ing only the scenario question training data to find an ef-
fective model over so many features. Consequently, we
employ a hybrid approach. We partition features into a
small number of groups with similar purposes and we
use subquestion training data to build a separate model
for each group. The outputs of these models represent
a consolidated set of question answering features (with
one score for each group). We then use this consolidated
set of question answering features as features for learning
inference models (along with the additional graph-based
features).

8.1 Direct Learning

We have explored several methods for transforming an
assertion graph a into a function mapping the values
of the weights to confidence in the correct hypothesis
Φa : Rn → R. The methods in Section 7.2 provide
fast, exact inference. These approaches permit express-

ing the confidence in the correct answer as a closed-form
expression. Summing the log of the confidence in the
correct hypothesis across the training set T , we construct
a learning problem with log-likelihood in the correct final
answer as our objective function. The result is a function
that is non-convex, and in some cases (due to max) not
differentiable in the parameters.

To limit overfitting and encourage a sparse, inter-
pretable parameter weighting we use L1-regularization.
The absolute value of all learned weights is subtracted
from the objective function.

~w∗ = argmax
~w∈Rn

−‖~w‖1 +
∑
t∈T

log(Φt(~w))

To learn the parameters for the inference models
we apply a “black-box” optimization method: greedy-
stochastic local search. This is a method of direct search
(Kolda et al., 2003) that considers a current point in
p ∈ Rn and a neighborhood function mapping points to
subsets of Rn, N : Rn →P(Rn). Additionally the op-
timization procedure maintains p∗, the best known point.
From the current point a new point p′ is randomly se-
lected from N (p). If the change improves the objective
function, then it is kept; if the change worsens the objec-
tive function, then it is accepted with some probability
ε. In this way, the learning explores the parameter space,
tending to search in regions of high value while never
becoming stuck in a local maximum.

We use a neighborhood functionN related to compass
search. A single parameter or a pair of parameters is se-
lected to change by some δ. Additionally, due to the L1
regularization, the neighborhood permits setting any sin-
gle parameter to zero, encouraging sparse solutions.

There is no straightforward stopping criterion for this
search, so we limit by time. Empirically we found that
optimization longer than two hours rarely improved the
objective function substantially.

Not every Φt depends on every element of ~w. Even
in cases where a Φt depends on ~wi, many pieces of the
function may not. To enable efficient recomputation, a
preprocessor constructs for each weight ~wi a DAG indi-
cating which parts of functions will need to be recom-
puted, and in what order, if that weight is changed. Un-
changed function parts return their cached value if used
in the computation of a part that does change.

We also experimented with the Nelder-Mead simplex
method (Nelder and Mead, 1965) and the multidirec-
tional search method of Torczon (1989) but found weaker
performance from these methods.

8.2 Ensemble Learning
We have multiple inference methods, each approaching
the problem of combining the subquestion confidences

from a different intuition and formalizing it in a differ-
ent way. To combine all these different approaches we
train an ensemble. This is a final, convex, confidence es-
timation over the multiple choice answers using the pre-
dictions of the inference models as features. The ensem-
ble learning uses the same training set that the individ-
ual closed-form inference models use. To avoid giving
excess weight to inference models that have overfit the
training set, we use a common technique from stacking
ensembles (Breiman, 1996). The training set is split into
five folds, each leaving out 20% of the training data, as
though for cross validation. Each inference model from
Section 7.2 is trained on each fold. When the ensemble
gathers an inference model’s confidence as a feature for
an instance, the inference model uses the learned parame-
ters from the fold that excludes that instance. In this way,
each inference model’s performance is test-like, and the
ensemble model does not overly trust overfit models.

The ensemble is a binary logistic regression per an-
swer hypothesis using three features from each inference
model. The features used are: the probability of the hy-
pothesis, the logit of the probability, and the rank of the
answer among the multiple choice answers. Using the
logit of the probability ensures that selecting a single
inference model is in the ensemble’s hypothesis space,
achieved by simply setting the weight for that model’s
logit feature to one and all other weights to zero.

Each closed-form inference model is also trained on
the full training set. These versions are applied at test
time to generate the features for the ensemble.

9 Collaborative Learning Application
Applying a question-answering tool like Watson to com-
plex, scenario-driven problems was a challenge that we
didn’t solve until we observed how humans do this.
As explained in the Introduction, an inspiration for our
approach came from seeing medical students explain
their reasoning about medical test preparation questions.
Their process was one of identifying significant details,
drawing inferences, and evaluating hypotheses. This way
of attacking a problem is recognizable in the Watson-
Paths execution flow. So when it came time to create an
interactive application, it was the obvious conclusion that
it should facilitate a certain way of reasoning about com-
plex scenarios. We call this the Collaborative Learning
Application.

