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Abstract: Data compression technique is a very useful technique which reduces 

the redundancy within the data so that the same amount of information can be 

stored or transmitted in fewer number of bits. Data compression is widely used 

in data management, and can be broadly classified into hardware and software 

compressions. Commercial database servers are now designed with dictionary 

based proprietary compression algorithms as a software compression unit or as a 

hardware compression unit to reduce storage resources required on the server.  

In this paper, various data compression algorithms are evaluated with different 

configuration parameters and various input data formats to investigate a 

possibility to improve compression performance of dictionary based 

compression algorithms implemented on commercial database servers.  

Huffman coding algorithm produces an optimal prefix code tree and converts 

fixed-length symbols into variable-length code words. We cascaded Huffman 

coding with the dictionary based compression algorithm and evaluated the 

performance of the proposed algorithm with different configuration parameters 

using fabricated synthetic data as well as real customer data sets such as On-

Line Transaction Processing (OLTP) benchmark TPC-E,  decision support 

benchmark TPC-H and a plain text file as input data sets. Experimental results 

show that the compression can yield better compression when dictionary based 

compression algorithm is coupled with entropy coding algorithm such as 

Hoffman coding algorithm, and test benchmarks are compressed more 

efficiently. For example, the proposed compression method compresses OLTP 

benchmark tables at least 10% more efficiently. The evaluation also shows 

promising results in database benchmark compression using a single generic 

Huffman tree customized for a specific benchmark and generated using a set of 

input symbols randomly sampled from the corresponding benchmark data tables. 

1. Introduction 

The data compression techniques have been developed and improved over more than 

forty years, and have been used for applications in the area of data procession such as 

data storage and data transmission. The reduced amount of data to be stored or 

transmitted can reduce storage cost and increase the communication channel capacity.  

Data compression algorithms can be implemented in hardware or in software. Software 

compression is cheaper and more flexible solution of the two, but hardware 

implementation is important when compressing data needs to be done on the fly in real 

time or when software compression can degrade the performance of main processor. Data 

compression task consists of compression and decompression algorithms. There are two 



main types of data compression: lossless data compression and lossy data compression. 

Lossless data compression can reconstruct original data exactly from compressed bit 

stream. Lossy data compression cannot be decoded to reconstruct original data but 

produces data that is is close enough to original data. The lossy data compression can 

produce smaller compressed file than lossless data compression with better compression 

rate, but it is not a good method of compression of critical data. Lossless data 

compression can be classified into two groups. The first group of algorithms are 

dictionary based adaptive compression algorithms such as LZW (Lempel-Ziv-Welch) 

that does not depend on any pre-knowledge of the symbol statistics, and the second group 

of algorithms map input data to bit strings and generate bit sequences. Huffman coding 

and arithmetic coding algorithms are two well known algorithms belong to the second 

group. 

LZW is a very well-known lossless data compression algorithm proposed by Lempel, 

Jacob Ziv, and Terry Welch [1] to improve the performance of LZ78 which is an 

alternate approach of the original Lempel-Ziv (LZ) technique published in 1977.  LZW is 

a data compression technique that takes advantage of the repetition of characters within a 

data file. LZW is a dictionary based compression algorithm which encodes data by 

referencing a dictionary. LZW can compress any type of input files, but it generally 

performs better on files with repeated substrings. Huffman coding is an entropy encoding 

algorithm for lossless data compression proposed by Huffman [2] in 1952. Huffman 

coding is a variable-length coding scheme, is based on the frequency of occurrence of 

data and uses lower number of bits to encode the data that occurs more frequently. The 

variable-length bit sequences are stored in Huffman table which may be constructed for 

each individual input file or a set of input files. In all cases, Huffman table as well as the 

encoded bit strings needs to be stored (or transmitted), and the decoder uses the stored 

table to retrieve the corresponding original symbol sequence. Perl and Mehta [3] 

cascaded LZW and Huffman coding to improve text data compression. The combined 

compression algorithm is applied in the field of image processing to enhance coding 

efficiency of image file compression in [4] and [5]. The image data is compressed with 

Huffman coding in the first stage, and the compressed variable-length bit stream is 

compressed further with LZW compression algorithm in the second stage. 

