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Abstract

Neural networks have been successfully used for classification tasks in a rapidly growing number
of practical applications. Despite their popularity and widespread use, they are often still treated
as enigmatic black boxes whose inner workings are insufficiently well understood. In this paper we
provide new insights into training and classification by analyzing neural networks from a feature-space
perspective. We explain the formation of decision regions and study some of their combinatorial aspects.
We place a particular emphasis on the connections between the neural network weight and bias terms
and properties of decision boundaries and other regions that exhibit varying levels of classification
confidence. We show how the error backpropagates in these regions and emphasize the important role
they have in the formation of gradients. These findings expose the connections between scaling of the
weight parameters and the density of the training samples. This sheds more light on the vanishing
gradient problem, explains the need for regularization, and suggests an approach for subsampling
training data to improve performance.

1 Introduction

Neural networks have been successfully used for classification tasks in applications such as pattern recog-
nition [2], speech recognition [9], and numerous others [24]. Despite their widespread use, our understand-
ing of neural networks is still incomplete, and they are therefore often remain treated as black boxes. In
this paper we provide new insights into training and classification by analyzing neural networks from a
feature-space perspective. We consider feedforward neural networks in which input vectors x0 ∈ Rd are
propagated through n successive layers, each of the form

xk = νk(Akxk−1 − bk), (1)

where νk is a nonlinear activation function that acts on an affine transformation of the output xk−1 from
the previous layer, with weight matrix Ak and bias vector bk. Neural networks are often represented as
graphs and the entries in vectors xk are therefore often referred to as nodes or units. There are three
main design parameters in a feedforward neural network architecture: the number of layers or depth the
network, the number of nodes in each layer, and the choice of activation function. Once these are fixed,
neural networks are training by adjusting only the weight and bias terms.

Although most of the results and principles in this paper apply more generally, we predominantly
consider neural networks with sigmoidal activation functions that are convex-concave and differentiable.
To keep the discussion concrete we focus on the symmetrized version of the logistic function that acts
elementwise on its input as

σγ(x) = 2`γ(x)− 1, with `γ(x) =
1

1 + e−γx
. (2)
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Figure 1: Different instances of (a) the sigmoid function σγ and (b) their derivatives.

This function can be seen as a generalization of the hyperbolic tangent, with σγ(x) = tanh(γx/2). We
omit the subscript γ when γ = 1, or when its exact value does not matter. For simplicity, and with some
abuse of terminology, we refer to σγ as the sigmoid function, irrespective of the value of γ. Examples of
several instances of σγ and their first-order derivatives are plotted in Figure 1.

The activation function in the last layer has a special dual purpose of ensuring that the output of the
neural network has a meaningful interpretation. The softmax function is widely used and generates an
output vector whose entries are defined as

[µ(x)]i =
ex[i]∑k
j=1 e

x[j]
, (3)

Exponentiation and normalization ensure that all output value are nonnegative and sum up to one, and
the output of node i can therefore be interpreted as an estimate of the posterior probability p(class = i | x).
That is, we can define the estimated probabilities as p̂s(class = i | x) := [xn(x)]i, where s is a vector
containing of network weight and bias parameters, and xn(x) is the output at layer n corresponding to
input x0 = x. The network parameters s are typically learned from domain-specific training data. In
supervised training for multiclass classification this training data comes in the form of a set of tuples
T = {(x, c)}, each consisting of a sample feature vector x ∈ Rd and its associated class label c. Training
is done by minimizing a suitably chosen loss function, such as

minimize
s

φ(s) :=
1

|T |
∑

(x,c)∈T

f(s;x, c). (4)

with the cross-entropy function
f(s;x, c) = − log p̂s(c | x),

which we shall use throughout the paper. We denote the class c corresponding to feature vector x ∈ Rd as
c(x), which, in practice, is known only for all points in the training set. For notational convenience we also
write f(x) to mean f(s;x, c(x)). The loss function φ(s) is highly nonconvex in s making (4) particularly
challenging to solve. Even if it could be solved, care needs to be taken not to overfit the data to ensure
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that the network generalized to unseen data. This can be achieved, for example, through regularization,
early termination, or by limiting the model capacity of the network.

The outline of the paper is as follows. In Section 2 we review the definition of halfspaces and the
formation of decision regions. In Section 3 we look at combinatorial properties of the decision regions,
their ability to separate or approximate different classes, and possible generalizations. Section 4 analyzes
the connection between the decision regions and the gradient with respect to the different network pa-
rameters. Topics related to the training of neural networks including backpropagation, regularization,
the contribution of individual training samples to the gradient, and importance sampling are discussed in
Section 5. We conclude the paper with a discussion and relevant future work in Section 6.

Throughout the paper we use the following notational conventions. Matrices are indicated by capitals,
such as A for the weight matrices; vectors are denoted by lower case roman letters. Sets are denoted by
calligraphic capitals. Subscripted square brackets denote indexing, with [x]j , [A]i, and [A]i,j denoting
respectively the j-th entry of vector x, the i-th row of A as a column vector, and the (i, j)-th entry of
matrix A. Square brackets are also used to denote vector or matrix instances with commas separating
entries within one row, and semicolon separating rows in in-line notation. When not exponentiated e
denotes the vector of all ones. The largest singular value of A is denoted σmax(A), from the context it
will be clear that this is not a particular instance of the sigmoid function σγ . The vector `1, and `2 norms
refer to the one- and two norms; that is, the sum of absolute values and the Euclidean norm, respectively.

2 Formation of decision regions

Decision regions can be described as those regions or sets of points in the feature space that are classified
as a certain class. Classification in neural networks is soft in the sense that it comes as a vector of posterior
probabilities and it is therefore not immediately obvious how to assign points to one class or another, or
if, indeed, this is desirable. Two possible definitions of decision regions for class c are the set of points
where the posterior probability is highest among the classes:

Cc := {x ∈ Rd | p̂s(c | x) = max
j
p̂s(j | x)},

or exceeds a given threshold:
Cc := {x ∈ Rd | p̂s(c | x) ≥ τ}. (5)

Although this section discusses the formation and role of decision regions and its boundaries, we will
not use any formal definition of decision regions. However, the intuitive notion used closely follows
definition (5).

As we will see in this section, decision regions are formed as input is propagated through the network.
Even though the form (1) of all the layers is identical, we can nevertheless identify two distinct stages
in region formation. The first stage defines a collection of halfspaces and takes place in the first layer of
the network. The second stage takes place over the remaining layers in which intermediate regions are
successively combined to form the final decision regions, starting with the initial set of halfspaces. The
generation of halfspaces or hyperplanes in the first layer of the neural network and their combination in
subsequent layers is well known (see for example [2, 15]). The formation of soft decision boundaries and
some of their properties does not appear to have been studied widely. Some of the notions discussed next
form the basis for subsequent sections, and we therefore review the two separate stages mentioned above
in some detail, with a particular emphasis on the role of the sigmoidal activation function.
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Figure 2: The mapping of points x in the feature space using (a) the linear transformation 〈a, x〉 − β
with a = [1.5, 0.5]T and β = 0; (b) the nonlinearity σ(〈a, x〉 − β) with the same values for a and β; and
(c) the nonlinearity σ(〈a′, x〉 − β) with a′ = 4a and β = 12. Show are the output values for points in a
rectangular region of the feature space (top row), and for points x with [x]2 = 0 (bottom row).

2.1 Definition of halfspaces

The output of the first layer in the network can be written as y = σ(Ax − b) with x ∈ Rd. For an
individual unit j this reduces to σ(〈a, x〉 − β), where a ∈ Rd corresponds to [A]j , the j-th row of A, and
β = [b]j . When applied over all points of the feature space, the affine mapping 〈a, x〉−β generates a linear
gradient, as shown in Figure 2(a). The output of unit is then obtained by applying the sigmoid function
to these intermediate values. When doing so, assuming throughout that a 6= 0, two prominent regions
form: one with values close to −1 and one with values close to +1. In between the two regions there is
a smooth transition region, as illustrated in Figure 2(b). The center of the transition region consists of
all feature points whose output value equal zero. It can be verified that this set is given by all points
x = βa/‖a‖22 + v such that 〈a, v〉 = 0, and therefore describes a hyperplane. The normal direction of the
hyperplane is given by a, and the exact location of the hyperplane is determined by a shift along this
normal, controlled by both β and ‖a‖2. The region of all points that map to nonnegative values forms a
halfspace, and because the linear functions can be chosen independently for each unit, we can define as
many halfspaces are there are units in the first layer. As the transition between the regions on either side
of the hyperplane is gradual it is convenient to work with soft boundaries and interpret the output values
as a confidence level of set membership with values close to +1 indicating strong membership, those close
to −1 indicating strong non-membership, and with decreasing confidence levels in between. For simplicity
we use the term halfspace for both the soft and sharp versions of the region.