9.1 A Learning Application
The Collaborative Learning Application creates a work-
flow in which the user and Watson work together to ana-
lyze a problem. We believe that this approach will result
in better solutions than if the user or Watson were work-
ing alone. It is also thought this will create opportunities
for the user and Watson to learn.

For the user, “to learn” is meant in the traditional
sense. First, we propose that the application aids in
teaching critical thinking through its advocacy of a cer-
tain reasoning process. Second, we propose that explor-
ing Watson’s analyses provides educational value by giv-
ing a unique and relevant index into the huge body of
unstructured knowledge that was examined to produce
these results.

For Watson, learning is primarily in the sense of ma-
chine learning. That is, learning involves deriving la-
beled data from usage data and using that data to im-
prove our statistical models. What we find interesting
about the WatsonPaths application are the many oppor-
tunities to gather such data through both implicit and ex-
plicit means. We call these “opportunistic annotations,”
because they are gathered in the course of using the sys-
tem. There is a synergy between mimicking the way a
human thinks about a problem and the way the machine
analyzes a problem in developing ways to gather useful
data.

If the Collaborative Learning Application can success-
fully produce educational value for the user or Watson,
then we submit that the system (inclusive of the applica-
tion and the user) learns and improves. That is, we can
expect the system to provide better results over time. Of
course, we know that humans are capable of this property
and so along that dimension we wish to show that the ap-
plication is associated with a faster rate of learning than,
for instance, using a search engine over similar corpora.
And along the dimension of the machine’s improvement,
we wish to show statistically significant results. As the
ability to achieve this is a function of the amount and
quality of usage data gathered, it will be interesting to
explore what requirements this implies.

9.2 A Collaborative Application

The interactions that the application supports are best ex-
plained at the logical level. At this level we find the
assertion graph and the WatsonPaths processes used to
populate it.

Our initial state is an empty assertion graph, and
our first operation is to describe the problem scenario
through statements of fact and assertions of truth about
those statements. WatsonPaths does this through the sce-
nario analysis process in which the input is natural lan-
guage text and the output is a number of asserted state-
ments. Through the Collaborative Learning Application,
the user may choose to accept the result of this process,
alter it through judgment, or bypass it altogether and cre-
ate their own asserted statements. Each of these interac-
tions produces data that we hope is valuable for improv-
ing the system.

By accepting the result of the process, there is an im-
plicit annotation that the result has positive value in the

user’s judgment.
Altering the process through judgment produces ex-

plicit annotations by the user. Note that it is a more gen-
eral interaction than might be inferred from this context
since it is done at the assertion graph level and so is ap-
plicable to all of the WatsonPaths processes that operate
on this data structure. A judgment is in fact the user ex-
pressing an opinion about a statement for which the sys-
tem has also expressed an opinion. Expressing a similar
opinion is an example of positive feedback. Expressing
a dissimilar opinion is an example of negative feedback.
If we can associate the system’s opinion with a particular
WatsonPaths process, then we can use these judgments
as feedback regarding that process. (Understanding the
bias of this feedback mechanism is a concern for us.)

By creating their own asserted statements, the user is
generating their opinion of the ground truth for the Wat-
sonPaths process. Knowing the input the user was oper-
ating on to produce this ground truth allows us to derive
labeled data for the process.

In this step one might infer that there is a gated pro-
cess in which the user vets and augments the machine’s
results prior to moving on with the analysis. Our current
focus on medical test preparation questions is amenable
to this approach but for very complex inputs (such as
hundreds of pages of a patient’s medical record) prac-
ticalities may necessitate a different, automatic mode of
operation. Such a mode might be to allow WatsonPaths
to work through the entire scenario alone and then invite
the human to judge or augment the results as they see fit.
In fact we are exploring both approaches as each has de-
sirable characteristics (primarily understandability in the
case of the gated process and decision facilitation in the
automatic case).

The next operation is to prioritize statements in the as-
sertion graph for further inquiry. That is, which state-
ments about the scenario have the most promise of pro-
ducing relevant inferences? Again, there is a Watson-
Paths process to do this, and the user may choose to ac-
cept the result of this process, alter it, or bypass it alto-
gether. Similarly to the previous case, annotations and
labeled data may be derived from these interactions.