As discussed, the LZW algorithm is designed so that the same dictionary can be 

generated by the decoder and works well with repeated substring, and the Huffman 

coding is very efficient when the statistics of the input symbols to be coded are known in 

advance. The focus of this paper is to evaluate the two widely used lossless data 

compression algorithms and to propose an optimized algorithm which can take advantage 

of both LZW and Huffman coding. The proposed algorithm compresses input data with 

LZW in the first stage, and then Huffman coding is applied on the LZW fixed length 

output symbols. Fabricated synthetic table sets of TPC-E and TPC-H benchmarks [6] in 

flat file format and a plain text file are used as  test input data sets. The main purpose of 

using TPC-E and TPC-H  benchmark tables as input data sets is to test the proposed 

compression algorithm using a data set that would more accurately represent real world 

applications and OLTP systems. Real world customer data sets are also used to evaluate 

the proposed compressed algorithm as well. This paper is organized in four sections. 

Section 2 presents explanation of existing lossless data compression techniques. Two data 

compression schemes are considered, fixed-length and variable-length codeword 



compression schemes such as LZW and Huffman coding algorithms. The compression 

efficiencies of the algorithms are tested and compared using different configuration 

parameters and different types of input files. Section 3 presents two Huffman coding 

optimization methods which can  enhance execution speed and storage requirement 

without significantly affecting compression ratio. For example, using a single customized 

generic Huffman table designed to compress benchmark table sets can reduce the disk 

space needed to store Huffman tables, and using reduced number of sampled symbols to 

build a Huffman tree can speed up the entire compression process.  Section 3 also brings 

experiment results and performance analysis when the proposed optimized Huffman 

coding is applied to real customer data already compressed with a variant of LZW based 

data compression engine, and Section 4 concludes paper. 

 

2. Evaluation of Lossless Data Compression Techniques 

Abraham Lempel and Jacob Ziv published a paper on sliding window compression 

(LZ77) in 1977 and dictionary based compression technique (LZ78) in 1978. In 1984, 

Terry Welch improved LZ78, and developed a dictionary based compression technique 

(LZW) which still uses the same ideas of LZ78 and adds technical improvements over 

LZ78.  The LZW adaptively changes dictionary of the strings that have appeared in the 

input file, and builds a dictionary that maps symbol sequences to fixed N-bit index of the 

dictionary. With the N bit index, the dictionary contains 2
N
 number of entries and the 

strings in the dictionary can have any length. For example, with 12-bit index, the 

dictionary may have 4,096 entries. The dictionary is dynamically created and the text 

strings are encoded by a reference to the dictionary.  The dictionary is initialized with an 

entry for every possible byte with 256 entries, and other strings are built and added to the 

dictionary as the characters are read from an input file one after another. When the 

dictionary is fully populated, LZW no longer adds entries to the dictionary and 

compresses input characters using an unchanging dictionary. The first 256 entries of the 

dictionary are initialized to store all possible one byte data, and hence it guarantees that 

the input data is coded into a series of dictionary indexes. Typically the index length 

varies from 12-bit to 16-bit long. The dictionary does not need to be stored or transmitted 

because the dictionary can be reconstructed by the decoder while the compressed bit 

stream is being decompressed. When LZW is being implemented, the dictionary size 

needs to be decided carefully because the size of dictionary can affect the coding 

efficiency. For example, if the dictionary size is too big, coding efficiency may decrease 

because the code word size to encode also increases and every input character is encoded 

with longer code words. A common choice for the size of the dictionary is 4,096 entries 

with 12-bit index size. Table I compares coding efficiency of LZW with two different 

dictionary sizes, 12-bit dictionary and 16-bit dictionary. The number of bytes to fully 

populate 12-bit dictionary is measured as listed in the table. Less than 30 KB of input 

data is used to populate 4,096 entries of 12-bit dictionary. Three database tables (cash 

transaction, trade and trade history tables) of TPC-E benchmark and plain English text 

files are used as input data. Table II shows the compression results of same experiments 

(12-bit and 16-bit LZW compression) using TPC-H benchmark tables as input data.  

 



Table I: Comparison of 12-bit and 16-bit LZW compression. 

TPC-E  

CashTran Trade TradeHistory 

English Text 

Original File Size (Byte) 171,068,151 202,326,675 186,665,040 134,217,728 

Bytes populate dictionary 15,942 13,603 28,609 10,418 

Byte 61,828,998 88,029,010 74,027,881 62,755,287 12-bit LZW 

Save % 64 57 60 53 

Byte 47,185,370 72,988,130 73,588,142 45,334,412 16-bit LZW 

Save % 73 64 61 66 

 

Table II: Comparison of 12-bit and 16-bit LZW compression using TPC-H benchmark. 

