
RC25505 (WAT1410-098) October 29, 2014
Computer Science

Research Division
Almaden – Austin – Beijing – Cambridge – Dublin - Haifa – India – Melbourne - T.J. Watson – Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report for
early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After
outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties). Many reports are available at http://domino.watson.ibm.com/library/CyberDig.nsf/home.

IBM Research Report

Experimental Performance Evaluation to Enhance Database
Compression on Commercial Servers

Hangu Yeo, Vadim Sheinin, Petros Zerfos
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598
USA

Experimental Performance Evaluation to Enhance

Database Compression on Commercial Servers
Hangu Yeo, Vadim Sheinin and Petros Zerfos

IBM T. J. Watson Research Center

1101 Kitchawan Rd.

Yorktown Heights, NY 10598, USA
{hangu,vadims,pzerfos}@us.ibm.com

Abstract: Data compression technique is a very useful technique which reduces

the redundancy within the data so that the same amount of information can be

stored or transmitted in fewer number of bits. Data compression is widely used

in data management, and can be broadly classified into hardware and software

compressions. Commercial database servers are now designed with dictionary

based proprietary compression algorithms as a software compression unit or as a

hardware compression unit to reduce storage resources required on the server.

In this paper, various data compression algorithms are evaluated with different

configuration parameters and various input data formats to investigate a

possibility to improve compression performance of dictionary based

compression algorithms implemented on commercial database servers.

Huffman coding algorithm produces an optimal prefix code tree and converts

fixed-length symbols into variable-length code words. We cascaded Huffman

coding with the dictionary based compression algorithm and evaluated the

performance of the proposed algorithm with different configuration parameters

using fabricated synthetic data as well as real customer data sets such as On-

Line Transaction Processing (OLTP) benchmark TPC-E, decision support

benchmark TPC-H and a plain text file as input data sets. Experimental results

show that the compression can yield better compression when dictionary based

compression algorithm is coupled with entropy coding algorithm such as

Hoffman coding algorithm, and test benchmarks are compressed more

efficiently. For example, the proposed compression method compresses OLTP

benchmark tables at least 10% more efficiently. The evaluation also shows

promising results in database benchmark compression using a single generic

Huffman tree customized for a specific benchmark and generated using a set of

input symbols randomly sampled from the corresponding benchmark data tables.

1. Introduction

The data compression techniques have been developed and improved over more than

forty years, and have been used for applications in the area of data procession such as

data storage and data transmission. The reduced amount of data to be stored or

transmitted can reduce storage cost and increase the communication channel capacity.

Data compression algorithms can be implemented in hardware or in software. Software

compression is cheaper and more flexible solution of the two, but hardware

implementation is important when compressing data needs to be done on the fly in real

time or when software compression can degrade the performance of main processor. Data

compression task consists of compression and decompression algorithms. There are two

main types of data compression: lossless data compression and lossy data compression.

Lossless data compression can reconstruct original data exactly from compressed bit

stream. Lossy data compression cannot be decoded to reconstruct original data but

produces data that is is close enough to original data. The lossy data compression can

produce smaller compressed file than lossless data compression with better compression

rate, but it is not a good method of compression of critical data. Lossless data

compression can be classified into two groups. The first group of algorithms are

dictionary based adaptive compression algorithms such as LZW (Lempel-Ziv-Welch)

that does not depend on any pre-knowledge of the symbol statistics, and the second group

of algorithms map input data to bit strings and generate bit sequences. Huffman coding

and arithmetic coding algorithms are two well known algorithms belong to the second

group.