Next in the WatsonPaths process is to apply a semantic
template to the prioritized statements to generate infer-
ences. This semantic template may include information
like “diseases cause findings” from which we may de-
rive a query to infer a disease from a finding or a finding
from a disease. When using Watson’s question answer-
ing function to do this, the form of this query is a nat-
ural language question. For example, imagine that the
statement resting tremor (read as “the patient has resting
tremor”) has been prioritized. Applying the described se-
mantic template then would produce the question “What
disease causes resting tremor?” The answers to this ques-

tion are new inferred factors.
There are many opportunities for user feedback in this

process, but perhaps the most interesting one is to induce
a semantic template from user interactions. We envision
doing this by allowing users to ask questions of state-
ments themselves and then extracting information from
them. For example, if the user asks of “resting tremor,”
“What causes this?” then we might extract a semantic
template instance of “things cause resting tremor.” The
value of this template might be improved by knowing the
type of instances, and so we may ask the user, “What
type of things cause resting tremor?” to which we re-
ceive an answer of “disease” or “neurological disorder,”
among other things. And through typing (a functionality
of WatsonPaths), we may suppose that “resting tremor”
is a finding. This may lead us to ask of the user, “Do
diseases cause findings?” or “Do neurological disor-
ders cause findings?” The user’s response may further
refine the semantic template. How far to refine the se-
mantic template and whether it should be done with re-
spect to a prior ontology are questions open to experi-
mentation. An added personalization aspect is that the
system could learn user-specific semantic templates, al-
lowing each user to employ their own methodology for
problem solving.

Executing the queries produced in the previous opera-
tion results in new asserted statements. As mentioned be-
fore, Watson’s question answering function can be used
to answer these intermediate queries. Here too, user in-
put can help improve Watson’s results. The user can ac-
cept Watson’s results, alter them through judgment, or
produce their own. For example, the user can suggest al-
ternative names and phrasings for entities and relations
in the question for use in query expansion. And as be-
fore, these interactions produce data that can be used
to improve the system. In this case, these results fit
nicely into AdaptWatson (Ferrucci and Brown, 2012), a
methodology for improving question answering perfor-
mance based on example question-answer pairs, data sci-
ence, and machine learning.

An advantage of using Watson’s question answering
ability for inference is that results are supported by evi-
dential passages. These passages are typically a few sen-
tences extracted from a document that Watson used dur-
ing feature generation for a candidate answer to a ques-
tion and so often entail the high confidence answers. As
such, exposing this evidence to the user can be very ben-
eficial as an explanatory tool and so is something we em-
phasize in the Collaborative Learning Application. Al-
lowing the user to judge this evidence can provide data
that can be used to improve the search components of the
question answering process as well as to train a justify-
ing passage model—a model that classifies passages as
justifying an answer to a question or not.

Evaluating the expanded assertion graph with respect
to determining belief in the statements is the role of the
belief engine. Here, judgments by the user about the sig-
nificance or irrelevance of statements to the overall case
can aid in how that evaluation is done.

A final step in the overall WatsonPaths process is
hypothesis identification. For medical test preparation
questions, hypotheses are provided, but for the Collab-
orative Learning Application they are not. For a partic-
ular scenario, the list of hypotheses will change as the
analysis progresses. What might have begun with gen-
eral disorders may end with specific diseases. And what
might have begun with diagnosis might transition into
treatment. By observing the patterns of usage, we hope
to automate this higher level of reasoning imposed on the
system.

The final assertion graph as confirmed by the user
can be stored in Watson’s internal knowledge base. The
knowledge base can store assertions along with con-
fidence and provenance information (with appropriate
merging and conflict resolution strategies), and grows
as more users interact with the system. This growing
pool of background knowledge further improves Wat-
son’s question answering capability.

The annotations we expect to derive from the appli-
cation are quite specific to the WatsonPaths processes.
This is a benefit of choosing processes that mimic hu-
man reasoning and so have some degree of familiarity
and intuitive performance for the user. This also leads to
opportunistic annotations or specific questions posed to
the user that might generate useful data. For example, if
the user were to dismiss a evidential passage that Wat-
son had scored highly, an opportunity arises to ask why.
Perhaps a particular question answering component had
generated a high score for the passage. Determining if
it should not have can be helpful to improving that com-
ponent. Other questions may provide axiomatic infor-
mation (such as existence of a paraphrase) that may be
useful in the specific context.

9.3 A Cognitive Computing Application

The values we follow in the development of the Collab-
orative Learning Application are described in shorthand
as cognitive computing. That notion encompasses three
primary characteristics: facilitate human reasoning, com-
municate in a natural way, and learn and improve (Kelly
and Hamm, 2013). How we are addressing the first and
last of these characteristics should be clear at this point,
but the second deserves further mention.

Being able to express the assertion graph to the user
in an intuitive way is a challenge we are working on,
but which has generated positive feedback. Drawing on
the value of concept maps (Daley and Torre, 2010), our
graph-based visualization provides an approachable pre-

sentation that users understand quickly.
For example, Figure 6 shows the application during

analysis of a scenario in which a patient’s symptoms lead
to a diagnosis of Parkinson’s disease which in turn leads
to the answer Substantia nigra. (The ultimate question
being answered is, “What part of the patient’s nervous
system is most likely affected?”) The graph representa-
tion allows the user to visually navigate the result from
asserted true statements (nodes arranged at the top of the
screen), through inferences (white nodes in the middle
of the screen), and to hypotheses (nodes arranged at the
bottom of the screen). Decorations on the graph like line
width and opacity give the user a sense of how belief
is flowing while significance indicators (dashed lines be-
low factors) show which factors the belief engine favored
in its choice of an answer. Something to note is that the
complete result has 333 nodes and 444 edges and so edit-
ing of the graph is needed.