In addition to normal direction and location, halfspaces are characterized by the sharpness of the
transition region. This property can be controlled in two similar ways (see also Section 5.2). The first
is to scale both a and β by a positive scalar γ. Doing so does not affect the location or orientation of
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the hyperplane but does scale the input to the sigmoid function by the same quantity. As a consequence,
choosing γ > 1 shrinks the transition region, whereas choosing γ < 1 causes it to widen. The second way
is to replace the activation function σ by σγ . Scaling only a affects the sharpness of the transition in the
same way, but also results in a shift of the hyperplane along the normal direction whenever β 6= 0. Note
however that the activation functions are typically fixed and the properties of the halfspaces are therefore
controlled only by the weight and bias terms. Figure 2(c) illustrates the sharpening of the halfspace and
the use of β to change its location.

2.2 Combination of intermediate regions

The second layer combines the halfspace regions defined in the first layer resulting in new regions in each
of the output nodes. In case step-function activation functions are used, the operations used to combine
the regions correspond to set operations including complements (c), intersection (∩), and unions (∪). The
same operations are used in subsequent layers, thereby enabling the formation of increasingly complex
regions. The use of a sigmoidal function instead of the step function does not significantly change the
types of operations, although some care needs to be taken.

Some operations are best explained when working with input coming from the logistic function (with
values ranging from 0 to 1) rather than from the sigmoid function (ranging from -1 to 1). Note however
that output x from a sigmoid can easily be mapped to the equivalent output x′ = (x − 1)/2 from a
logistic function, and vice versa. Any linear operation Ax′ − b on the logistic output then becomes
A(x − 1)/2 − b = Ãx − b̃ with Ã = A/2 and b̃ = b + Ae/2. In other words, with appropriate changes in
A and b we can always choose which of the two activation functions the input comes from, regardless of
which function was actually used.

2.2.1 Elementary Boolean operations

To make the operations discussed in this section more concrete we apply them to input generated by a
first layer with the following parameters:

A1 =

[
9 1
−2 6

]
, b1 =

[
−2
−1

]
, and ν1 = σ3.

The two resulting halfspace regions R1 and R2 are illustrated in Figures 3(a) and 3(b). For simplicity we
denote the parameters for the second layer by A and b, omitting the subscripts. In addition, we omit all
entries that are not relevant to the operation and appropriate padding with zeros where needed is implied.

Constants Constants can be generated by choosing A = 0 and choosing a sufficiently large positive
or negative offset values. For example, choosing b = 100 gives a region that spans the entire domain
(representing the logical true), whereas choosing b = −100 results in the empty set (or logical false).

Unary operations The simplest unary operation, the identity function, can be defined as

AI = 1, bI = 0. (Identity)

This function works well when used in conjunction with a step function, but has an undesirable damping
effect when used with the sigmoid function: input values up to 1 are mapped to output values up to
σ(1) ≈ 0.46, and likewise for negative values. While such scaling may be desirable in certain cases, we
would like to preserve the clear distinction between high and low confidence regions. We can do this
by scaling up A, which amplifies the input to the sigmoid function and therefore its output. Choosing
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R1

R2

(a) Region R1 (b) Region R2 (c) Complement: (R1)c

(d) R1 ∩R2 (e) R1 ∪R2 (f) ((R1)c ∩R2) ∪ (R1 ∩ (R2)c)
= (R1 xor R2)

Figure 3: Illustration of (a),(b) regions defined by the first neural network layer, and (c)–(f) various
Boolean set operations applied to them in subsequent layers.

AI = 3, for example, would increase the maximum confidence level to σ(3) ≈ 0.91. As noted towards
the end of Section 2.1, the same can be achieved by working with σ3, and to avoid getting distracted by
scaling issues like these we will work with ν2 = σ3 throughout this section. We note that the identity
function can be approximated very well by scaling down the input and taking advantage of the near-linear
part of the sigmoid function around zero. The output can then be scaled up again in the next layer to
achieve the desired result. Similar to the identity function, we define the complement of a set as

Ac = −1, bc = 0. (Complement)

The application of this operator to R1 is illustrated in Figure 3(c). Just to be clear, note that in this case
the full parameters to the second layer would be A = [−1, 0] and b = 0.

Binary operations When taking the intersection of regions R1 and R2 we require that the output
values of the corresponding units in the network sum up to a value close to two. This is equivalent to
saying that when we subtract a relatively high value, say 1.5, from the sum, the outcome should remain
positive. This suggests the following parameters for binary intersection:

A∩ = [1, 1], b∩ = 1.5. (Intersection)

We now combine the intersection and complement operations to derive the union of two sets, and
to illustrate how complements of sets can be applied during computations. By De Morgan’s law, the
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union operator can be written as R1 ∪ R2 = ((R1)c ∩ (R2)c)c. Evaluation of this expression is done in
three steps: taking the individual complements of R1 and R2, applying the intersection, and taking the
complement of the result. This can be written in linear form as

Ac

(
A∩

([
AI

Ac

]
x+

[
bI
bc

])
+ b∩

)
+ bc.

Substituting the weight and bias terms and simplifying yields parameters for the union:

A∪ = [1, 1], b∪ = −1.5. (Union)

It can be verified that the intersection can similarly be derived from the union operator based using
R1 ∩R2 = ((R1)c ∪ (R2)c)c Results obtained with both operators are shown in Figures 3(e) and 3(f).

2.2.2 General n-ary operations

We now consider general operations that combine regions from more than two units. It suffices to look at
a single output unit σ(〈a, x〉−β) with weight vector a and bias term β. Any negative entry in a mean that
the corresponding input region is negated and that its complement is used, whereas zero valued entries
indicate that the corresponding region is not used. Without loss of generality we assume that all input
regions are used and normalized such that all entries in a can be taken strictly positive. We again start by
looking at the idealized situation where inputs are generated using a step function with outputs -1 or 1.
When a is the vector of all ones, and k out of n inputs are positive we have 〈a, x〉 = k− (n− k) = 2k−n.
Choosing activation level β = 2k−n−1 therefore ensures that the output of the unit is positive whenever
at least k out of n inputs are positive. As extreme cases of this we obtain the n-ary intersection with
k = n, and the n-ary union by choosing k = 1. Weights can be adjusted to indicate how many times each
region gets counted.

It was noted by Huang and Littmann [12] that complicated and highly non-intuitive regions can be
formed with the general n-ary operations, even in the second layer. As an example, consider the eight
hyperplanes plotted in Figure 4(a). The weight assigned to each hyperplane determines the contribution to
each cell that lies within the enclosed halfspace. The total contributions for each cell shown in Figure 4(a)
represent the total weight obtained when using weight two to the outer hyperplanes and a unit weight for
the inner hyperplanes, combined with step function input ranging from 0 to 1. Adding up values for so
many regions in a single step worsens the scaling issue mentioned for the unitary operator: In this case
choosing a threshold of β = 9.5 leads to values ranging from −3.5 to 0.5 before application of the sigmoid
function. Using ν1 = `10 and ν2 = σ50 for amplification with different weight vectors and threshold values
we obtain the regions shown in Figures 4(b) to 4(d).

Removing the large amplification factor in the second layer can lead to regions with low or varying
confidence levels. For the mixed weights example, using ν2 = σ1 and threshold β = 6.5 causes the
intended region to have four distinct confidence levels, as shown in Figure 4(e). Low weights can also
be leveraged to obtain a parsimonious representation of smooth regions that would otherwise require the
many more halfspaces. An example of this is shown in Figure 4(f) in which the four outer halfspaces with
soft boundaries are combined to form a smooth circular region.

2.3 Boolean function representation using two layers

As seen from Section 2.2.1 neural networks can be used to take the union of intersections of (possibly
negated) sets. In Boolean logic this form is called disjunctive normal form (DNF), and it is well known
that any Boolean function can be expressed in this form (see also [1]). Likewise we could reverse the order
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(a) (b) (c)

(d) (e) (f)

Figure 4: Application of the n-ary operator. Plot (a) shows the location and orientation of the eight
hyperplanes and the total weight for each of the cells when using weight two for the outer hyperplanes
(thick dashed line) and unit weight for the inner hyperplanes (thin dashed line). Plots (b) and (c) show
the regions formed when choosing β = 9.5 and β = 8.5 respectively, with activation function ν1 = `10 and
ν2 = σ50. Plot (d) shows the region obtained when assigning unit weights to each hyperplanes and using
β = 4.5. In plot (e) we change the settings from plot (b) by replacing the second activation function to σ1

and using β = 6.5. The lack of amplification results in a region with four different confidence levels. Plot
(f) illustrates the formation of a smooth circular region using only the outer four hyperplanes together
with activation functions ν1 = `1 and ν2 = σ50, and threshold β = 6.5.

of the union and intersection operators and arrive at conjunctive normal form (CNF), which is equally
powerful. Two-layer networks are, in fact, far stronger than this and can be used to approximate general
smooth functions. More information on this can be found in [2, Sec. 4.3.2].