LZW is a very well-known lossless data compression algorithm proposed by Lempel,

Jacob Ziv, and Terry Welch [1] to improve the performance of LZ78 which is an

alternate approach of the original Lempel-Ziv (LZ) technique published in 1977. LZW is

a data compression technique that takes advantage of the repetition of characters within a

data file. LZW is a dictionary based compression algorithm which encodes data by

referencing a dictionary. LZW can compress any type of input files, but it generally

performs better on files with repeated substrings. Huffman coding is an entropy encoding

algorithm for lossless data compression proposed by Huffman [2] in 1952. Huffman

coding is a variable-length coding scheme, is based on the frequency of occurrence of

data and uses lower number of bits to encode the data that occurs more frequently. The

variable-length bit sequences are stored in Huffman table which may be constructed for

each individual input file or a set of input files. In all cases, Huffman table as well as the

encoded bit strings needs to be stored (or transmitted), and the decoder uses the stored

table to retrieve the corresponding original symbol sequence. Perl and Mehta [3]

cascaded LZW and Huffman coding to improve text data compression. The combined

compression algorithm is applied in the field of image processing to enhance coding

efficiency of image file compression in [4] and [5]. The image data is compressed with

Huffman coding in the first stage, and the compressed variable-length bit stream is

compressed further with LZW compression algorithm in the second stage.

As discussed, the LZW algorithm is designed so that the same dictionary can be

generated by the decoder and works well with repeated substring, and the Huffman

coding is very efficient when the statistics of the input symbols to be coded are known in

advance. The focus of this paper is to evaluate the two widely used lossless data

compression algorithms and to propose an optimized algorithm which can take advantage

of both LZW and Huffman coding. The proposed algorithm compresses input data with

LZW in the first stage, and then Huffman coding is applied on the LZW fixed length

output symbols. Fabricated synthetic table sets of TPC-E and TPC-H benchmarks [6] in

flat file format and a plain text file are used as test input data sets. The main purpose of

using TPC-E and TPC-H benchmark tables as input data sets is to test the proposed

compression algorithm using a data set that would more accurately represent real world

applications and OLTP systems. Real world customer data sets are also used to evaluate

the proposed compressed algorithm as well. This paper is organized in four sections.

Section 2 presents explanation of existing lossless data compression techniques. Two data

compression schemes are considered, fixed-length and variable-length codeword

compression schemes such as LZW and Huffman coding algorithms. The compression

efficiencies of the algorithms are tested and compared using different configuration

parameters and different types of input files. Section 3 presents two Huffman coding

optimization methods which can enhance execution speed and storage requirement

without significantly affecting compression ratio. For example, using a single customized

generic Huffman table designed to compress benchmark table sets can reduce the disk

space needed to store Huffman tables, and using reduced number of sampled symbols to

build a Huffman tree can speed up the entire compression process. Section 3 also brings

experiment results and performance analysis when the proposed optimized Huffman

coding is applied to real customer data already compressed with a variant of LZW based

data compression engine, and Section 4 concludes paper.

2. Evaluation of Lossless Data Compression Techniques

Abraham Lempel and Jacob Ziv published a paper on sliding window compression

(LZ77) in 1977 and dictionary based compression technique (LZ78) in 1978. In 1984,

Terry Welch improved LZ78, and developed a dictionary based compression technique

(LZW) which still uses the same ideas of LZ78 and adds technical improvements over

LZ78. The LZW adaptively changes dictionary of the strings that have appeared in the

input file, and builds a dictionary that maps symbol sequences to fixed N-bit index of the

dictionary. With the N bit index, the dictionary contains 2
N
 number of entries and the

strings in the dictionary can have any length. For example, with 12-bit index, the

dictionary may have 4,096 entries. The dictionary is dynamically created and the text

strings are encoded by a reference to the dictionary. The dictionary is initialized with an

entry for every possible byte with 256 entries, and other strings are built and added to the

dictionary as the characters are read from an input file one after another. When the

dictionary is fully populated, LZW no longer adds entries to the dictionary and

compresses input characters using an unchanging dictionary. The first 256 entries of the

dictionary are initialized to store all possible one byte data, and hence it guarantees that

the input data is coded into a series of dictionary indexes. Typically the index length

varies from 12-bit to 16-bit long. The dictionary does not need to be stored or transmitted

because the dictionary can be reconstructed by the decoder while the compressed bit

stream is being decompressed. When LZW is being implemented, the dictionary size

needs to be decided carefully because the size of dictionary can affect the coding

efficiency. For example, if the dictionary size is too big, coding efficiency may decrease

because the code word size to encode also increases and every input character is encoded

with longer code words. A common choice for the size of the dictionary is 4,096 entries

with 12-bit index size. Table I compares coding efficiency of LZW with two different

dictionary sizes, 12-bit dictionary and 16-bit dictionary. The number of bytes to fully

populate 12-bit dictionary is measured as listed in the table. Less than 30 KB of input

data is used to populate 4,096 entries of 12-bit dictionary. Three database tables (cash

transaction, trade and trade history tables) of TPC-E benchmark and plain English text

files are used as input data. Table II shows the compression results of same experiments

