
RC25498 (WAT1409-079) September 29, 2014
Mathematics

Research Division
Almaden – Austin – Beijing – Cambridge – Dublin - Haifa – India – Melbourne - T.J. Watson – Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report for
early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After
outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties). Many reports are available at http://domino.watson.ibm.com/library/CyberDig.nsf/home.

IBM Research Report

Extensions of Golomb’s Tromino Theorem

Arthur Befumo
Hellgate High School
Missoula, MT 59801

USA

Jonathan Lenchner
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598
USA



Extensions of Golomb’s Tromino Theorem

Arthur Befumo ∗ Jonathan Lenchner †

Introduction

A polyomino is a finite edge–connected collection of equal-
sized squares in the plane [1]. Often the stipulation is added
that the union of the collection of squares have no holes. A
tromino is a polyomino consisting of just three squares. One
of the simplest and most beautiful theorems about polyomi-
nos is Solomon Golomb’s Tromino Theorem, which states
that if you start with a chess board of size 2N x 2N and
remove one of the squares, then the remaining board can
always be covered by trominos of the type shown in Fig-
ure 1, which we call the “basic tromino.” In this paper we

Figure 1. The basic tromino.

show how Golomb’s Theorem can be generalized to three
and higher dimensions and then give versions of Golomb’s
Theorem that hold on boards of size 3N x 3N and 4N x 4N .

1 Proof of Golomb’s Tromino Theo-
rem

Theorem 1 For any integer N ≥ 0, if we remove a single
square from a chess board of size 2N x 2N , the remaining
board can entirely be tiled by basic trominos.

Proof. The proof is true for the case N = 0 since after re-
moving the one square there is nothing to cover. Now con-
sider a 2N x 2N board for N ≥ 1, and divide this board into 2
x 2 array of 2N−1 x 2N−1 boards as shown in Figure 2A. Any

Figure 2. A. A 2N x 2N board divided into 2 x 2 array of 2N−1 x 2N−1 boards.
B. After a square has been removed from the bottom-left 2N−1 x 2N−1 board
a tromino is placed such that a square is taken from each of the other three
2N−1 x 2N−1 boards. Each of the smaller boards may then be covered by
basic trominos by induction.

square removed from the 2N x 2N board must fall in one of
∗Hellgate High School, Missoula, MT 59801, atbefumo@hotmail.com
†IBM T.J. Watson Research Center, 1101 Kitchawan Road, Yorktown

Heights, NY 10598, lenchner@us.ibm.com

the four smaller 2N−1 x 2N−1 boards. Without loss of gen-
erality, we suppose it is the board on the bottom left. Now
place a basic tromino as shown in Figure 2B and complete
the proof by tiling each of the 2N−1 x 2N−1 boards, now with
one tile missing, by induction. 2

2 3D and Higher Versions of
Golomb’s Theorem

A 3D polyomino is a finite, face–connected collection of
equal-sized cubes in 3-space, with the natural extension to
N-dimensional polyominoes for any N.

The extension of Golomb’s Theorem to three and higher
dimensions is not difficult. In dimension three if we remove
one unit-edge length cube from a 2N x 2N x 2N three di-
mensional chessboard the remaining board can be covered
by 7 3D-polyominoes. We chop a 2 x 2 x 2 cube into eight
unit sub-cubes, and throw one away. Now if we remove one
cubic cell from the 2N x 2N x 2N board, and think of this
board as a collection of eight 2N−1 x 2N−1 x 2N−1 smaller
boards, one per octant, then we can place our fundamental
7-3D-poyomino such that it has one of its component cubes
in each of the smaller boards in which we did not remove a
cube. Just like in the 2D case, the smaller boards are then
all coverable by induction.

In dimension M the argument is the same. Formally:

Theorem 2 Consider an M-dimensional chessboard of
edge length 2N . If we remove a single unit edge-length M-
dimensional hypercube from this hyper board then the re-
maining board can be covered by M−dimensional polyomi-
noes consisting of an M-dimensional hypercube of of edge
length 2 with one 1x1 sub-hypercube removed.

3 Covering 3N x 3N Boards

Before seeing Golomb’s clever inductive covering argument
for the 2N x 2N board, it was perhaps not immediately obvi-
ous that 3 actually divides 22N −1. However,

22N −1 = 4N −1 = (4−1)(4N−1 +4N−2 + ...+1).

When considering the analogous covering problem for a 3N

x 3N board we have

32N −1 = 9N −1 = (9−1)(9N−1 +9N−2 + ...+1).

Thus we were tempted to look for tilings of a 3N x 3N

board with one square removed by 8-polyominoes and 4-
polyominoes (a.k.a. by hexominoes and tetrominoes). In-
deed, it is not difficult to convince oneself that hexominoes
do not work so well. However, we have:



Theorem 3 One can completely tile a 3N x 3N chess board,
with one square removed, with tetrominoes of the three types
depicted in Figure 3.

Figure 3. The three basic tetrominoes used for covering a 3N x 3N board
with one square removed.

Proof. (1) The case N = 0 is obvious; after removing a
square there is nothing to cover.
(2) Verify by hand for N = 1 (up to symmetry there are three
tiles that can be removed)
(3) Consider the basic tetrominoes but where each of the 4
squares actually consists of 3M x 3M smaller squares. Prove
by induction that these shapes can each be tiled by the three
basic tetrominoes. See Figure 4. (4) Now consider a 3N

Figure 4. Induction step showing that each of the basic tetrominoes con-
sisting of 3M x 3M squares can be covered by basic tetrominoes.

x 3N chess board which we draw as a 3x3 set of 3N−1 x
3N−1 chess boards. Assume, by induction, that the conjec-
ture holds for 3N−1 x 3N−1 chess boards. If we remove one
of the squares from this board, the square must come from
one of the 9 3N−1 x 3N−1 chess boards. By induction we
can cover the rest of this 3N−1 x 3N−1 chess board. But the
remaining 8 3N−1 x 3N−1 chess boards can be covered by
the basic shapes considered in step (3) [this is just the case
n = 1 again]. By the argument is step (3) the basic shapes
can be covered, so the entire rest of the chess board can be
covered. 2

4 Covering 4N x 4N Boards

For 4N x 4N boards we have a similar result, though some-
thing a bit stronger can be said:

Theorem 4 One can completely tile a 4N x 4N chess board,
with one square removed, with an equal number of the pen-
tominoes of the three types depicted in Figure 5.

Figure 5. The three basic pentominoes used for covering a 4N x 4N board
with one square removed.

Proof. Up to symmetry there are just three ways of re-
moving a square from a 4 x 4 chess board, and as Figure 5
shows, the theorem holds in these cases. For the general 4N

Figure 6. Covering the three different 4 x 4 boards with one each of the
basic pentominoes.

x 4N case, the proof follows the same general steps as in the
proof of the 3N x 3N problem. However, in step (3) when we
show that each of the basic pentominoes can themselves be
covered, we do not actually show that they can be covered
using an equal number of each of the basic pentominoes, but
rather that collectively the pentominoes can be so covered.
Figure 7 illustrates this inductive step. 2

Figure 7. Covering an equal number of basic pentominoes, with 4M x 4M

squares per block, collectively with an equal number of basic pentominoes.
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