2.4 Boundary regions and amplification

The use of sigmoidal nonlinearity functions leads to continuous transitions between different regions. The
center of the transition regions for a node can be defined as the set of feature points for which the output
of that node is zero. Given input xk−1 for some node at depth k we first form 〈a, xk−1〉, then subtract
the bias β, and apply the sigmoid function. The output is zero if only if 〈a, xk−1〉 = β, and the transition
center therefore corresponds to the level set of 〈a, xk−1〉 at β. For a fixed a we can thus control the
location of the transition by changing β. As an example consider a two-level neural network with the
first layer parameterized by A1 = I, b1 = 0, and the second layer by A2 = [1, 1], b = β. Writing the
input vector as x0 = [x, y] it can be seen that A2x1 = σ(x) + σ(y), as illustrated in Figure 5. All values
greater than β will be mapped to positive values and, as discussed in Section 2.2.1, we again see that
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β = 1

β = 0

β = −1

Figure 5: Level sets of z = σ(x) + σ(y) at values β = −1, 0, 1 along with a slice at β = −1.

choosing β > 0 approximates the intersection of the regions x ≥ 0 and y ≥ 0, whereas choosing β < 0
approximates the union (indicated in the figure by the lines at z = −1). What we are interested in here
is the location of the transition center. Clearly, making the intersection more stringent by increasing β
causes the boundary to shift and the resulting region to become smaller. Another side effect is that the
output range of the second layer, which is given by [σ(−2 − β), σ(2 − β)], changes. Choosing β close to
2, the supremum of the input signal, means that the supremum of the output is close to zero, whereas
the infimum nearly reaches -1. To obtain larger positive confidence levels in the output, without shifting
the transition center, we need to amplify the input by scaling A2 and b2 by some γ > 1. In Figure 6
we study several aspects of the boundary region corresponding to the setting used for Figure 5, with the
addition of scaling parameter γ. For a given β we choose γ such that the maximum output of σ(γ(2−β))
is 0.995. Figures 6(a)–(c) show the transition region with values ranging from −0.95 and 0.95 along with
the center of the transition with value 0 and the region with values exceeding 0.95. Figure 6(d) shows the
required scaling factors.

The ideal intersection of the two regions coincides with the positive orthant and we define the shift in
the transition boundary as the limit of the y-coordinate of the zero crossing as x goes to infinity, giving

lim
x→∞

σ−1(β − σ(x)) = σ−1(β − 1).

The resulting shift values are show in Figure 6(e). Another property of interest is the width of the
transition region. Similar to the shift we quantify this as the difference between the asymptotic y-
coordinates of the −0.95 and 0.95 level set contours as x goes to infinity. We plot the results for several
multiples of γ in Figure 6(f). As expected, we can see that larger amplification reduces the size of the
transition intervals. The vertical dashed line indicates the critical value of β at which the −0.95 contour
becomes diagonal (y = −x) causing the transition width to become infinite. The same phenomenon
happens at smaller β when the multiplication factor is higher. Note that this break down is due only to
the definition of the transition width; the transition region itself remains perfectly well defined throughout.
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Figure 6: Transition regions for σγ(σ(x) +σ(y)−β) with contour lines at 0 and 0.95 of the minimum and
maximum values for (a) β = 1, (b) β = 1.8, and (c) β = 0.6. The value of scaling factor γ is chosen such
that output range reaches at least ±0.995. Plot (d) shows the required scaling factor as a function of β.
The shift in the transition region is plotted in (e). Plot (f) shows the transition width as a function of β,
using different multiples of γ.

2.5 Continuous to discrete

The level-set nature of applying the nonlinearity as illustrated in Figure 5 allows the generation of decision
boundaries that look very different from any one of those used for its input. One example of this was
shown in Figure 4(f) in which a circular region was generated by four axis-aligned hyperplanes, and we
now describe another. Consider the two hyperplanes in Figures 7(a,b), generated in the first layer with
respectively a = [0.1,−0.1], b = 0, and a = [0.1, 0.1], b = 0. The small weights and the limited domain
size cause the input values to the sigmoid nonlinearity to be small. As a result, the sigmoid operates in its
near-linear region around the origin and therefore resembles scalar multiplication. Consequently, because
the normals of the first layers form a basis, we can use the second layer to approximate any operation
that would normally occur in the first layer. For example we can choose a2 = [cos(α+π/4), sin(α+π/4)]
and b2 = 0 to generate a close approximation of a hyperplane at angle α (up to a scaling factor this
weight matrix is formed by multiplying the desired normal vector a by the rotation on the inverse of the
weight matrix of the first layer). The resulting regions of the second layer are shown in Figures 7(c,d) for
α = 90◦ and α = 70◦, respectively. This illustrates that, although somewhat contrived, it is technically
possible to change hyperplane orientation after the first layer.

As decision regions propagate and form through one or more layers with modest or large weights, their
boundaries become sharper and we see a gradual transition from continuous to discrete network behavior.

10



(a) (b) (c)

(d) (e) (f)

Figure 7: Combination of (a,b) two smooth regions defined by a diagonal hyperplane into (c) a vertical
region, and (d) a region at an angle of 70 degrees. Using the setup for (d) with scaled weights in the first
layer gives the region shown in (e) for weight factor 10, and (f) for weight factor 20.

In the continuous regime, where the transitions are still gradual, the decision boundaries emerge as level
sets of slowly varying smooth functions and therefore change continuously and considerably with the
choice of bias term. As the boundary regions become sharper the functions tend to piecewise constant
causing the level sets to change abruptly only at several critical values while remaining fairly constant
otherwise, thus giving more discrete behavior. In Figures 7(e,f) we show intermediate stages in which we
scale the weights in the first layer Figures 7(d) by a factor of 10 and 20, respectively. In addition, it can
be seen that scaling in this case does not just sharpen the boundaries, but actually severely distorts them.
Finally, it can be seen that the resulting region becomes increasingly diagonal (similar to its sharpened
input) as the weights increase. This again emphasizes the more discrete nature of region combinations
once the boundaries of the underlying regions are sharp.

2.6 Generalized functions for the first layer

The nodes in the first layer define geometric primitives, which are combined in subsequent layers. De-
pending on the domain it may be desirable to work with primitives other than halfspaces, or to provide
a set of different types. This can be achieved by replacing the inner products in the first layer by more
general functions fθ(x) with training examples x and (possibly shared) parameters θ. The traditional
hyperplane is given by

fθ(x) = 〈a, x〉+ β, θ = (a, β)
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(a) Linear, R1 (b) Gaussian, R2 (c) R1 ∩Rc2

Figure 8: Shape primitives of type (a) halfspace, and (b) Gaussian, are combined to obtain (c).

For ellipsoidal regions we could then use

fθ(x) = α‖Ax− b‖22 + β, θ = (A, b, α, β).

More generally, it is possible to redefine the entire unit by replacing both the inner-product and the
nonlinearity with a general function to obtain, for example, a radial-basis function unit [14]. In Figure 8
we illustrate how a mixture of two types of geometric primitives can form regions that cannot be expressed
concisely with either type alone.

3 Region properties and approximation

The hyperplanes defined by the first layer of the neural network partition the space into different regions.
In this section we discuss several combinatorial and approximation theoretic properties of these regions.

3.1 Number of regions

One of the most fundamental properties to consider is the maximum number of regions into which Rd
can be partitioned using n hyperplanes. The exact maximum is well known to be

r(n, d) =
d∑
i=0

(
n

i

)
, (6)

and is attained whenever the hyperplanes are in general position [20, p.39]. With the hyperplanes in
place, the subsequent logic layers in the neural network can be used to identify each of these regions by
taking the union of (complements of) halfspaces. Individual regions can then be combined using the union
operator.

3.2 Approximate representation of classes

3.2.1 Polytope representation

When the set of points C ⊂ Rd belonging to a class form a bounded convex set, we can approximate it by
a polytope P given by the bounded intersection of a finite number of halfspaces. The accuracy of such
an approximation can be expressed as the Hausdorff distance between the two sets, defined as:

ρH(C,P) := max

[
sup
x∈C

d(x,P), sup
x∈P

d(x, C)
]
,
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with
d(x,S) := inf

y∈S
‖x− y‖2.

For a given class of convex bodies Σ, denote δH(C,Σ) := infV∈Σ ρH(C,V). We are interested in δH(C,Σ)
when Σ = Rd

(n), the set of all polytopes in Rd with at most n facets (i.e., generated by the intersection

of up to n halfspaces), and in particular how it behaves as a function of n. The following result obtained
independently by [4, 7] is given in [5]. For every convex body U there exists a constant c(U) such that

δH(U ,Rd
(n)) ≤

c(U)

n2/(d−1)
.

