
RC25504 (WAT1410-085) October 22, 2014
Computer Science

Research Division
Almaden – Austin – Beijing – Cambridge – Dublin - Haifa – India – Melbourne - T.J. Watson – Tokyo - Zurich

IBM Research Report

A Probabilistic Framework and Statistical Sampling Approach
to Optimized Placement in the Cloud

Asser N. Tantawi
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598
USA



A Probabilistic Framework and Statistical Sampling Approach to

Optimized Placement in the Cloud

Asser N. Tantawi
IBM T.J. Watson Research Center

P.O. Box 218
Yorktown Heights, NY 10598

tantawi@us.ibm.com

Abstract

We consider a cloud system environment, consisting
of physical entities, subjected to user requests, con-
sisting of virtual entities with relationship constraints
among them, such as location constraints. In this
case, the resource allocation problem is a mapping
of virtual to physical entities which satisfies the con-
straints and optimizes an objective function which
combines system and user performance. The typical
problem size, nature of relationship constraints, com-
plexity and adaptability requirement of the objective
function, as well as solution timing budget make tra-
ditional techniques for solving this combinatorial op-
timization problem infeasible. In this paper we out-
line an efficient technique that is based on random
search methods and uses a probabilistic framework
and statistical sampling methods. In particular, the
proposed technique utilizes (1) importance sampling
as a mechanism for describing the optimal solution
through marginal distributions, (2) independent sam-
pling via a modified Gibbs sampler with intra-sample
dependency, and (3) a jumping distribution that uses
conditionals derived from the relationship constraints
given in the user request and cloud system topology,
and the importance sampling marginal distributions
as posterior distributions.

1 Introduction

Cloud services have progressed in recent years from
provisioning Virtual Machines (VM) in the physical
cloud infrastructure to virtual platforms and virtual
applications, which have become the new cloud work-
load. Open source programmable interfaces have
been developed to interact with the cloud manage-
ment system and define a software environment de-
scribing the cloud infrastructure which consists of
compute, storage and network nodes, e.g. [2]. Using
a document [1], a user specifies a workload consist-
ing of logical entities, such as VMs, data volumes,
communication links, and services, and their needs
of the underlying physical resources. Moreover, the
user specifies requirements on the provisioned topol-
ogy of such logical entities. Examples of such require-
ments include physical proximity of the logical enti-
ties, availability/reliability concerns, preferred host-
ing requirements, licensing and cost issues, and mi-
gration requirements. The degree with which such re-
quirements are satisfied during provisioning is a user
measure of Quality-of Service. On the other hand,
the cloud service provider attempts to maximize the
use of the physical resources in a way that provides
best performance to users, e.g. load balanced re-
sources. When a user request arrives to the cloud
management system, the placement engine decides on
a mapping of the logical entities in the request to the
physical entities in the cloud system, given its current
state, in a way to optimize a given objective function

1



which combines user and provider objectives [4]. This
placement optimization problem is quite challenging
for several reasons. The size of the problem is quite
large, having thousands of physical entities, hundreds
of logical entities and hundreds of constraints in a
request. Allowing the remapping of existing alloca-
tions makes the problem even larger. Typically, the
objective function is constructed from policies that
users and providers specify. Such policies are not
necessarily well behaved, in the mathematical sense,
and subject to change and evolution. Hence, the op-
timization approach cannot assume and/or exploit
properties of the objective function. Needless to say
that the placement decision is expected to be fast,
i.e. sub-second and not multiple seconds or minutes,
in order to cope with the cloud workload traffic and
the potential need to redistribute resources through
migration of logical entities in the cloud.

Briefly, there is a growing research to solving the
cloud placement problem. Recently, a technique for
attempting to decrease the size of the problem has
been proposed [6]. Further, a more promising tech-
nique which uses biased sampling along with cross-
entropy [8] was introduced [10].

In this paper, we provide a probabilistic frame-
work and statistical sampling method for the algo-
rithm outlined in [10]. The problem is stated as
a search problem [9] and a general random search
method [7, 3] is sought. An independent Metropolis-
Hastings sampling is performed. In particular, the
Gibbs sampling [5] technique is modified and re-
stricted to intra-sample dependency. The constraints
specified in the user request are used to construct
the conditional probabilities and the importance sam-
pling marginal distributions are employed as poste-
rior distributions.

2 Problem Statement

We use the following notation. For vectors and ma-
trices, we use boldface capital letters, e.g. V and M.
A corresponding small letter denotes an element in
the vector or matrix, e.g. v and m. A subscripted
small letter represents a particular element given by
the value of the subscript, e.g. vi and mi,j . For con-

venience, a subscripted capital letter representing a
matrix denotes a vector row in the matrix, where the
row number is given by the value of the subscript,
e.g. Mi. (We will not need to denote vector columns
in matrices.) The 1-norm of a vector is denoted by
‖V‖, which is the sum of the absolute values of its
elements. For sets, we use a calligraphic capital let-
ter, e.g. S. A normal capital letter is an integer, and
its corresponding small letter takes values in the enu-
meration from one to the value of the capital letter,
e.g. I and i = 1, 2, · · · , I.