(12-bit and 16-bit LZW compression) using TPC-H benchmark tables as input data.

Table I: Comparison of 12-bit and 16-bit LZW compression.

TPC-E

CashTran Trade TradeHistory

English Text

Original File Size (Byte) 171,068,151 202,326,675 186,665,040 134,217,728

Bytes populate dictionary 15,942 13,603 28,609 10,418

Byte 61,828,998 88,029,010 74,027,881 62,755,287 12-bit LZW

Save % 64 57 60 53

Byte 47,185,370 72,988,130 73,588,142 45,334,412 16-bit LZW

Save % 73 64 61 66

Table II: Comparison of 12-bit and 16-bit LZW compression using TPC-H benchmark.

TPC-H Benchmark

Customer Fulfillment Sales Item

Original File Size (Byte) 15,728,640 326,344,704 255,062,016 666,132,480

Byte 8,162,832 113,295,537 121,498,356 257,510,531 12-bit LZW

Save % 48 65 52 61

Byte 6,774,852 82,882,678 89,555,440 202,940,040 16-bit LZW

Save % 57 74 65 69

Huffman coding is an entropy encoding algorithm for lossless data compression that uses

less number of bits to encode the input symbol that occurs more frequently. Huffman

coding uses variable-length coding technique and good estimation of probability of

symbols in input is closely related to better performance in compression. Huffman tree is

a binary tree which is built using the exact frequencies of the data and is built from

bottom up instead of top down. The tree can be built using actual input data or using data

which is representative of the entire input symbols. Huffman table can also be

constructed by assigning a path from the root of the tree to a leaf node which corresponds

to an input symbol in Huffman tree. Hence, each symbol is assigned a variable-length bit

string, and a bit string in Huffman table cannot be the prefix of another bit string. The

Huffman lookup table is used to encode or decode the Huffman bit stream. Unlike LZW

compression algorithm, Huffman tree (or Huffman table) needs to be stored or

transmitted to the receiver, and the extra cost of storing or transmitting the Huffman tree

may degrade the performance of the compression. It may be possible to choose a

representation of the binary Huffman tree and decode any bit stream by traversing the

tree. Furthermore, building a Huffman tree using all input symbols can slow down whole

compression process, and can be improved by populating the table with subset of input

symbols. We implemented Huffman coding in conjunction with 12-bit and 16-bit LZW

compression algorithm so that Huffman coding unit takes the output symbols of LZW

algorithm and generates compressed variable-length bit streams. Table III and Table IV

compares coding efficiency of 12-bit and 16-bit LZW and Huffman combined

compression algorithm. Table V shows that LZW and Huffman combined algorithm

compresses up to 35% further than LZW only compression.

Table III: Comparison of 12-bit and 16-bit compression using concatenated LZW and

Huffman compression algorithms.

TPC-E

CashTran Trade TradeHistory

English Text

Original File Size (Byte) 171,068,151 202,326,675 186,665,040 134,217,728

Byte 51,425,359 75,810,350 53,243,482 57,234,912 12-bit LZW

+ Huffman
Save % 70 62 71 57

Byte 37,465,323 60,547,986 47,867,220 39,650,327 16-bit LZW

+ Huffman
Save % 78 70 74 70

Table IV: Comparison of 12-bit and 16-bit compression using concatenated LZW and

Huffman compression algorithms using TPC-H benchmark.