9.4 Current Status

The Collaborative Learning Application is a work in
progress and we are refining and exploring in the con-
text of our collaboration with the Cleveland Clinic Lerner
College of Medicine. At that medical school, critical
thinking is taught through a problem-based learning cur-
riculum in which students work through medical scenar-
ios as a group. The way in which the students do this has
similarities to the WatsonPaths process, and so we hope
that the application we are building on that functionality
will be able to facilitate their thinking while providing
educational value—something we hope to measure in an
upcoming pilot.

10 Evaluation

As illustrated in the previous section, an interactive, col-
laborative clinical decision support tool can benefit from
the same components and technologies needed for an au-
tomatic scenario-based medical question answering sys-
tem. Thus developing and testing the automatic system
in the standard way on sets of medical questions has the
benefits of (1) driving the development of the core tech-
nology, (2) providing an evaluation of the automatic sys-
tem, and (3) improving the components of the interactive
system; such an evaluation is the subject of this section.
Note that an evaluation of the interactive system itself is
a separate exercise and will be reported in a future paper.

10.1 Data Sets

For the automatic evaluation of WatsonPaths, we used
a set of medical test preparation questions from Exam
Master and McGraw-Hill, which are analogous to the
examples we have used throughout this paper. These
questions consist of a paragraph-sized natural language

scenario description of a patient case, optionally accom-
panied by a semi-structured tabular structure. The para-
graph description typically ends with a punchline ques-
tion and a set of multiple choice answers (average 5.2
answer choices per question). We excluded from consid-
eration questions that require image analysis or whose
answers are not text segments.

The punchline questions may simply be seeking the
most likely disease that caused the patient’s symptoms
(e.g., “What is the most likely diagnosis in this pa-
tient?”), in which case the question is classified as a di-
agnosis question. The diagnosis question set reported in
this evaluation was identified by independent annotators.
Non-diagnosis punchline questions may include appro-
priate treatments, the organism causing the disease, and
so on (e.g., “What is the most appropriate treatment?”
and “Which organism is the most likely cause of his
meningitis?” respectively).

We split our data set of 2190 questions into a training
set of 1000 questions, a development set of 690 ques-
tions, and a blind test set of 500 questions. The develop-
ment set was used to iteratively drive the development of
the scenario analysis, relation generation, and belief en-
gine components, and for parameter tuning. The training
set was used to build models by the learning component
described in Section 8.

As noted earlier, our learning process requires sub-
question training data to consolidate groups of question
answering features into smaller, more manageable sets
of features. We do not have robust and comprehensive
ground truth for a sufficiently large set of our automat-
ically generated subquestions. Instead, we use a pre-
existing set of simple factoid medical questions as sub-
question training data: the Doctor’s Dilemma (DD) ques-
tion set (American College of Physicians, 2014). DD is
an established benchmark used to assess performance in
factoid medical question answering. We use 1039 DD
questions (with a known answer key) as our subquestion
training data. Although the Doctor’s Dilemma questions
do have some basic similarity to the subquestions we ask
in assertion graphs, there are some important differences:

• In an assertion graph subquestion, there is usually
one known entity and one relation that is being
asked about. For DD, the question may constrain
the answer by multiple entities and relations.

• An assertion graph subquestion like “What causes
hypertension?” has many correct answers, whereas
DD questions have a single best answer.

• There may be a mismatch between how confidence
for DD is trained and how subquestion confidence
is used in an inference method. The DD confidence
model is trained to maximize log-likelihood on a

Figure 6: WatsonPaths User Interface

correct/incorrect binary classification task. In con-
trast, many probabilistic inference methods use con-
fidence as something like strength of indication or
relevance.

For all these reasons, DD data is poorly suited to train-
ing a complete model for judging edge-strength for sub-
question edges in WatsonPaths. But we have found that
DD data is useful as subquestion training data1 in the hy-
brid learning approach described in Section 8; we use
1039 DD questions for consolidating question answering
features and then use the smaller, consolidated set of fea-
tures as inputs to the inference models that are trained on
the 1000 medical test preparation questions.