TPC-H Benchmark  

Customer Fulfillment Sales Item 

Original File Size (Byte) 15,728,640 326,344,704 255,062,016 666,132,480 

Byte 8,162,832 113,295,537 121,498,356 257,510,531 12-bit LZW 

Save % 48 65 52 61 

Byte 6,774,852 82,882,678 89,555,440 202,940,040 16-bit LZW 

Save % 57 74 65 69 

 

Huffman coding is an entropy encoding algorithm for lossless data compression that uses 

less number of bits to encode the input symbol that occurs more frequently. Huffman 

coding uses variable-length coding technique and good estimation of probability of 

symbols in input is closely related to better performance in compression. Huffman tree is 

a binary tree which is built using the exact frequencies of the data and is built from 

bottom up instead of top down. The tree can be built using actual input data or using data 

which is representative of the entire input symbols. Huffman table can also be 

constructed by assigning a path from the root of the tree to a leaf node which corresponds 

to an input symbol in Huffman tree. Hence, each symbol is assigned a variable-length bit 

string, and a bit string in Huffman table cannot be the prefix of another bit string.  The 

Huffman lookup table is used to encode or decode the Huffman bit stream. Unlike LZW 

compression algorithm, Huffman tree (or Huffman table) needs to be stored or 

transmitted to the receiver, and the extra cost of storing or transmitting the Huffman tree 

may degrade the performance of the compression. It may be possible to choose a 

representation of the binary Huffman tree and decode any bit stream by traversing the 

tree. Furthermore, building a Huffman tree using all input symbols can slow down whole 

compression process, and can be improved by populating the table with subset of input 

symbols. We implemented Huffman coding in conjunction with 12-bit and 16-bit LZW 

compression algorithm so that Huffman coding unit takes the output symbols of LZW 

algorithm and generates compressed variable-length bit streams. Table III and Table IV 



compares coding efficiency of 12-bit and 16-bit LZW and Huffman combined 

compression algorithm. Table V shows that LZW and Huffman combined algorithm 

compresses up to 35% further than LZW only compression.   

 

Table III: Comparison of 12-bit and 16-bit compression using concatenated LZW and 

Huffman compression algorithms. 

TPC-E  

CashTran Trade TradeHistory 

English Text 

Original File Size (Byte) 171,068,151 202,326,675 186,665,040 134,217,728 

Byte 51,425,359 75,810,350 53,243,482 57,234,912 12-bit LZW 

+ Huffman 
Save % 70 62 71 57 

Byte 37,465,323 60,547,986 47,867,220 39,650,327 16-bit LZW 

+ Huffman 
Save % 78 70 74 70 

 

Table IV: Comparison of 12-bit and 16-bit compression using concatenated LZW and 

Huffman compression algorithms using TPC-H benchmark. 

TPC-H Benchmark  

Customer Fulfillment Sales Item 

Original File Size (Byte) 15,728,640 326,344,704 255,062,016 666,132,480 

Byte 6,997,421 99,310,184 104,795,637 225,990,015 12-bit LZW 

+ Huffman 
Save % 69 62 59 66 

Byte 5,996,036 76,096,034 81,082,546 189,855,619 16-bit LZW 

+ Huffman 
Save % 62 77 68 71 

 

Table V: Comparison of LZW only compression (Table I and Table II) and LZW and 

Huffman combined compression (Table III and Table IV). 

TPC-E Benchmark  

CashTran Trade TradeHistory 

English 

Text 

12-bit LZW+Huffman Save (%) 17 14 28 9 

16-bit LZW+Huffman Save (%) 21 18 35 13 

TPC-H Benchmark  

Customer Fulfillment Sales Item 

12-bit LZW+Huffman Save (%) 14 12 14 12 

16-bit LZW+Huffman Save (%) 12 8 10 7 

 



Huffman coding produces best results when the probabilities of symbols’ occurrence are 

powers of ½. Otherwise, more bits are spent on encoding a symbol than theoretical 

entropy bound. Huffman coding is inefficient especially when the probability of a symbol 

is large because it only assigns integer number of bits for each symbol to be encoded. For 

example, if the probability of a symbol is 0.9, the codeword length should be 0.152 bit in 

theory, but Huffman coding only assigns one bit to the symbol. Block Huffman coding 

[7] was originally developed to enhance the coding efficiency when the probability is 

skewed. The Block Huffman Coding groups multiple symbols into a new extended 

symbol (N) and Huffman tree is built based on the probability of block of symbols 

instead of using probability of individual symbols. This method splits large probability 

value corresponding to a single symbol into many symbols with smaller values of 

probability, and hence allows better entropy closer to the Shannon entropy bound [8]. For 

example, 12-bit input symbols (4,096 total number of symbols) in the above example are 

grouped into 2-symbol blocks (N = 2), and Huffman tree is built based on the probability 

of 2-symbol blocks (4,096 x 4,096) as depicted in Figure 1. Table VI shows that the 

compression ratio improves when regular Huffman coding (N = 1) is replaced with Block 

Huffman coding with N=2, but the compression and decompression complexity increases 

exponentially from 2
12

 to 2
24

, which makes the block Huffman coding somewhat too 

complicated to implement. The Huffman tree size and Huffman code length increase 

exponentially as the value N increases as well. 