More interesting perhaps is a lower bound on the approximation distance. For the unit ball B we have
the following:

Theorem 3.1. Let B denote the unit ball in Rd. Then for sufficiently large n there exists a constant cd
such that

δH(B,Rd
(n)) ≥

cd
n2/(d−1)

,

Proof. For n large enough there exists a polytope P ∈ Rd
(n) with n facets and δ := δH(B,P) ≤ 9/64.

Each of the n facets in P is generated by a halfspace, and we can use each halfspace to generate a point
on the unit sphere in Rd such that the surface normal at that point matches the outward normal of the
halfspace. We denote the set of these points by N , with |N | = n. Now, take any point x on the unit
sphere. From the definition of δ it follows that the maximum distance between x and the closest point
on one of the hyperplanes bounding the halfspaces is no greater than δ. From this it can be shown that
the distance to the nearest point in N is no greater than ε := 2

√
δ. Moreover, because the choice of x

was arbitrary, it follows that N defines an ε-net of the unit sphere. Lemma 3.2 below shows that the
cardinality |N | ≥ c′

ε(d−1) . Substituting ε = 2
√
δ gives

n ≥ c′

2(d−1)δ(d−1)/2
, or δ ≥ cd

n2/(d−1)
.

Lemma 3.2. Let N be an ε-net of the unit sphere Sd−1 in Rd with ε ≤ 3/4, then

|N | ≥
√

2π(d− 1)/d · ε1−d.

Proof. By definition of the ε-net, we obtain a cover for Sd−1 by placing balls of radius ε at all x ∈ N . The
intersection of each ball with the sphere gives a spherical cap. The union of the spherical caps covers the
sphere and |N | times the area of each spherical cap must therefore be at least as large as the area of the
sphere. A lower bound on the number of points in N is therefore obtained by the ratio ν between the area
of the sphere and that of the spherical cap (see also [23, Lemma 2]). Denoting by ϕ = arccos(1− 1

2ε
2) the

half-angle of the spherical cap it follows from [13, Corollary 3.2(iii)] that ν satisfies

1/ν <
1√

2π(d− 1)
· 1

cosϕ
· sind−1 ϕ,

whenever ϕ ≤ arccos 1/
√
d. This bound can be substituted into the second term above to obtain

√
d, and

can be verified to hold whenever ε ≤ 3/4. It further holds that sinϕ < ε which, after rewriting, gives the
desired result.

13



3.2.2 More efficient representations

From Theorem 3.1 we see that a large number of supporting hyperplanes is needed to define a polytope
that closely approximates the unit `2-norm ball. Approximating such a ball or any other convex sets by
the intersection of a number of halfspaces can be considered wasteful, however, since it uses only a single
region out of the maximum r(n, d) given by (6). This fact was recognized by Cheang and Barron [6],
and they proposed an alternative representation for unit balls that only requires O(d2/δ2) halfspaces—far
fewer than the conventional O(1/δ(d−1)/2). The construction is as follows: given a set of n suitably chosen
halfspaces Hi and the indicator function 1Hi(x) which is one if x ∈ Hi and zero otherwise. Typically
these halfspaces are used to define polytope P := {x ∈ Rd |

∑
i 1Hi(x) = n}, that is, the intersection of

all halfspaces. The (non-convex) approximation proposed in [6] is of the form

Q := {x ∈ Rd |
∑
i

1Hi(x) ≥ k},

which consists of all points that are contained in at least k halfspaces. This representation is shown to
provide far more efficient approximations, especially in high dimensions. As described in Section 2.2.2, this
construction can easily be implemented as a neural network. A similar approximation for the Euclidean
ball, which also takes advantage of smooth transition boundaries is shown in Figure 4(f).

3.3 Bounds on the number of separating hyperplanes

In many cases, it suffices to simply distinguish between the different classes instead of trying to exactly
trace out their boundaries. Doing so may reduce the number of parameters and additionally help reduce
overfitting. The bound in Section 3.1 gives the maximum number of regions that can be separated by a
given number of hyperplanes. Classes found in practical applications are extremely unlikely to exactly
fit these cells, and we can therefore expect that more hyperplanes are needed to separate them. We now
look at the maximum number of hyperplanes that is needed.

3.3.1 Convex sets

In this section we assume that the classes are defined by convex sets whose intersection is either empty
or of measure zero. We are interested in finding the minimum number of hyperplanes needed such that
each pair of classes is separated by at least one of the hyperplanes. In the worst case, a hyperplane is
needed between any pair of n classes, giving a maximum of

(
n
2

)
hyperplanes, independent of the ambient

dimension. That this maximum can be reached was shown by Tverberg [22] who provides a construction
due to K.P. Villanger of a set of n lines in R3 such that any hyperplane that separates one pair of lines,
intersects all others. Here we describe a generalization of this construction for odd dimensions d ≥ 3.

Theorem 3.3. Let A = [A1, A2, . . . , An] be a full-spark matrix with blocks Ai of size d× (d− 1)/2, with
odd d ≥ 3. Let bi, i = 1, . . . , n be vectors in Rd such that [Ai, Aj , bi − bj ] is full rank for all i 6= j. The
subspaces

Si = {x ∈ Rd | x = Aiv + bi, v ∈ R(d−1)/2}.

are pairwise disjoint and any hyperplane separating Si and Sj, i 6= j, intersects all Sk, k 6= i, j.

Proof. Any pair of subspaces Si and Sj intersects only if there exist vectors u, v such that

Aiu+ bi = Ajv + bj , or [Ai, Aj ]

[
u
−v

]
= bj − bi.

14



It follows from the assumption that [Ai, Aj , bj − bi] is full rank, that no such two vectors exist, and
therefore that all subspaces are pairwise disjoint.

Any hyperplane Hi,j separating Si and Sj is of the form aTx = β. To avoid intersection with Si we
must have aT (Aiv + b) 6= β for all v ∈ Rd−1, which is satisfied if an only if aTAi = 0. It follows that we
must also have aTAj = 0, and therefore that a is a normal vector to the (d − 1)-subspace spanned by
[Ai, Aj ]. From the full-spark assumption on A it follows that aTAk 6= 0 for all k 6= i, j, which shows that
Hi,j intersects the corresponding Sk. The result follows since the choice of i and j was arbitrary.

Random matrices A and vectors bi with entries i.i.d. Gaussian satisfy the conditions in Theorem 3.3
with probability one, thereby showing the existence of the desired configurations. A simple extension
of the construction to dimension d + 1 is obtained when generating subspaces S ′i ⊂ Rd+1 by matrices
A′i, formed by appending a row of zeros to Ai and adding a column corresponding to the last column of
the d × d identify matrix, and vectors b′i = [bi; 0]. Pach and Tardos [17] further show that the lines in
the construction described by Tverberg can be replaced by appropriately chosen unit segments. Adding
a sufficiently small ball in the Minkowski sense then results in n bounded convex sets with non-empty
interior whose separation requires the maximum

(
n
2

)
hyperplanes.

3.3.2 Point sets

When separating a set of n points, the maximum number of hyperplanes needed is easily seen to be n−1;
we can cut off a single extremal point of subsequent convex hulls until only a single point is left. This
maximum can be reached, for example when all points lie on a straight line. For a set of points in general
position, it is shown in [3] that the maximum number f(n, d) of hyperplanes needed satisfies

d(n− 1)/de ≤ f(n, d) ≤ d(n− 2dlog de)/de+ dlog de.

Based on this we can expect the number of hyperplanes needed to separate a family of unit balls to be
much smaller than the maximum possible

(
n
2

)
, whenever n > d+ 1.

3.3.3 Non-convex sets

The interface between two non-convex sets can be arbitrarily complex, which means that there are no
meaningful bounds on the number of hyperplanes needed to separate general sets.

4 Gradients

Parameters in the neural network are learned by minimizing a loss function over the training set, using
for example backpropagation [19] or stochastic gradient descent on the formulation shown in (4). The
gradient of such a loss function decouples over the training samples and can be written as

∇φ(s) = 1
|T |

∑
(x,c)∈T

∇f(s;x, c) (7)

The idea of the section is to explore how points contribute when they are part of a training set. That
is, for a given parameter set s, and with the class information c = c(x) assumed to be known, we are
interested in ∇f(x), behavior of ∇f as a function of x. We will see that some points in the training set
contribute more to the gradient than others. So, instead of just looking at the total gradient, we can
also look at the amount of information that is provided by each point: points that have a large relative
contribution to the gradient can be said to be more informative than those that do not contribute much.
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(a) (b) (c)

Figure 9: Classification of points on the x-axis, with (a) the decision region: p̂(x) = `5(σ(αx − β)) with
α = 1, β = 0; (b) the cross entropy: f(x) = − log p̂(x); (c) partial derivatives of the loss function with
respect to α and β

Throughout this and the next section we use the word ‘gradient’ loosely and also use it to refer to blocks
of gradient entries corresponding to the parameters a layer, individual entries, or the gradient field ∇f(x)
of those quantities over the entire feature space. The exact meaning should be clear from the context.