10.2 Experimental Setup
For comparison purposes, we used our Watson question
answering system adapted for the medical domain (Fer-
rucci et al., 2013) as a baseline system. This system takes
the entire scenario as input and evaluates each multiple
choice answer based on its likelihood of being the cor-
rect answer to the punchline question. This one-shot ap-

1We are also investigating the use of actual subquestions
generated by WatsonPaths as training data. Building a compre-
hensive answer key for such questions is very time consuming,
and an incomplete answer key can be less effective. Although
this approach has not yet succeeded, it may still succeed if we
invest much more in building a bigger, better answer key for
actual WatsonPaths subquestions.

proach to answering medical scenario questions contrasts
with the WatsonPaths approach of decomposing the sce-
nario, asking questions of atomic factors, and perform-
ing probabilistic inference over the resulting graphical
model.

We tuned various parameters in the WatsonPaths sys-
tem on the development set to balance speed and perfor-
mance. The system performs one iteration each of for-
ward and backward relation generation. The minimum
confidence threshold for expanding a node is 0.25, and
the maximum number of nodes expanded per iteration
is 40. In the relation generation component, the Watson
medical question answering system returns all answers
with a confidence of above 0.01.

We evaluate system performance both on the full test
set as well as on the diagnosis subset only. The reason for
evaluating the diagnosis subset separately is because, in
the vast majority of these questions, either the punchline
question seeks the diagnosis or depends on a correct di-
agnosis along the way. We use the full 1000 questions in
the training set to learn the models for both the baseline
system and the WatsonPaths system. As noted earlier,
Doctor’s Dilemma training data is used to consolidate
question answering features in the WatsonPaths system.
We did not use Doctor’s Dilemma training data for any
purpose in the baseline system.

Full Diagnosis
Accuracy Baseline 42.0% 53.8%

WatsonPaths 48.0% 64.1%
Confidence Baseline 59.8% 75.3%
Weighted Score WatsonPaths 67.5% 81.8%

Table 1: WatsonPaths Performance Results

10.3 Results and Discussion
Table 1 shows the results of our evaluation on a set of 500
blind questions of which a subset of 156 questions were
identified as diagnosis questions by annotators.

We report results using two metrics. Accuracy sim-
ply measures the percentage of questions for which a
system ranks the correct answer in top position. Con-
fidence Weighted Score is a metric that takes into ac-
count both the accuracy of the system and its confidence
in producing the top answer (Voorhees, 2003). We sort
all <question, top answer> pairs in an evaluation set in
decreasing order of the system’s confidence in the top
answer and compute the confidence weighted score as

CWS =
1
n

n∑
i=1

number correct in first i ranks
i

where n is the number of questions in the evaluation
set. This metric rewards systems for more accurately as-
signing high confidences to correct answers, an impor-
tant consideration for real-world question answering and
medical diagnosis systems.

Our results show statistically significant improvements
at p<0.05 (results in bold in Table 1) on the full blind
set of 500 questions for both metrics. For the diagnosis
subset, the accuracy improvement is statistically signif-
icant but the confidence weighted score improvement is
not, even with a 6+% score increase. This is likely due
to the small diagnosis subset, which contains only 156
questions.

11 Related Work
Clinical decision support systems (CDSS) have had a
long history of development starting from the early days
of artificial intelligence. These systems use a variety of
knowledge representations, reasoning processes, system
architectures, scope of medical domain, and types of de-
cision (Musen et al., 2014). Although several studies
have reported on the success of CDSS implementations
in improving clinical outcomes (Kawamoto et al., 2005;
Roshanov et al., 2013), widespread adoption and routine
use is still lacking (Osheroff et al., 2007).

The pioneering Leeds abdominal pain system (De
Dombal et al., 1972) used structured knowledge in the
form of conditional probabilities for diseases and their
symptoms. Its success at using Bayesian reasoning was

comparable to experienced clinicians at the Leeds hos-
pital where it was developed. But it did not adapt suc-
cessfully to other hospitals or regions, indicating the brit-
tleness of some systems when they are separated from
their original developers. A recent systemic review of
162 CDSS implementations shows that success at clin-
ical trials is significantly associated with systems that
were evaluated by their own developers (Roshanov et al.,
2013). MYCIN (Shortliffe, 1976) was another early sys-
tem which used structured representation in the form of
production rules. Its scope was limited to the treatment
of infectious diseases and, as with other systems with
structured knowledge bases, required expert humans to
develop and maintain these production rules. This man-
ual process can prove to be infeasible in many medi-
cal specialties where active research produces new di-
agnosis and treatment guidelines and phases out older
ones. Many CDSS implementations mitigate this limi-
tation by focusing their manual decision logic develop-
ment effort on clinical guidelines for specific diseases
or treatments, e.g., hypertension management (Goldstein
et al., 2001). But such systems lack the ability to han-
dle patient comorbidities and concurrent treatment plans
(Sittig et al., 2008). Another notable system that used
structured knowledge was Internist-1. The knowledge
base contained disease-to-finding mappings represented
as conditional probabilities (of disease given finding and
of finding given disease) mapped to a 1–5 scale. Despite
initial success as a diagnostic tool, its design as an ex-
pert consultant was not considered to meet the informa-
tion needs of most physicians. Eventually, its underlying
knowledge base helped its evolution into an electronic
reference that can provide physicians with customized
information (Miller et al., 1986). A similar system, DX-
plain (Barnett et al., 1987) continues to be commercially
successful and extensively used. Rather than focus on a
definitive diagnosis, it provides the physician with a list
of differential diagnoses along with descriptive informa-
tion and bibliographic references.