 

 

 

(a)                               (b) 

 

Figure 1: (a) Original Huffman symbols. (b) Block Huffman Symbols with N = 2. 

 

 

Table VI: Comparison of Regular Huffman coding and Block Huffman coding in 

conjunction with 12-bit LZW compression. 

TPC-E  

CashTran Trade TradeHistory 

English Text 

12-bit LZW + Huffman 51,425,359 75,810,350 53,243,482 134,217,728 

12-bit LZW + Block 

Huffman with N=2 

36,767,921 56,345,397 42,330,188 57,234,912 

Save (%) 29 26 20 57 

{ S0, S1, S2, S3, ….., S4095 } { S0,0, S0,1, S0,2, S0,3, ….., S0,4095, 

S1,0, S1,1, S1,2, S1,3, ….., S1,4095 , 

S4095,0, S4095,1, S4095,2, S4095,3, ….., S4095,4095 } 

…………………................... 



3. Huffman Coding Enhancement 

Huffman coding produces lossless compressed bit stream and is relatively easy to 

implement. However, compression efficiency of the algorithm mainly depends on 

accuracy of the frequencies and probabilities of the symbols. Therefore, in order to 

achieve an efficient compression rate, Huffman tree needs be built in advance using all 

symbols to be encoded in the input file before the symbols are actually encoded using the 

tree. Since compression symbol frequencies vary with input context, Huffman tree needs 

to be rebuilt individually for each input file when each input file is being compressed. 

Furthermore, it is required to store or transmit Huffman tree corresponding to a 

compressed file with compressed bit stream so that the decoder uses the tree to 

decompress the bit stream. However, generating a customized Huffman tree for each 

table may require too much memory space to store all generated trees for a database 

benchmark. Instead of customizing a Huffman tree that works best to compress an 

individual table of a benchmark, we investigate whether a generic Huffman tree may 

work for all tables of a benchmark. This can relieve the burden of generating and storing 

customized Huffman tree corresponding to each individual table. Table VII shows that 

LZW and Huffman with generic Huffman tree combined algorithm still generates 

compressed benchmark tables up to 30% smaller than compressed benchmark tables 

compressed with LZW only.  However, the compression improvement is less than 

customized Huffman table as shown in Table V. 

 

Table VII: Comparison of LZW only compression (Table I) and LZW and Huffman 

combined compression algorithm. One generic Huffman tree is used to compress all three 

tables. 

TPC-E  

CashTran Trade TradeHistory 

12-bit LZW + Generic Huffman 56,489,510 80,590,485 59,392,494 

12-bit Generic Huffman Save (%) 8.7 8.5 19.8 

16-bit LZW + Generic Huffman 41,750,758 64,561,120 52,370,048 

16-bit Generic Huffman Save (%) 11.5 11.5 28.8 

 

Generating a Huffman tree sometimes takes too much time and can be a time consuming 

process especially when the number of symbols generated by the preceding LZW 

algorithm is too many. Instead of waiting for the LZW algorithm to produce all encoded 

symbols, and using all input symbols to build a Huffman tree, Huffman tree can be built 

using only representative of symbols that the preceding LZW algorithm outputs. We 

investigate a method of building a Huffman tree using subset of output symbols to reduce 

complexity of building Huffman tree without sacrificing coding efficiency. We evaluated 

the performance of Huffman trees generated using different amount of random and non-

random samples of output symbols, and the comparison of the evaluation results are 

listed in Table VIII. The percentage of sample varies from 1% to 80%.  Table VIII 

compares the compressed table sizes, and shows that randomly sampled symbols are 



better representatives of the entire input data than non-randomly selected symbols which 

are selected from the beginning of the input symbols in order. 

 

Table VIII: Comparison of building Huffman tree using different number of sampled 

symbols.  