4.1 Motivational example

We illustrate the relative importance of different training samples using a simple example. We define a
basic two-layer neural network in which the first layer defines a hyperplane αx = β with nonlinearity
ν1 = σ, and in which the second layer applies the identity function follow by nonlinearity ν2 = `5 for
amplification. Choosing α = 1 and β = 0 defines the region shown in Figure 9(a). Now, suppose that all
points x ∈ [−12, 12] belong to the same class and should therefore be part of this region. Intuitively, it
can be seen that slight changes in the location of the hyperplane or in the steepness of the transition will
have very little effect on the output of the neural network for input points |x| ≥ 5, say, since values close
to one or zero remain so after the perturbation. As such, we expect that in these regions the gradient with
respect to α and β will be small. For points in the transition region the change will be relatively large,
and the gradient at those points will therefore be larger. This suggests that training point away from the
transition region provide little information when deciding in which direction to move the hyperplane and
how sharp the transition should be; this information predominantly comes from the training points in the
transition region.

More formally, consider the minimization of the negative log likelihood loss function for this network,
given by

f(x) = − log p̂(x) with p̂(x) = `5(σ(αx− β)).

For the gradient, we need the derivative of the sigmoid function, σ′γ(x) = 2`′γ(x) with

`′γ(x) =
γe−γx

(1 + e−γx)2
= γ

(
1 + e−γx

(1 + e−γx)2
− 1

(1 + e−γx)2

)
= γ[`γ(x)− `2γ(x)],

and the derivative of the negative log of the logistic function:

d

dx
[− log(`γ(x))] = −

`′γ(x)

`γ(f(x))
= −γ

`γ(x)− `2γ(x)

`γ(x)
= γ[`γ(x)− 1].
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Combining the above we have

∂f/∂α = γ [`γ(σ(αx− β))− 1] · σ′(αx− β) · x
∂f/∂β = −γ [`γ(σ(αx− β))− 1] · σ′(αx− β),

with γ = 5. The loss function and partial derivatives with respect to α and β are plotted in Figure 9(b) and
(c). The vertical lines in plot (c) indicate where the gradients fall below one percent of their asymptotic
value. As expected, points beyond these lines do indeed contribute very little to the gradient, regardless
of whether they are on the right or the wrong side of the hyperplane.

4.2 General mechanism

For the contribution of each sample to the gradient in general settings we need to take a detailed look at
the backpropagation process. This is best illustrated using a concrete three-layer neural network:

A1 =

[
1.0 0.3
0.4 −1.0

]
b1 =

[
−1.0

0.5

]
ν1 = σ3,

A2 =


−1 −1

1 −1
1 1
−1 1

 b2 =


1
1
1
1

 ν2 = σ3,

A3 =

[
1 0 1 0
0 1 0 1

]
b3 =

[
−1.1
−1.1

]
ν3 = µ.

(8)

Denoting by f(x) the negative log likelihood of µ(x), the forward and backward passes through the
network can be written as

v1 = A1x0 − b1

x1 = σ3(v1) y1 =
∂x1

∂v1
· z2 = σ′3(v1) · z2

v2 = A2x1 − b2 z2 =
∂v2

∂x1
· y2 = AT2 y2

x2 = σ3(v2) y2 =
∂x2

∂v2
· z3 = σ′3(v2) · z3

v3 = A3x2 − b3 z3 =
∂v3

∂x2
· y3 = AT3 y3

x3 = f(v3) y3 =
∂x3

∂v3
= ∇f(v3),

(9)

where the left and right columns respectively denote the stages in the forward and backward pass. The
regions formed during the forward pass are shown in Figure 10. With this, the partial differentials with
respect to weight matrices and bias vectors are of the following form:

∂f

∂[A3]i,j
=

∂v3

∂[A3]i,j
· y3 = [x2]j · [y3]i, and

∂f

∂b3
=
∂v3

∂b3
· y3 = −y3. (10)

We now analyze each of the backpropagation steps to explain the relationship between the regions of
high and low confidence at each of the neural network layers and the gradient values or importance of
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C1 C2

C2 C1

(a) (b) [x1]1 (c) [x1]2

(d) [x2]1 (e) [x2]2 (f) [x2]3

(g) [x2]4 (h) [µ(v3)]1 (i) [µ(v3)]2

Figure 10: Regions corresponding to the neural network with weights defined by (8), with (a) the two
ground-truth classes; (b,c) output regions of the first layer; (d–g) output regions of the second layer; and
(h,i) output regions of the third layer (showing only the intermediate output µ(v3) instead of the loss
function output) with desired class boundaries superimposed.

different points in the feature space. In all plots we only show the absolute values of the quantities of
interested because we are mostly interested in the relative magnitudes over the feature space rather than
their signs. After a forward pass through the network we can evaluate the loss function and its gradients,
shown in Figure 11(a). In this particular example we have [y3]1 = −[y3]2, so we only show the former.
Given y3 we can use (10) to compute the partial differentials of f with respect to the entries in A3 and b3.
The partial differential with respect to b3 simply coincides with −y3, and is therefore not very interesting.
On the other hand, we see that the partial differential with respect to [A3]i,j is formed by multiplying
[y3]i with the output value [x2]i. When looking at the feature space representation for the specific case
of [A3]1,2 and using absolute values, this corresponds to the pointwise multiplication of the values in
Figure 11(a) with the mask shown Figure 11(b). This multiplication causes the partial differential to be
reduced in areas of low confidence in [x2]2. In particular, it causes the partial differential to vanish at
points at the zero crossing of the boundary regions, as illustrated by the white curve in the upper-right
corner of Figure 11(c).
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(a) |[y3]1| (b) |[x2]2| (c) |∂f/∂[A3]1,2|

(d) |[z3]2| (e) [σ′3(v2)]2 (f) |[y2]2|

(g) |[x1]1| (h) |∂f/∂[A2]2,1| (i) |[z2]1|

(j) [σ′3(v1)]1 (k) |[y1]1| (l) |∂f/∂[A1]1,2|

Figure 11: Illustration of the error backpropagation process.
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In the next stage of the backpropagation we multiply y3 by the transpose of A3 to obtain z3, shown
in Figure 11(d). As an intermediate value z3 itself is not used, but it is further backpropagated though
multiplication by σ′3(v2) to obtain y2. As illustrated in Figure 1(a), the gradient of the sigmoid is a kernel
around the origin, and when applied to v2, the preimage of x2 under σ3, it emphasizes the regions of low
confidence and suppresses the regions of high confidence. This can be seen when comparing the mask
for [v2]2, shown in Figure 11(e), with the corresponding region [x2]2 shown in Figure 10(d). The result
obtained with multiplication by the mask is illustrated in Figure 11(f) and shows that backpropagation
of the error is most predominant in the boundary region as well as in some regions where it was large
to start with (most notably at the top of the bottom-left quadrant). From here we can compute the
partial differential with respect to the entries of A2 though multiplication by x1, which again damps
values around the transition region, and backpropagate further to get z2, as shown in Figures 10(g)–(i).
To obtain y1, we need to multiply z2 by the mask corresponding to the preimage of the regions in x1.
Unlike all other layers, these values are unbounded in the direction of the hyperplane normal and, as
shown in Figure 10(j), result in masks that vanish away from the boundary region. Multiplication by the
mask corresponding to [v1]1 gives [y1]1 shown in Figure 10(k). We finally obtain the partial differentials
with respect to the entries in A1 by multiplying by the corresponding entries in x0. For the first layer
this stage actually amplifies the gradient entries whenever the corresponding coordinate value exceeds one
in absolute value. In subsequent layers the maximum values of x lie in the -1 to 1 output range of the
sigmoid function and can therefore only reduce the resulting gradient components.

In Figure 12(a) we plot the maximum absolute gradient components for each of the three weight
matrices. It is clear that the partial differentials with respect to A3 are predominant in misclassified
regions, but also exist outside of this region in areas where the objective function could be minimized
further by increasing the confidence levels (scaling up the weight and bias terms). In the second layer, the
backpropagated values are damped in the regions of high confidence and concentrate around the decision
boundaries, which, in turn, are aligned with the underlying hyperplanes. Finally, in the first layer, we see
that gradient values away from the hyperplanes have mostly vanished as a result of multiplication with
the sigmoid gradient mask, despite the multiplication with potentially large coordinate values. Overall
we therefore see the tendency of the gradients to become increasingly localized in feature space towards
the first layer. The boundary shifts we discussed in Section 2.4 can lead to additional damping, as the
sigmoid derivative masks no longer align with the peaks in the gradient field. Scaling of the weight and
bias is detrimental to the backpropagation of the error (a phenomenon that is also known as saturation
of the sigmoids [14]) and can lead to highly localized gradient values. This is illustrated in Figures 12(b)
and (c) where we scale all weight and bias terms by a factor of 2 and 3, respectively. Especially in deep
networks it can be seen that a single sharp mask in one of the layers can localize the backpropagating
error and thereby affect all preceding layers. These figures also show that the increased scaling of the
weights not only leads to localization, but also to attenuation of the gradients. In the first layer this is
further aided by the multiplication with the coordinate values. Finally, we note that the above principles
continue to hold for other loss functions as well.