Other systems in commercial use have adopted the un-
structured medical text reference approach directly, us-
ing search technology to provide decision support. Isabel
provides diagnostic support using natural language pro-
cessing of medical textbooks and journals. Other com-
mercial systems like UpToDate and ClinicalKey forgo
the diagnostic support and provide a search capability
to their medical textbooks and other unstructured refer-
ences. Although search over unstructured content makes
it easier to incorporate new knowledge, it shifts the rea-
soning load from the system back to the physician.

In comparison to the above systems, WatsonPaths uses
a hybrid approach. It uses question-answering technol-
ogy over unstructured medical content to obtain answers
to specific subquestions generated by WatsonPaths. For

this task, it builds on the search functionality by extract-
ing answer entities from the search results and seeking
supporting evidence for them in order to estimate answer
confidences. These answers are then treated as inferences
by WatsonPaths over which it can perform probabilis-
tic reasoning without requiring a probabilistic knowledge
base.

Another major area of difference between CDSS im-
plementations is the extent of their integration to the
health information system and workflow used by the
physicians. Studies have shown that CDSS are most
effective when they are integrated within the workflow
(Kawamoto et al., 2005; Roshanov et al., 2013). Many
of the guideline-based CDSS implementations are inte-
grated with the health information system and workflow,
having access to the data being entered and providing
timely decision support in the form of alerts. But this
integration is limited to the structured data contained in
a patient’s electronic medical record. When a CDSS re-
quires information like findings, assessments, or plans in
clinical notes written by a healthcare provider, existing
systems are unable to extract them. As a result, search-
based CDSS remain a separate consultative tool. The
scenario analysis capability of WatsonPaths provides the
means to analyze these unstructured clinical notes and
serves as a means for integration into the health informa-
tion system.

A major point of differentiation between the CDSS
implementations described above and the design of Wat-
sonPaths is its ability to serve as a collaborative problem
solving tool as described in Section 9. When teamed with
a student, the role of WatsonPaths approaches that of in-
telligent tutoring systems (Woolf, 2009). Key differences
exist, however, in the representation of domain knowl-
edge and student knowledge. Most tutoring systems have
a structured representation of the domain knowledge,
carrying with it the same knowledge update and mainte-
nance issues faced by CDSS implementations. Watson-
Paths lacks a student model (or in general a model of the
collaborator), which is a key capability of intelligent tu-
toring systems. As a result, it cannot guide or customize
the tutoring according to student needs, relying instead
on an instructor’s choice of the problem scenario to be
used.

12 Conclusions and Further Work
WatsonPaths is a system for scenario-based question an-
swering that has a graphical model at its core. It includes
a collaborative decision support tool that allows users to
understand and contribute to the reasoning process. We
have developed WatsonPaths on a set of multiple choice
questions from the medical domain. On this test set,
WatsonPaths shows a significant improvement over Wat-
son. Although the test preparation question set has been

important for the early development of the system, we
have designed WatsonPaths to function well beyond it.
In future work, we plan to extend WatsonPaths in several
ways.

The present set of questions are all multiple choice
questions. This means that hypotheses have already been
identified, and it is also known that exactly one of the
hypotheses is the correct answer. Although they have
made the early development of scenario-based ques-
tion answering more straightforward, the overall Wat-
sonPaths architecture does not rely on these constraints.
For instance, we can easily remove the confidence re-
estimation phase for the closed-form inference systems
and the “exactly one” constraint from the belief engine.
Also, it will be straightforward to add a simple hypoth-
esis identification step to the main loop. One way to
do this is to find nodes whose type corresponds to the
type being asked about in the punchline question. We al-
ready find such correspondances in the base Watson sys-
tem (Chu-Carroll et al., 2012). In the collaborative ap-
plication, we are exploring ways of having the user help
identify hypotheses.

We also plan to extend WatsonPaths beyond the med-
ical domain. For medical applications, it might have
been easier to design Watson with certain medical as-
pects hardcoded into the flow of execution. Instead we
designed the overall flow as well as each component to
be general across domains. Note that the Emerald could
be replaced by a structure from a different domain, and
the basic semantics we have explored: matching, indica-
tive and causal, have no requirement that the graph struc-
ture come from medicine. Even the causal aspect of the
belief engine could apply to any domain that involves di-
agnostic inference (e.g., automotive repair). Most impor-
tantly, the way that subquestions are answered is com-
pletely general. By asking the right subquestions and us-
ing the right corpus, we can apply WatsonPaths to any
scenario-based question answering problem. We hope to
develop a toolbox of expansion strategies, relation gen-
erators, and inference mechanisms that can be reused as
we apply WatsonPaths to new domains.