TPC-H Benchmark

Customer Fulfillment Sales Item

Original File Size (Byte) 15,728,640 326,344,704 255,062,016 666,132,480

Byte 6,997,421 99,310,184 104,795,637 225,990,015 12-bit LZW

+ Huffman
Save % 69 62 59 66

Byte 5,996,036 76,096,034 81,082,546 189,855,619 16-bit LZW

+ Huffman
Save % 62 77 68 71

Table V: Comparison of LZW only compression (Table I and Table II) and LZW and

Huffman combined compression (Table III and Table IV).

TPC-E Benchmark

CashTran Trade TradeHistory

English

Text

12-bit LZW+Huffman Save (%) 17 14 28 9

16-bit LZW+Huffman Save (%) 21 18 35 13

TPC-H Benchmark

Customer Fulfillment Sales Item

12-bit LZW+Huffman Save (%) 14 12 14 12

16-bit LZW+Huffman Save (%) 12 8 10 7

Huffman coding produces best results when the probabilities of symbols’ occurrence are

powers of ½. Otherwise, more bits are spent on encoding a symbol than theoretical

entropy bound. Huffman coding is inefficient especially when the probability of a symbol

is large because it only assigns integer number of bits for each symbol to be encoded. For

example, if the probability of a symbol is 0.9, the codeword length should be 0.152 bit in

theory, but Huffman coding only assigns one bit to the symbol. Block Huffman coding

[7] was originally developed to enhance the coding efficiency when the probability is

skewed. The Block Huffman Coding groups multiple symbols into a new extended

symbol (N) and Huffman tree is built based on the probability of block of symbols

instead of using probability of individual symbols. This method splits large probability

value corresponding to a single symbol into many symbols with smaller values of

probability, and hence allows better entropy closer to the Shannon entropy bound [8]. For

example, 12-bit input symbols (4,096 total number of symbols) in the above example are

grouped into 2-symbol blocks (N = 2), and Huffman tree is built based on the probability

of 2-symbol blocks (4,096 x 4,096) as depicted in Figure 1. Table VI shows that the

compression ratio improves when regular Huffman coding (N = 1) is replaced with Block

Huffman coding with N=2, but the compression and decompression complexity increases

exponentially from 2
12

 to 2
24

, which makes the block Huffman coding somewhat too

complicated to implement. The Huffman tree size and Huffman code length increase

exponentially as the value N increases as well.

(a) (b)

Figure 1: (a) Original Huffman symbols. (b) Block Huffman Symbols with N = 2.

Table VI: Comparison of Regular Huffman coding and Block Huffman coding in

conjunction with 12-bit LZW compression.

TPC-E

CashTran Trade TradeHistory

English Text

12-bit LZW + Huffman 51,425,359 75,810,350 53,243,482 134,217,728

12-bit LZW + Block

Huffman with N=2

36,767,921 56,345,397 42,330,188 57,234,912

Save (%) 29 26 20 57

{ S0, S1, S2, S3, ….., S4095 } { S0,0, S0,1, S0,2, S0,3, ….., S0,4095,

S1,0, S1,1, S1,2, S1,3, ….., S1,4095 ,

S4095,0, S4095,1, S4095,2, S4095,3, ….., S4095,4095 }

…………………...................

3. Huffman Coding Enhancement

Huffman coding produces lossless compressed bit stream and is relatively easy to

implement. However, compression efficiency of the algorithm mainly depends on

accuracy of the frequencies and probabilities of the symbols. Therefore, in order to

achieve an efficient compression rate, Huffman tree needs be built in advance using all

symbols to be encoded in the input file before the symbols are actually encoded using the

tree. Since compression symbol frequencies vary with input context, Huffman tree needs

to be rebuilt individually for each input file when each input file is being compressed.

Furthermore, it is required to store or transmit Huffman tree corresponding to a

compressed file with compressed bit stream so that the decoder uses the tree to

decompress the bit stream. However, generating a customized Huffman tree for each

table may require too much memory space to store all generated trees for a database

benchmark. Instead of customizing a Huffman tree that works best to compress an

individual table of a benchmark, we investigate whether a generic Huffman tree may

work for all tables of a benchmark. This can relieve the burden of generating and storing

customized Huffman tree corresponding to each individual table. Table VII shows that

LZW and Huffman with generic Huffman tree combined algorithm still generates

compressed benchmark tables up to 30% smaller than compressed benchmark tables

compressed with LZW only. However, the compression improvement is less than

customized Huffman table as shown in Table V.