5 Optimization

In the previous section we studied how individual training samples contribute to the overall gradient (7)
of the loss function. In this section we take a closer look at the dynamic behavior and the changing
relevance of training samples during optimization over the network parameter vector s. The parameter
updates are gradient-descent steps of the form

sk+1 = sk − α∇φ(sk), (11)
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maxi,j |∂[A3]i,j | maxi,j |∂[A2]i,j | maxi,j |∂[A1]i,j |

(a) γ = 1

(b) γ = 2

(c) γ = 3

Figure 12: Distribution over the feature space of the maximum gradient components for the weight
matrices in each of the three layers. The weight and bias terms in all layers are scaled by a factor γ.

with learning rate α. The goal of this section is to clarify the relationships between the training set and
the optimization process of the network parameters. To keep things simple we make no effort to improve
the efficiency of the optimization process and, unless noted otherwise, we use a fixed learning rate with
a moderate value of α = 0.01. Likewise, we compute the exact gradient using the entire training set
instead of using an approximation based on suitable chosen subsets, as is done in practically favored
stochastic gradient descent (SGD) methods. Note, however, that the mechanisms exposed in this section
are general enough to carry over to these and other methods without substantial changes. Similar findings
may moreover apply to support vector machines and other models. Throughout this section we place a
particular emphasis on the first layer of the neural network. To illustrate certain mechanisms it often
helps to keep parameters of subsequent layers fixed. In this case it is implied that the corresponding
entries in the gradient update in (11) are zeroed out.
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5.1 Sampling density and transition width

To investigate the roles of sampling density and transition width we start with a very simple example
with feature vectors x ∈ [−6, 6] × [−1, 1] ⊂ R2, and two classes: one consisting of all points x in which
the first entry is negative, and one consisting of all other points. Example training sets with samples in
each of the two classes are plotted in Figure 13(a) and (b). Given such training sets we want to learn the
classification using a neural network with a single hidden layer consisting of one node. To ensure that the
classes are well defined we place four training samples—two for each class– near the interface of the two
classes and sample the remaining points to the left and right of these points. Unless stated otherwise we
keep all network parameters fixed except for the weights and bias terms in the first layer.

5.1.1 Sampling density

In the first experiment we study how the number or density of training points affects the optimization.
We initialize the network with parameters

A1 = 25√
1.09

[1, 0.3], b1 = A1 · [2, 0]T , A2 = [3;−3], b2 = [0; 0],

and keep the parameters in the second layer fixed. Parameter b1 is chosen such that the initial hyperplane
goes through the point (2, 0). Training sets consist of n samples, including the four at the interface, and
are chosen such that the number of points in each class differs by at most one. Figures 13(a) and (b)
illustrate such sets for n = 50, and n = 800, respectively. The hyperplane is indicated by a thick black
line, bordered with two dashes lines which indicate the location where the output of the first layer is equal
to ±0.95. Figure 13(c) shows the magnitude of the partial differential with respect to [A1]1 at the initial
parameter setting over the entire domain. The gradient ∇φ(s) is then computed as the average of the
gradient values evaluated at the individual training samples. As a measure of progress we can look at the
area of the misclassified region, i.e., the region between the y-axis and the hyperplane. Figure 13(e) shows
this area as a function of iteration for different sampling densities. The shape of the loss function curves
are very similar to these and we therefore omit them here. For n = 800 and n = 3200 the area of the
misclassified region steadily goes down to zero, although the rate at which it does so gradually diminishes.
Although not apparent from the curves, this phenomenon happens for all the training sets used here and
we will explain exactly why this happens in Section 5.2. Progress for n = 50 and n = 200 appears much
less uniform and exhibits pronounced stages of fast and slow progress. The reason for this is a combination
of the sampling density and the localized gradient. From Figure 13(c) we can see that the gradient field
is concentrated around the hyperplane, with peak values slightly to the left of the hyperplane. When
the sampling density is low it may happen that none of the training samples is close to the hyperplane.
When this happens, the gradient will be small, and consequently progress will be slow. When one or more
points are close to the hyperplane, the gradient will be larger and progress is faster. Figure 13(f) shows
the rate of change in the area of the misclassified region along with the distance between the hyperplane
and its nearest training sample for n = 50. It can be seen that the rate increases as the hyperplane moves
towards the training sample, with the peak rate happening just before the hyperplane reaches the point.
After that the rate gradually drops again as the hyperplane slowly moves further away from the sample.
This is precisely the state at 300,000 iterations, which is illustrated in Figure 13(d). For n = 25, we find
ourselves in the same situation right at the start. Initially we move away from a single training point, but
as a consequence of the low sampling density, no other sampling points are nearby, causing a prolonged
period of very slow progress. The discrete nature of training samples is less pronounced when the overall
sampling density is high, or when the transition widths are large.
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Figure 13: Simple domain and initial hyperplane location with (a) 50, and (b) 800 training samples
equally divided over two classes, along with (c) the initial gradient field. Plot (d) shows the location of
the hyperplane after 300,000 iterations and (e) shows the area of the misclassified region as a function of
iteration for different numbers of training samples. Plot (f) shows the reduction in misclassified area per
iteration and the distance between the hyperplane and the nearest sample when 50 training samples are
used.
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5.1.2 Transition width

To illustrate the effect of transition widths, we used the setting with 3,200 samples as described above,
but scaled the row vector of the initial A1 to have Euclidean norm ranging from 1 to 100. In each case
we adjust b1 such that the initial hyperplane goes through the point (2, 0). As shown in Figure 14(a), the
misclassified area reaches zero almost immediately when A1 is scaled to have unit norm. In other words,
the hyperplane is placed correctly in this case after only 3,260 iterations. As the norm of the initial A1

increases, it takes longer to reach this point: for an initial norm of 10 it takes some 72,580 iterations,
whereas for an initial norm of 25 it takes over 300,000. Accordingly, we see from Figure 14(b) that the loss
also drops much faster for small weights than it does for large weights. However, once the hyperplane is in
place, the only way to decrease the loss is by scaling the weights to improve the confidence. This process
can be somewhat slow when the weights are small and the hyperplane placement is finalized (as is the
case when we start with small initial weights). As a result, the setup with initial weight of 25 eventually
catches up with the earlier two, simply because it has a much sharper transition at the boundary as the
hyperplane finally closes in to the right location.

The reason why the hyperplane moves faster for small initial weights is twofold. First, the transition
width and support of the gradient field are larger. As a result, more sample points contribute to the
gradient, leading to a larger overall gradient value. This is shown in Figures 14(c) and (d) in which we
plot the norm of the gradients with respect to A1 and b1 when choosing A1 = [a, 0], and b such that the
hyperplane goes through the given location on the x-axis. The gradients with respect to either parameters
are larger for smaller a. (Unlike in Figure 12, the localization of the gradient here is due only to scaling
of the weights in the first layer; the intensity of the gradient field therefore remains unaffected.) As
the value of a increases, the curves in Figures 14(c) before more linear. For those values the gradient
is highly localized and, aside from the scaling by the training point coordinates, largely independent of
the hyperplane location. The gradient with respect to b1 does not include this scaling and therefore
remains nearly constant as long as the overlap between the transition width and the class boundary is
negligible. As the hyperplane moves into the right place, the gradient vanishes due to the cancellation of
the contributions from the training points from the classes on either side of it. The curves for a = 16 and,
to a lesser extent, for a = 8 show minor aberrations due to a relatively low sampling density compared
to the transition width. Second, having larger gradient values for smaller weights means that the relative
changes in weights are amplified, allowing the hyperplane to move faster.