The most important area for further work is on the col-
laborative user application. In the early development of
the system, it was necessary to focus on automatic per-
formance (as presented in Section 10) to create a viable
scenario-based question answering system. As this per-
formance improves, we are focusing more on how Wat-
sonPaths can interact better with users. We plan to de-
velop and more rigorously evaluate how WatsonPaths
learns from users and how users learn from WatsonPaths.

In a fully automatic system, the user receives an an-
swer using little or no time or cognitive effort. In a col-
laborative system, the user spends some time and effort,
and potentially gets a better answer. We suspect that, in

many applications of scenario-based question answering,
this will be an attractive tradeoff for the user, because of
the complexity of the scenario and the importance of the
answer. Our objective is to minimize the time and effort
required of users and maximize the benefit they receive.
The combination of the user and WatsonPaths should be
able to handle more difficult problems more quickly than
either could alone.

References
American College of Physicians. 2014. Doc-

tor’s Dilemma competition. http://www.
acponline.org/residents_fellows/
competitions/doctors_dilemma/.

G. Octo Barnett, James J. Cimino, Jon A. Hupp, and Ed-
ward P. Hoffer. 1987. DXplain: An evolving diagnos-
tic decision-support system. JAMA, 258(1):67–74.

Judith L. Bowen. 2006. Educational strategies to pro-
mote clinical diagnostic reasoning. New England
Journal of Medicine, 355(21):2217–2225.

E. Boyd, Kenneth W. Kennedy, Richard A. Tapia, and
Virginia Joanne Torczon. 1989. Multi-directional
search: A direct search algorithm for parallel ma-
chines. Technical report, Rice University.

Leo Breiman. 1996. Stacked regressions. Machine
Learning, 24(1):49–64.

Rowland W. Chang, Georges Bordage, and Karen J.
Connell. 1998. Cognition, confidence, and clinical
skills: The importance of early problem representa-
tion during case presentations. Academic Medicine,
73(10):S109–111.

Patricia W. Cheng. 1997. From covariation to causa-
tion: A causal power theory. Psychological Review,
104(2):367.

Jennifer Chu-Carroll, James Fan, Branimir K. Boguraev,
David Carmel, Dafna Sheinwald, and Chris Welty.
2012. Finding needles in the haystack: Search and
candidate generation. IBM Journal of Research and
Development, 56(3/4):6:1–6:12.

Barbara J. Daley and Dario M. Torre. 2010. Concept
maps in medical education: An analytical literature re-
view. Medical Education, 44(5):440–448.

F. T. De Dombal, D. J. Leaper, John R. Staniland, A. P.
McCann, and Jane C. Horrocks. 1972. Computer-
aided diagnosis of acute abdominal pain. British Med-
ical Journal, 2(5804):9.

David Ferrucci and Eric Brown. 2012. AdaptWatson:
A methodology for developing and adapting Watson
technology. Technical Report RC25244, IBM Re-
search Division.

David Ferrucci, Eric Brown, Jennifer Chu-Carroll, James
Fan, David Gondek, Aditya A. Kalyanpur, Adam
Lally, J. William Murdock, Eric Nyberg, John Prager,
Nico Schlaefer, and Chris Welty. 2010. Building Wat-
son: An overview of the DeepQA project. AI Maga-
zine, 31:59–79.

David Ferrucci, Anthony Levas, Sugato Bagchi, David
Gondek, and Erik T. Mueller. 2013. Watson: Beyond
Jeopardy! Artificial Intelligence, 199–200:93–105.

David Ferrucci. 2012. Introduction to “This is Wat-
son”. IBM Journal of Research and Development,
56(3/4):1:1–1:15.

M. K. Goldstein, B. B. Hoffman, R. W. Coleman, S. W.
Tu, R. D. Shankar, M. O’Connor, S. Martins, A. Ad-
vani, and M. A. Musen. 2001. Patient safety
in guideline-based decision support for hypertension
management: ATHENA DSS. In Proceedings of the
AMIA Symposium, page 214. American Medical In-
formatics Association.

David C. Gondek, Adam Lally, Aditya Kalyanpur,
J. William Murdock, Pablo A. Duboue, Lei Zhang,
Yue Pan, Zhao Ming Qiu, and Chris Welty. 2012.
A framework for merging and ranking of answers in
DeepQA. IBM Journal of Research and Development,
56(3/4):14:1–14:12.