Define the sets M = {1, 2, · · · , M} and N =
{1, 2, · · · , N}, where M,N ≥ 1. Let X =
[x1 x2 · · · xM ] be a vector representing variables
taking values in N , i.e. xm ∈ N , m ∈M. We refer
to a particular valued vector A = [a1 a2 · · · aM ],
where am ∈ N , m ∈M, as an assignment to X.

Define a scalar objective function f(X) with range
R, the set of real numbers. The unconstrained state
space for variable X is the cartesian power NM . Let
S denote a constrained, nonempty state space, S ⊆
NM . The optimization problem is stated as,

min
X

f(X), X ∈ S. (1)

We use the notation X<m to denote the
variable vector X excluding the elements
{xm, xm+1, · · · , xM}, where m = 2, · · · , M and
M ≥ 2.

In relation to the cloud placement (assignment)
problem, we have M physical entities, N logical en-
tities in the user request, X is a variable mapping
logical to physical entities, A is a particular mapping
(solution to the problem), and S the set of possible so-
lutions given the requirement constraints specified in
the user request. The objective function f(X) com-
bines user and provider objectives. We do not make
assumptions about f(X) other than it could be nu-
merically evaluated given X and the current state of
the system.

Define A as an arbitrary, nonempty subset of S,
i.e. ∅ 6= A ⊆ S. Let A contains L ≥ 1 unique
assignments, i.e. A = {A1,A2, · · · ,AL}, where Al =
[al1 al2 · · · alM ], l ∈ L, is an assignment vector. If
L = 1 then A represents the set consisting of a unique
solution A1.

2



Define an M × N (row) stochastic matrix P, i.e.
element pm,n ∈ [0, 1], ‖Pm‖ = 1, m ∈M, and n ∈ N .
We refer to a stochastic matrix P as deterministic if
the elements are such that pm,n ∈ {0, 1}. Let pm,n

be the probability that alm = n over l ∈ L. Hence,
Pm represents the marginal probability distribution
of the mth element of the assignments in A.

3 Solution Approach

Since the objective function f(X) could be quite
general, we develop a solution approach that does
not rely on properties, such as convexity, nor devise
heuristics implied by its shape. Rather, we consider
the optimization problem as a general search prob-
lem [9] for an optimal X∗ with minimum f(X∗) in the
solution space S. A general random search method [3]
consists of the following steps. (A stopping criterion
is expected but not specified.)

1. Select a starting point X(0) ∈ S and an initial
estimate of the optimal solution X∗(0) ∈ S. Let
k = 0.

2. Generate a candidate solution X′(k) ∈ A(k),
where A(k) defines a neighborhood of solutions
around and including X(k).

3. Determine the next point X(k + 1) ∈
{X(k),X′(k)}, using f(X(k)) and f(X′(k)).

4. Obtain a new estimate of the optimal solution
X∗(k + 1). Let k = k + 1 and go to step 2.

There area several choices in this general search
method: (1) defining the neighborhoodA(k); (2) gen-
erating a candidate solution X′(k); (3) determining
a next point X(k + 1); and (4) estimating an optimal
solution X∗(k).

Our solution approach makes the following choices:
(1) the neighborhood A(k) is characterized by the
marginal probability distributions of the mth element
in X; (2) candidate solution X′(k) is generated using
a modified Gibbs sampling as described below; (3)
the next point X(k +1) is the generated point X′(k);
and (4) an estimate of optimal solution X∗(k) is gen-
erated using importance sampling technique [8].

4 Algorithm

An outline of the placement algorithm follows.

1. k = 0. Initially, set the stochastic matrix
P(0) proportional to resource availability, i.e.
pm,n(0) = 1 − u(PMn), m ∈ M, and n ∈ N ,
where u() represents the utilization of the bot-
tleneck resource or a measure of utilization of the
multiple resources on a PM.

2. Use P(k) to generate a number of independent
samples (solutions).

(a) Define the set R = {1, 2, · · · , R}, R ≥ 1.
Let B = {B(r); r ∈ R} be a family of R
stochastic matrices, each of size M×N . We
refer to B as a set of biasing matrices. For R
biasing criteria, B(r) represents the basing
matrix for criterion r, r ∈ R. Each criterion
represents a type of requirement constraint
in the user request, e.g. communication, lo-
cation, target preference, license usage, and
cost constraints. Define a weight vector W
of length R, where element wr ≥ 0 is a
weight associated with B(r), r ∈ R.

(b) A sample X is constructed incrementally,
one element at a time. After (m − 1) ele-
ments are generated, where m = 2, · · · , M ,
we have X<m. The element xm is generated
given X<m. in other words, the set B are
filled in as conditional probabilities given
X<m. Hence, we generate the elements
as per the Gibbs sampling method, except
that we remove the dependency on the pre-
vious sample. This yields independent sam-
ples, rather than a Markov Chain Monte
Carlo sequence. In general, the chain re-
sulting from independent samples behaves
well if the jumping distribution has a heav-
ier tail than the posterior marginal distri-
butions.