Non-Randomly Sampled Symbols Randomly Sampled Symbols  

Cash Tran Trade Trade Hist Cash Tran Trade Trade Hist 

1 % 57,126,585 80,762,868 71,185,437 49,750,965 74,094,318 47,478,578 

2 % 57,983,383 80,987,288 73,921,508 49,704,268 74,060,790 47,450,144 

5 % 55,093,961 79,789,089 66,259,532 49,685,148 74,047,710 47,432,147 

10 % 54,388,785 79,429,938 64,275,872 49,680,479 74,043,189 47,427,361 

20 % 53,303,189 77,829,442 60,859,736 49,678,741 74,040,418 47,424,918 

50 % 53,309,758 77,660,242 61,332,166 49,677,630 74,039,271 47,423,973 

60 % 52,614,396 77,060,290 59,308,978 49,677,420 74,039,166 47,423,763 

70 % 51,905,256 76,436,039 55,654,418 49,677,409 74,038,969 47,423,785 

80 % 51,536,193 75,991,127 53,830,255 49,677,469 74,038,974 47,423,513 

100 % 51,425,359 75,810,350 53,243,482 49,677,221 74,038,864 47,423,370 

 

Data compression algorithms implemented on database servers are mainly based on a 

variant of dictionary based LZW data compression to compress large amount of relational 

data. The dictionaries are populated using a small number of data records. When the 

dictionaries are fully populated, the algorithm becomes non-adaptive, and the dictionaries 

are unchanged while the compression lasts. To enhance compression efficiency of 

dictionary based data compression, we cascaded the dictionary based compression with 

Huffman coding, evaluate the compression performance and compared the evaluated 

results with the dictionary only based compression technique. Real world customer tables 

are compressed with database compression engine configured with various dictionary 

sizes (symbol lengths) to produce 11-bit, 12-bit and 13-bit compressed symbols. The 

symbols are indexes of the appropriate entry in the dictionary with 2K, 4K and 8K 

entries. The compressed symbols are extracted, and only 1% of the extracted symbols are 

randomly selected and used to build Huffman tree. The extracted symbols are further 

compressed into variable-length bit strings using Huffman tree built with randomly 

sampled symbols. The evaluation procedure is depicted in Figure 2. Since not all the 

entries of the dictionary have the same frequency, Huffman coder assigns variable 

number of bits to each symbol. Table IX compares compressed file sizes using customer 

files and shows that additional Huffman coding enhances compression up to 24%. 

 

 

 



 

 

Figure 2: Evaluation process of proposed compression scheme using customer data 

compressed with database compression engine. 

 

Table IX: Comparison of dictionary based only compression and dictionary based and 

Huffman coding cascaded compression. 

 Customer File 1 Customer File 2 Customer File 3 

Dictionary based Compression 107,560,960 97,091,584 68,116,480 

Symbol Size 12 bit 12 bit 12 bit 

With cascaded Huffman coding 80,916,480  81,207,296 55,517,184 

Huffman Save (%) 24 % 16 % 18 % 

 

 Customer File 4 Customer File 5 Customer File 6 

Dictionary based Compression 710,455,638 43,735,693 189,567,735 

Symbol Size 13 bit 11 bit 11 bit 

With cascaded Huffman coding 627,775,932 37,835,685 146,365,047 

Huffman Save (%) 12 % 13 % 23 % 

 

A variant of LZW compression using 2K, 4K and 8K-entry 
dictionary  

Random Sampling of Symbols (11-bit, 12-bit or 13-bit) 

Build Huffman Tree using Randomly Sampled Symbols 

Huffman 
Coding 

Symbol Extraction (11-bit, 12-bit and 13-bit) 



4. Conclusions 

Data compression is the most effective way to save on storage requirement transmission 

time and bandwidth usage in large scale database applications. Storage cost is one of the 

key costs in relational database systems despite the drop in prices, and data compression 

technique can maximize the use of disk space and reduce the storage requirement. 

Therefore, commercial database servers usually include their own data compression and 

decompression engines to efficiently compress and decompress the database tables. In 

this paper, we evaluated two widely used source coding algorithms, LZW and Huffman 

coding algorithms, with fabricated synthetic benchmark tables (TPC-E and TPC-H 

benchmarks) and real world customer data. The test results show that 16-bit LZW 

compression shows better compression than 12-bit LZW with every test benchmark. We 

also proposed and evaluated an entropy coding based Huffman coding algorithm 

concatenated with the existing a variant of LZW dictionary based compression scheme. 

To reduce the additional storage requirement and execution time that can be possibly 

introduced by adding the additional compression unit, we proposed a customized generic 

Huffman table built with a small set of input symbols (about 1% of input symbols are 

sampled) randomly sampled from compressed TPC-E and TPC-H benchmark tables 

respectively, and used the generic table to compress all tables of each benchmark without 

loosing compression efficiency much. Our preliminary results with real customer data 

suggest that the compressed file size can be further reduced by at least 10 % although 

Huffman tree overhead (about 5%) and the fact that Huffman coding performance is 

closely related with input symbol statistic accuracy are taken into account. We believe the 

10% of data reduction can be significant when large databases are considered, and can 

contribute to the reduction in database server operation cost. 
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