Table VII: Comparison of LZW only compression (Table I) and LZW and Huffman

combined compression algorithm. One generic Huffman tree is used to compress all three

tables.

TPC-E

CashTran Trade TradeHistory

12-bit LZW + Generic Huffman 56,489,510 80,590,485 59,392,494

12-bit Generic Huffman Save (%) 8.7 8.5 19.8

16-bit LZW + Generic Huffman 41,750,758 64,561,120 52,370,048

16-bit Generic Huffman Save (%) 11.5 11.5 28.8

Generating a Huffman tree sometimes takes too much time and can be a time consuming

process especially when the number of symbols generated by the preceding LZW

algorithm is too many. Instead of waiting for the LZW algorithm to produce all encoded

symbols, and using all input symbols to build a Huffman tree, Huffman tree can be built

using only representative of symbols that the preceding LZW algorithm outputs. We

investigate a method of building a Huffman tree using subset of output symbols to reduce

complexity of building Huffman tree without sacrificing coding efficiency. We evaluated

the performance of Huffman trees generated using different amount of random and non-

random samples of output symbols, and the comparison of the evaluation results are

listed in Table VIII. The percentage of sample varies from 1% to 80%. Table VIII

compares the compressed table sizes, and shows that randomly sampled symbols are

better representatives of the entire input data than non-randomly selected symbols which

are selected from the beginning of the input symbols in order.

Table VIII: Comparison of building Huffman tree using different number of sampled

symbols.

Non-Randomly Sampled Symbols Randomly Sampled Symbols

Cash Tran Trade Trade Hist Cash Tran Trade Trade Hist

1 % 57,126,585 80,762,868 71,185,437 49,750,965 74,094,318 47,478,578

2 % 57,983,383 80,987,288 73,921,508 49,704,268 74,060,790 47,450,144

5 % 55,093,961 79,789,089 66,259,532 49,685,148 74,047,710 47,432,147

10 % 54,388,785 79,429,938 64,275,872 49,680,479 74,043,189 47,427,361

20 % 53,303,189 77,829,442 60,859,736 49,678,741 74,040,418 47,424,918

50 % 53,309,758 77,660,242 61,332,166 49,677,630 74,039,271 47,423,973

60 % 52,614,396 77,060,290 59,308,978 49,677,420 74,039,166 47,423,763

70 % 51,905,256 76,436,039 55,654,418 49,677,409 74,038,969 47,423,785

80 % 51,536,193 75,991,127 53,830,255 49,677,469 74,038,974 47,423,513

100 % 51,425,359 75,810,350 53,243,482 49,677,221 74,038,864 47,423,370

Data compression algorithms implemented on database servers are mainly based on a

variant of dictionary based LZW data compression to compress large amount of relational

data. The dictionaries are populated using a small number of data records. When the

dictionaries are fully populated, the algorithm becomes non-adaptive, and the dictionaries

are unchanged while the compression lasts. To enhance compression efficiency of

dictionary based data compression, we cascaded the dictionary based compression with

Huffman coding, evaluate the compression performance and compared the evaluated

results with the dictionary only based compression technique. Real world customer tables

are compressed with database compression engine configured with various dictionary

sizes (symbol lengths) to produce 11-bit, 12-bit and 13-bit compressed symbols. The

symbols are indexes of the appropriate entry in the dictionary with 2K, 4K and 8K

entries. The compressed symbols are extracted, and only 1% of the extracted symbols are

randomly selected and used to build Huffman tree. The extracted symbols are further

compressed into variable-length bit strings using Huffman tree built with randomly

sampled symbols. The evaluation procedure is depicted in Figure 2. Since not all the

entries of the dictionary have the same frequency, Huffman coder assigns variable

number of bits to each symbol. Table IX compares compressed file sizes using customer

files and shows that additional Huffman coding enhances compression up to 24%.