(c) Given an initial M × N stochastic matrix
P(k), we evaluate the resulting one-step
jumping stochastic matrix P′(k) as follows.

3



Let B denote the weighted product of B(r),
given by

B = ◦
r∈R

B(r)wr ,

where the symbol ◦ represents the
Hadamart element-wise product of matri-
ces, and the exponent wr applies to all
elements of matrix B(r). Then, we write

P′(k) = diag(C) (P(k) ◦B) ,

where C is a normalization constant vector
of length M to make P′(k) stochastic.

3. Order the generated samples w.r.t. f() and se-
lect the best top portion of the samples. Rep-
resent each selected sample by its correspond-
ing deterministic stochastic matrix, add all such
matrices element-wise and normalize to gener-
ate a new stochastic matrix P(k +1). The latter
is a characterization of the top generated sam-
ples. In such a matrix, Pm(k + 1) represents
the marginal probability distribution of the mth

element in the optimal solution.

4. k = k +1. Go to step 2 until a stopping criterion
is satisfied.

5 Results

We briefly describe the setup and present only the
performance of the placement algorithm in terms of
its execution time. We consider a cloud system which
consists of 256 Physical Machines (PM), each with
CPU, RAM, and disk storage resources having capac-
ities 32 cores, 512 GB, and 10 TB. The PMs are inter-
connected with a tree network of height 2, where the
link capacities of edge (level 1) and core (level 2) links
are 20 Gb/s and 80 Gb/s, respectively. The PMs are
arranged in 16 racks, where each rack houses 16 PMs.
A user request represents a 3-tier application, where
the tiers have 3, 6, and 3 VMs, respectively. The
resource demands of the VMs in the 3 tiers are {2
cores, 2 GB, 4TB}, {3 cores, 4 GB, 4TB}, {3 cores,
8 GB, 4TB}, respectively The communication band-
width demand between a pair of VMs in tiers 1 and

Figure 1: Placement algorithm time.

2 is 0.3 Gb/s, and a pair of VMs in tiers 2 and 3
is 0.05 Gb/s. For high availability reasons, the loca-
tion requirements are such that VMs in tier 2 are to
be placed on separate PMs, and VMs in tier 3 are
to be placed in different racks. Requests arrive as a
Poisson process, and applications have a uniformly
distributed lifetime such that the offered load on the
CPU is 0.8. The system reached steady state after
about 200 request arrivals. The algorithm is coded in
Java and runs on a MacBook Pro with 2.4 GHs Intel
Core 2 Duo and 4GB RAM, running Mac OS X 10.5
and JVM 1.6.0. Figure 1 depicts the execution of our
placement algorithm for 900 requests, starting with
an empty system. The average time was 49 msec.

6 Conclusion

We presented an approach for solving a cloud place-
ment optimization problem. The approach is based
on a general random search technique where we em-
ploy importance sampling to construct the marginal
distribution of the solution, and a modified Gibbs
sampling technique restricted to intra-sample depen-
dency using the marginal distributions as posteriors.
Several remaining work is underway. We mention,
for example, convergence properties of the algorithm,

4



criterion for selecting parameters of the algorithm,
comparison of the algorithm to other techniques.

References

[1] Heat Orchestration Template (HOT) guide.

[2] OpenStack open source cloud computing soft-
ware.

[3] S. Andradóttir. Accelerating the convergence
of random search methods for discrete stochas-
tic optimization. ACM Transactions on Mod-
eling and Computer Simulation (TOMACS),
9(4):349–380, 1999.

[4] W. Arnold, D. Arroyo, W. Segmuller, M. Spre-
itzer, M. Steinder, and A. Tantawi. Workload
orchestration and optimization for software de-
fined environments. IBM Journal of Research
and Development, 58(2):1–12, March 2014.

[5] G. Casella and E. I. George. Explaining the
gibbs sampler. The American Statistician,
46(3):167–174, 1992.

[6] I. Giurgiu, C. Castillo, A. Tantawi, and
M. Steinder. Enabling efficient placement of vir-
tual infrastructures in the cloud. In Middleware
2012, pages 332–353. Springer, 2012.

[7] T. L. Lai. Sequential analysis: some classical
problems and new challenges. Statistica Sinica,
11(2):303–350, 2001.

[8] R. Y. Rubinstein and D. P. Kroese. The Cross-
Entropy Method: A Unified Approach to Combi-
natorial Optimization, Monte-Carlo Simulation
and Machine Learning. Information in Sciences
and Statistics Series. Springer-Verlag New York,
LLC, 2004.

[9] J. C. Spall. Introduction to stochastic search and
optimization: estimation, simulation, and con-
trol, volume 65. John Wiley & Sons, 2005.

[10] A. Tantawi. A scalable algorithm for placement
of virtual clusters in large data centers. In Mod-
eling, Analysis & Simulation of Computer and

Telecommunication Systems (MASCOTS), 2012
IEEE 20th International Symposium on, pages
3–10. IEEE, 2012.

5