5.2 Controlling the parameter scale

In this section we work with a modified version of the domain shown in Figure 13(a). In particular, we
change the horizontal extent from [−3, 3] to [−30, 30], and randomly select 500 training samples uniformly
at random and equally divided over the two classes (thus leaving the sampling density unaffected). As a
first experiment we optimize a three-layer network with initial parameters:

A1 = [1, 0.3]/
√

1.09, b1 = A1 · [25; 0], A2 = 3, b2 = 0, and A3 = [3;−3], b3 = 0. (12)

When we look at the row-norms of the weight matrices, plotted in Figure 15(a), we can see that all of
them are growing. Such growth is perfectly fine when improving the final confidence levels, but can be
detrimental during the optimization process. Indeed, we can see from Figure 15(b) that the hyperplane
never quite reaches the origin, despite the large number of iterations. As illustrated in Figure 12, scaling
of the weight and bias terms leads to increasingly localized gradients. When the training sample density
is low compared to the size of the regions where the gradient values are significant, it can easily happen
that no significant values from the gradient field are sampled into the gradient. This applies in particular
to the first several layers (depending on the network depth) where the gradient fields become increasingly
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(c) (d)

Figure 14: Plots of (a) misclassified area and (b) the value of the loss function as a function of iterations
for different initial weights. Norms of the gradients with respect to (c) A1 and (d) b1 as a function of
hyperplane location with A1 = [a, 0] for different values of a.

localized (though not necessarily small) because of the sigmoidal gradient masks that are applied during
back propagation, along with shifts in the boundary regions. This ‘vanishing gradient’ phenomenon can
prematurely bring the training process to a halt; not because a local minimum is reached, but simply
because the sampled gradient values are excessively small. Scaling of the parameters in any layers except
the last can cause the gradient field to become highly localized for the current and all preceding layers.
This can cause a cascading effect in which suboptimal parameters in a stalled first layer lead to further
parameter scaling in later layers, eventually causing the second layer to stall, and so on. To avoid this,
we need to control the parameter scale during optimization.

Parameter growth can be controlled by adding a regularization or penalty term to the loss function,
or by imposing explicit constraints. Extending (4) we could use

minimize
s

φ(s) + r(s), or minimize
s

φ(s)

subject to ci(s) ≤ 0,
(13)

where r(s) is a regularization function, and ci(s) are constraint functions. The discussions so far suggest
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(a) (b)

Figure 15: Plots of (a) growth in the norms of the weight matrices and (b) reduction of the misclassified
area as a function of iteration.

some natural choices of functions for different layers. The function in the first layer should generally be
based on the (Euclidean) `2 norm of each of the rows in A1, such as their sum, maximum, or `2 norm.
The reason for this is that each row in A1 defines the normal of a hyperplane, and using any function
other than an `2 norm may introduce a bias in the hyperplane directions. For subsequent layers k (except
possibly the last layer) we may want to ensure that the output cannot be too large. In the worst case,
each input from the previous layer is close to +1 or −1, and we can limit the output value by ensuring
that the sum of absolute values, i.e., the `1 norm, of each row in Ak is sufficiently small. Of course, the
corresponding value in bk could still be large, which may suggest adding a constraint that ‖[Ak]j‖1 ≤ |[bk]j |
for each row j. However, this constraint is non-convex and may impede sign changes in b. The use of
an `1 norm-based penalty or constraint on intermediate layers has the additional benefit that it leads to
sparse weight matrices, which can help reduce model complexity as well as evaluation cost.

As an illustration of the effect of `2 regularization on the first layer we consider the setting as given in
(12), but with the second layer removed. We optimize the weight and bias terms in the first layer using
the standard formulation (4), as well as those in (13) with r(s) = λ/2‖AT1 ‖22 or c(s) = ‖AT1 ‖2 ≤ κ. For
simplicity we keep all other network parameters fixed. Optimization in the constrained setting is done
using a basic gradient projection method with step size fixed to 0.01, as before. The results are show
in Figure 16. When using the standard formulation we see from Figure 16(a) that, like above and in
Figures 13(a,d), the `2 norm of the row in A1 keeps growing. This is explained as follows: suppose the
hyperplane is vertical with A1 of the form [a, 0], and b1 = b. Then the area of the misclassified region is
2|b|/|a|. We can therefore reduce the misclassified area (and in this case the loss function) by increasing
a and decreasing b, which is exactly what happens. However, from Figure 16(b) we can see that the rate
at which the misclassified area is reduced decreases. The reason for this is a combination of three factors.
First, the speed at which |b|/|a| goes towards zero slows down as a gets larger. Second, the peak of the
gradient field lies along the hyperplane and shifts towards the origin with it. Because the gradient in the
first layer is formed by a multiplication of the backpropagated error with the feature vectors (coordinates),
the gradient gets smaller too. Third, because of the growing norm of A1, the transition width shrinks and
causes the gradient to become more localized. As a result, fewer training points sample the gradient field
at significant values, leading to smaller overall gradients with respect to both A1 and b1. As an aside,
note that if the class boundary were to the left of the current starting point, all the above three effects
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Figure 16: Differences between (a) the norm of A1; (b) the area of the misclassified region; (c) the
magnitude of b; and (d) the loss function, as a function of iteration for standard gradient descent and
variations of regularized and constrained optimization.

would be beneficial and help speed up convergence to the right location.
There is not much we can be do about the first two causes, but adding a regularization term or

imposing constraints, certainly does help with the third, and we can see from Figure 16(a) that the norm
of A1 indeed does not grow as much as in the standard approach. At first glance, this seems to hamper
the reduction of the misclassified area, shown in Figure 16(b). This is true initially when most of the
progress is due to the scaling of A1, however, the moderate growth in A1 also prevents strong localization
of the gradient and therefore results in much steadier reduction of b, as shown in Figure 16(c). The
overall effect is that the constrained and regularized methods catch up with the standard method and
reduce the misclassified area to zero first. Even so, when looking at the values of the loss function without
the penalty term, as plotted in Figure 16(d), we see that the standard method still reaches the lowest
value, even though all methods have zero misclassification. As before, this is because the two classes are
disjoint and are best separated with a very sharp transition. The order in which the lines in Figure 16(d)
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appear at the end, is therefore related to the norms in Figure 16(a). This suggests the use of cooling or
continuation strategies in which norms are gradually allowed to increase. The initial small weights ensure
that many of the training samples are informative and contribute to the gradients of all layers, thereby
allowing the network to find a coarse class alignment. From there the weights can be allowed to increase
slowly to fine tune the classification and increase confidence levels. Of course, while doing so, care needs
to be taken not to excessively scale the weights as this can lead to overfitting.

Instead of scaling weight and bias terms we could also consider scaling sigmoid parameters γ, or learn
them [21]. One interesting observation here is that even though all networks with parameters αA1, αb1,
and γ/α are equivalent for α > 0, their training certainly is not. The reason is the 1/α term that applies
to the gradients with respect to A1 and b1. Choosing α > 1 means larger parameter values and smaller
gradients. This reduces both the absolute and relative change in parameter values and is equivalent
to having a stepsize that is α2 smaller. Instead of doing joint optimization over both the layer and
nonlinearity parameters, it is also possible to learn the nonlinearity parameters as a separate stage after
optimization of the weight and bias terms.

5.3 Subsampling and partial backpropagation

Consider the scenario shown in Figure 13(a) and suppose we double the number of training samples
by adding additional points to the left and right of the current domain. In the original setting, the
gradient with respect to the weights in the first layer is obtained by sampling the gradient field shown in
Figure 13(c). In the updated setting, all newly added points are located away from the decision boundary.
As a result, their contribution to the gradient is relatively small and the overall gradient may be very
similar to the original setting. However, because the loss function φ(s) in (4) is defined as the average of
the individual loss-function components, we now need to divide by 2N rather than N , thereby effectively
scaling down the gradient by a factor of approximately two. Another way to say this is that the stepsize is
almost halved by adding the new points. This example is of course somewhat contrived, since additional
training samples can typically be expected to follow the same distribution as existing points and therefore
increase sampling density. Nevertheless, this example may make us wonder whether the training samples
on the left and right-most side of the original domain are really needed; after all, using only the most
informative samples in the gradient essentially amounts to larger stepsize and possibly a reduction in
computation.

For sufficiently deep networks with even moderate weights, the hyperplane learning is already rather
myopic in the sense that only the training points close enough to the hyperplane provide information on
where to move it. This suggests a scheme in which we subsample the training set and for one or more
iterations work with only those points that are relevant. We could for example evaluate v1 = A1x0 − b1
for each input sample x0, and proceed with the forward and backward pass only if the minimum absolute
entry in v1 is sufficiently small (i.e., the point lies close enough to at least one of the hyperplanes). This
approach works to some extend for the first layer when the remaining layers are kept fixed, however, it
does not generalize because the informative gradient regions can differ substantially between layers (see
e.g., Figure 12). Instead of forming a single subsampled set of training points for all layers we can also
form a series of sets—one for each layer—such that all points in a set contribute significantly to the
gradient for the corresponding and subsequent layers. This allows us to appropriately scale the gradients
for each layer. It also facilitates partial backpropagation in which the error is backpropagated only up to
the relevant layer, thereby reducing the number of matrix-vector products. Given a batch of points, we
could determine the appropriate set by evaluating the gradient contribution to each layer and finding the
lowest layer for which the contribution is above some threshold. Alternatively, we could use the following
partial backpropagation approach, which may be beneficial in its own right, especially for deep networks.
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(a) 100%, 51% (b) 28%, 16% (c) 9%, 7%

(d) 100%, 40% (e) 28%, 14% (f) 9%, 6%

Figure 17: Regions of the feature space that are backpropagated to layers 2 and 1. From left to right we
have the settings γ = 1, γ = 2, and γ = 3 from Figure 12, respectively. The top row shows the results
obtained with the Frobenius norm of the gradients with respect to the weight matrices in each layer. The
bottom row shows the results obtained by bounding the gradients elementwise. The percentages indicate
the fraction of the feature space that was backpropagated to the second, and first layer.