Figure 2: Evaluation process of proposed compression scheme using customer data

compressed with database compression engine.

Table IX: Comparison of dictionary based only compression and dictionary based and

Huffman coding cascaded compression.

 Customer File 1 Customer File 2 Customer File 3

Dictionary based Compression 107,560,960 97,091,584 68,116,480

Symbol Size 12 bit 12 bit 12 bit

With cascaded Huffman coding 80,916,480 81,207,296 55,517,184

Huffman Save (%) 24 % 16 % 18 %

 Customer File 4 Customer File 5 Customer File 6

Dictionary based Compression 710,455,638 43,735,693 189,567,735

Symbol Size 13 bit 11 bit 11 bit

With cascaded Huffman coding 627,775,932 37,835,685 146,365,047

Huffman Save (%) 12 % 13 % 23 %

A variant of LZW compression using 2K, 4K and 8K-entry
dictionary

Random Sampling of Symbols (11-bit, 12-bit or 13-bit)

Build Huffman Tree using Randomly Sampled Symbols

Huffman
Coding

Symbol Extraction (11-bit, 12-bit and 13-bit)

4. Conclusions

Data compression is the most effective way to save on storage requirement transmission

time and bandwidth usage in large scale database applications. Storage cost is one of the

key costs in relational database systems despite the drop in prices, and data compression

technique can maximize the use of disk space and reduce the storage requirement.

Therefore, commercial database servers usually include their own data compression and

decompression engines to efficiently compress and decompress the database tables. In

this paper, we evaluated two widely used source coding algorithms, LZW and Huffman

coding algorithms, with fabricated synthetic benchmark tables (TPC-E and TPC-H

benchmarks) and real world customer data. The test results show that 16-bit LZW

compression shows better compression than 12-bit LZW with every test benchmark. We

also proposed and evaluated an entropy coding based Huffman coding algorithm

concatenated with the existing a variant of LZW dictionary based compression scheme.

To reduce the additional storage requirement and execution time that can be possibly

introduced by adding the additional compression unit, we proposed a customized generic

Huffman table built with a small set of input symbols (about 1% of input symbols are

sampled) randomly sampled from compressed TPC-E and TPC-H benchmark tables

respectively, and used the generic table to compress all tables of each benchmark without

loosing compression efficiency much. Our preliminary results with real customer data

suggest that the compressed file size can be further reduced by at least 10 % although

Huffman tree overhead (about 5%) and the fact that Huffman coding performance is

closely related with input symbol statistic accuracy are taken into account. We believe the

10% of data reduction can be significant when large databases are considered, and can

contribute to the reduction in database server operation cost.

References

[1] T. Welch, “A Technique for High Performance Data Compression,” Computer 17 (6),

pp. 8-19, 1984.

[2] D. A. Huffman, “A Method for the Construction of Minimum-Redundancy Codes,”

Proceedings of the I.R.E., pp. 1098-1101, September 1952.

[3] Y. Perl and A. Mehta, “Cascading LZW Algorithm with Huffman Coding: A

Variable to Variable Length Compression Algorithm,” Proceedings of the First Great

Lakes Computer Science Conference on Computing in the 90’s, pp. 170-178, 1989.

[4] C. Saravanan and M. Surender, “Enhancing Efficiency of Huffman Coding using

Lempel Ziv Coding for Image Compression,” International Journal of Soft

Computing and Engineering (IJSCE), vol. 2, pp. 38-41, January 2013.

[5] D. Kaur and K. Kaur, “Huffman Based LZW Lossless Image Compression Using

Retinex Algorithm,” International Journal of Advanced Research in Computer and

Communication Engineering, vol. 2, pp. 3145-3151, August 2013.

[6] TPC Transaction Processing Performance Council, http://www.tpc.org/.

[7] M. A. Mannan and M. Kaykobad, “Block Huffman Coding,” Computers and

Mathematics with Applications, vol. 46, pp. 1581-1587, November 2003.

[8] C. E. Shannon, “A Mathematical Theory of Communication,” Bell System Technical

Journal, Vol. 27, pp. 379-423, July 1948.