Kensaku Kawamoto, Caitlin A. Houlihan, E. Andrew
Balas, and David F. Lobach. 2005. Improving clin-
ical practice using clinical decision support systems:
A systematic review of trials to identify features criti-
cal to success. British Medical Journal, 330:765–72.

John E. Kelly and Steve Hamm. 2013. Smart ma-
chines: IBM’s Watson and the era of cognitive com-
puting. Columbia University Press, New York.

Tamara G. Kolda, Robert Michael Lewis, and Virginia
Torczon. 2003. Optimization by direct search: New
perspectives on some classical and modern methods.
SIAM Review, 45:385–482.

John Lafferty, Andrew McCallum, and Fernando C. N.
Pereira. 2001. Conditional random fields: Probabilis-
tic models for segmenting and labeling sequence data.
In Proceedings of the 18th International Conference
on Machine Learning 2001 (ICML 2001), pages 282–
289.

Adam Lally, John M. Prager, Michael C. McCord, Bra-
nimir K. Boguraev, Siddharth Patwardhan, James Fan,
Paul Fodor, and Jennifer Chu-Carroll. 2012. Question
analysis: How Watson reads a clue. IBM Journal of
Research and Development, 56(3/4):2:1–2:14.

Michael C. McCord, J. William Murdock, and Bran-
imir K. Boguraev. 2012. Deep parsing in Wat-
son. IBM Journal of Research and Development,
56(3/4):3:1–3:15.

Randolph A. Miller, Melissa A. McNeil, Sue M. Challi-
nor, Fred E. Masarie Jr, and Jack D. Myers. 1986. The
Internist-1/Quick Medical Reference project – status
report. Western Journal of Medicine, 145(6):816.

J. William Murdock, James Fan, Adam Lally, Hideki
Shima, and Branimir K. Boguraev. 2012a. Textual
evidence gathering and analysis. IBM Journal of Re-
search and Development, 56(3/4):8:1–8:14.

J. William Murdock, Aditya Kalyanpur, Chris Welty,
James Fan, David Ferrucci, David C. Gondek, Lei
Zhang, and Hiroshi Kanayama. 2012b. Typing can-
didate answers using type coercion. IBM Journal of
Research and Development, 56(3/4):7:1–7:13.

Mark A. Musen, Blackford Middleton, and Robert A.
Greenes. 2014. Clinical decision-support systems. In
Biomedical Informatics, pages 643–674. Springer.

National Library of Medicine. 2009. UMLS ref-
erence manual. Bethesda, MD: National Library of
Medicine (US). http://www.ncbi.nlm.nih.
gov/books/NBK9676/.

J. A. Nelder and R. Mead. 1965. A simplex method
for function minimization. Computer Journal, 7:308–
313.

Jerome A. Osheroff, Jonathan M. Teich, Blackford Mid-
dleton, Elaine B. Steen, Adam Wright, and Don E.
Detmer. 2007. A roadmap for national action on clini-
cal decision support. Journal of the American Medical
Informatics Association, 14(2):141–145.

Judea Pearl. 1988. Probabilistic reasoning in intelli-
gent systems: Networks of plausible inference. Mor-
gan Kaufmann, San Francisco.

J. M. Prager, J. Chu-Carroll, and K. Czuba. 2004. Ques-
tion answering using constraint satisfaction: QA-by-
dossier-with-constraints. In Proceedings of the 42nd
Association for Computational Linguistics, pages
575–582, Barcelona.

Pavel S. Roshanov, Natasha Fernandes, Jeff M. Wilczyn-
ski, Brian J. Hemens, John J. You, Steven M. Handler,
Robby Nieuwlaat, Nathan M. Souza, Joseph Beyene,
Harriette G. C. Van Spall, Amit X. Garg, and R. Brian
Haynes. 2013. Features of effective computerised
clinical decision support systems: Meta-regression
of 162 randomised trials. British Medical Journal,
346(f657).

Edward H. Shortliffe. 1976. MYCIN: Computer-based
medical consultations. Elsevier, New York.

Dean F. Sittig, Adam Wright, Jerome A. Osheroff,
Blackford Middleton, Jonathan M. Teich, Joan S. Ash,
Emily Campbell, and David W. Bates. 2008. Grand
challenges in clinical decision support. Journal of
Biomedical Informatics, 41(2):387–392.

Ellen M. Voorhees. 2003. Overview of TREC 2002. In
Proceedings of the Text REtrieval Conference.

Beverly Park Woolf. 2009. Building intelligent interac-
tive tutors. Morgan Kaufmann, Burlington, MA.

Alan L. Yuille and Hongjing Lu. 2007. The noisy-
logical distribution and its application to causal infer-
ence. In John C. Platt, Daphne Koller, Yoram Singer,
and Sam T. Roweis, editors, NIPS. Curran Associates,
Inc.