In order to do partial backpropagation, we need to determine at which layer to stop. If this infor-
mation is not given a priori, we need a conservative and efficient mechanism that determines if further
backpropagation is warranted. One such method is to determine an upper bound on the gradient compo-
nents of all layers up to the current layer and decide if this is sufficiently small. We now derive bounds on
‖∂f/∂Ak‖F and ‖∂f/∂bk‖F as well as on maxi,j |[∂f/∂Ak]i,j | and ‖∂f/∂bk‖∞. It easily follows from (10)
that these quantities are equal to ‖xk−1‖2‖yk‖2 and ‖yk‖2, respectively ‖xk−1‖∞‖yk‖∞ and ‖yk‖∞. Since
xk−1 is known explicitly from the forward pass, it suffices to bound the norms of yk. In fact, what we
are really after is to bound the norms of yk for all 1 ≤ k < j given yj , since we can stop backpropagation
only if all of them are sufficiently small. For the `2 norm we have

‖yk−1‖2 ≤ ‖σ′γk−1
(vk−1)‖∞‖zk‖2 ≤ σ′γk−1

([vk−1]i) · σmax(Ak)‖yk‖2, (14)

where i := arg minj |[vk−1]j |, and σmax(Ak) is the largest singular values of Ak. Once we have a bound on
‖yj‖2 we can apply (14) with k = j to bound ‖yj−1‖2. Although computation of σmax(Ak) needs to be
done only once per batch but may still be prohibitively expensive. In practice, however, it may suffice to
work with an approximate value, or use an alternative bound instead. For `∞ we find

‖yk−1‖∞ ≤ max
i
{σ′γk−1

([vk−1]i) · ‖[Ak]i‖2‖yk‖2} ≤ ‖σ′γk−1
(vk)‖∞‖yk‖2 max

i
{‖[Ak]i‖2}, (15)
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Figure 18: Plots of (a) the coefficient of variation as a function of the number of training samples N with
curves of the form c(w)/

√
N ; and (b) scaling factor c(w) ≈ 1.1

√
w as a function of w, the norm of A1.

Dashed lines show the least-square fits of the above forms.

where the second, looser bound can be used if we want to avoid evaluating σ′γk−1
for all entries in vk; the

infinity norm of this vector can be evaluated as above.
We applied the second bound in (14) and the first bound in (15) to the setting for Figure 12 as

follows. We first compute y3 and evaluate the bound the gradients with respect to the weight and bias
terms in the first and second layer. If these bounds are smaller than 0.05 and 0.01, respectively, we stop
backpropagation. Otherwise, we evaluate y2 and update the bound on the gradient with respect to the
parameters of the first layer. If this is less than 0.05 we stop backpropagation, otherwise we evaluate y1

and complete the backpropagation process. In Figure 17 we show the regions of the feature space where
backpropagation reaches the second, respectively first layer. These regions closely match the predominant
regions of the gradient fields shown in Figure 12. In practical applications the threshold values could be
based on previously computed (partial) gradient values, and may be adjusted when the number of training
samples that backpropagate to a given layer falls below some threshold.

5.4 Sampled gradient variance

One of the most successful techniques in neural network optimization is mini-batch stochastic gradient
descent. In this method the gradient is approximated by averaging the gradient contribution from ran-
domly selected subsets of the training data. The advantage of this approach is that one pass over the
data leads to numerous descent iterations rather than just one, thereby enabling much faster progress.
The approximate gradients used in stochastic gradient descent match the exact gradient only in expec-
tation, and there is an inherent trade-off between the computational complexity and the variance in the
sampled gradients. Increasing the number of samples per batch lowers the variance, but increases the
computational complexity and additionally reduces the number of parameter updates per epoch.

The variance does not only depend on the batch size, but also depends on the weight: when the
gradient becomes very localized, we can expect the variance of a sampled gradient to increase. To verify
this we again used the simple domain as in Figure 13(a) where A1 was scaled to have different norms.
For each scaling factor we repeatedly sampled the gradient with respect to A1 at batches of various sizes
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with training points selected uniformly at random from the domain. The resulting coefficients-of-variation
curves (standard deviation over the mean) are plotted in Figure 18(a). As expected, the curves are of
the form c(w)/

√
N , where N is the number of training samples and c(w) is a scaling factor that depends

on w, the norm of A1. From this it is clear that the larger the norm of A1, the larger the coefficient of
variation. To get an idea about the scaling factors for this problem we determined the standard deviation
in the gradient for a range of w values, using 3, 200 samples. The dashed line in Figure 18(b) shows that
the scaling coefficients c(w) for the current setting are well approximated by 1.1

√
w. Although the exact

nature of the scaling coefficients may differ in other setting, this example does clearly illustrate that the
batch size required to maintain a certain variance level depends on the scaling of the weights. As the
weights increase (for example towards the end of the optimization process) it is therefore necessary to
increase the batch size to achieve an appropriate level of variance.

6 Conclusions

We reviewed and studied the decision region formation in feedforward neural networks with sigmoidal
nonlinearities. Although the definition of hyperplanes and their subsequent combination is well known,
very little attention has so far been given to transitions regions at the boundaries of classes and other
regions with varying levels of classification confidence. We clarified the relation between the scaling of the
weight matrices, the increase in confidence and sharpening of the transition regions, and the corresponding
localization of the gradient field. The degree of localization differs per layer and is one of the main factors
that determine how much progress can be made at each step of the training process: a high level of
localization combined with a relatively coarse sampling density or small batch size can lead both to large
variations in the gradient and to the vanishing gradient problem where updates to one or more layers
become excessively small. The gradient field tends to become increasingly localized towards the first layer,
and the parameters in this layer are therefore most likely to get stuck prematurely. When this happens,
subsequent layers must form classifications regions based on suboptimal hyperplane locations. It is often
possible to slightly decrease the loss function by increasing confidence levels by scaling parameters in later
layers. This can lead to a cascading effect in which layers successively get stuck. The use of regularized
or constrained optimization can help control the scaling of the weights, thereby limiting the amount of
gradient localization and thus avoiding or reducing these problems. By gradually allowing the weights
to increase it is possible to balance progress in the learning process, and attaining decision regions with
sufficiently high confidence levels. In addition, regularized and constrained optimization can help prevent
overfitting. Analysis of the gradient field also shows that at any given iteration, the contributions of
different training points to the gradient can vary substantially. Localization of the gradient towards the
first layer also means that some points are informative only from one layer onwards. Together this suggests
dynamic subset selection and partial backpropagation, or adaptive selection of the step size for each layer
depending on the number of relevant points.

We hope that some of the results presented in this paper will contribute to a better understanding
of neural networks and eventually lead to new or improved algorithms. There remain several topics that
are interesting but beyond the scope of the present paper. For example, it would be interesting to see
what the hyperplanes generated during pre-training using restricted Boltzmann machines [10] look like,
and if there are better choices. One possible option is to select random training samples from each class
and generate randomly oriented hyperplanes through these points by appropriate choice of b. Likewise,
given a hyperplane orientation and a desired class, it is also possible to place the hyperplane at the class
boundary by choosing b to coincide with the largest or smallest inner product of the normal with points
from that class. Another interesting topic is an extension of this work to other nonlinearities such as the
currently popular rectified linear unit given by ν(x) = max(0, x). The advantage of these units is that
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gradient masks are far less localized, which allows the error to backpropagate more easily and therefore
reduces gradient localization. It would be interesting to look at the mechanisms involved in the formation
of decision regions, which differ from those of sigmoidal units. For example, it is not entirely clear how
the logical and should be implemented: summing inverted regions and thresholding may work in some
cases, but more generally it should consist of the minimum of all input regions. In terms of combinatorial
properties, bounds on the number of regions generated using neural networks with rectified and piecewise
linear functions were recently obtained in [16, 18]. The main problem with rectified linear units is that it
maps all negative inputs to zero, thereby creating a zero gradient mask at those locations. The softplus
nonlinearity [8], which is a smooth alternative in which the gradient mask never vanishes, would also
be of interest. Finally it would be good to get a better understanding of dropout [11] and second-order
methods from a feature-space perspective.
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