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ABSTRACT gain and phase shift compensation parameters, correcting f
system losses and delays in station measurements [4, 5, 6, 7]
Most known methods are of the supervised variety, using
known properties of known sources to estimate instrumental
(ljmknowns. They have two main drawbacks:

Radio interferometric arrays as imperfect instrumentsiireq
calibration to correct for instrumental gain and phasersriro
observations. One point of calibration, our focus, is befoe
time-series of groups of compact receivers are beam-forme

Traditional supervised calibration approaches tuneunstr
mental parameters using prior sky source information. This
can prove problematic when information is either insuffi-
ciently accurate or missing.

We propose to apply the blind (unsupervised) calibration
approach for compressed sensing in the calibration of com- . . _ L .
pact phased-arrays. The approach exploits asparsityip::lesch“nd' that is gnsuperwsed, callbratloq Works_ without re-
tion of the sky, using no prior knowledge of actual objectscou.rse to previous sky data. As such, it can circumvent the
within. Simulations as well as real-data analysis admig th outlined difficulties.

the blind calibration approach is indeed an improvementove ~ Rédundancy calibration [8] is the only blind station cal-
existing supervised calibration methods. ibration method introduced to date. It makes explicit use of

o o redundant baselines, those with the same length and orienta
Index Terms— Calibration, radio interferometry, phased- tion to repeatedly observe the same resultant Fourierlsamp

e Prior sky information is for strong sources. Disregard-
ing weak sources can considerably affect accuracy [7].

e Performance is sensitive to strong source data accuracy.

array, sparsity, station of the sky. With sufficient groups of redundant baselines, it
can estimate gains and noise more accurately and faster than
1. INTRODUCTION supervised calibration. Note, however, that such a scheme i

only feasible upon deployment of antennas that are entirely
Radio interferometry is the technique that combines meadevoted to this task, rather than using them for further base
surements of multiple antennas so as to achieve upgradédes.
resolution in astronomical observations [1, 2]. The new |nthe contextof compressed sensing [9], blind calibration
generation of interferometers, such as the Square Kil@methas been introduced as a general sparsity problem which aims
Array (SKA)!, the Murchison Widefield Array (MWA) [3], to estimate signals along with associated instrumental gai
and the LOw Frequency ARray (LOFAR) [4], surpass con-and phase distortions in the absence of additive noise [20].
ventional sensitivity, resolution, and frequency covesa®r-  this paper, we present a novel application of this approach,
relating unprecedented number of receivers over extremelysing convex optimization for parameter estimation as @ [1
large areas. 11, 12], to the specific case of radio interferometric statio
These giant instruments have a hierarchical system atalibration. For this purpose, we extend the blind calibrat
chitecture in the sense that they are phased-arrays ofeéevemethod to the case of additive noise in measurements. The
smaller phased-arrays (groups of compact receivers)dcall§undamental reason why it is feasible is that, at low Sigaal t
stations (or subarrays). Consequently, beam-forming-techNoise Ratio (SNR) level in station observations, there ahg o
niques adopted within these instruments also follow theesama few strong sources detectable, with weaker ones buried be-
hierarchy, performed initially for individual stations)@later  neath the noise. Thus, the observations are to all interts an
on for the whole instrument. purposes sparse. The proposed blind calibration technique
To exploit full sensitivity potential, station calibratio can be applied to any station design and has a very promising
prior to beam-forming is essential. This calibration esties  performance in the presence of additive noise. It is observ-
The authors acknowledge Ahmad Mouri Sardarabadi, Mennal@pr able on simmated and real data e_xperiments that the met_hOd
and ASTRON, for making the LOFAR data available. accomplishes an accuracy superior to the one of supervised
Lhttp://www.skatelescope.org calibrations.




1.1. Organisation Standard station calibration is estimation of the direttio
independent distortions, the diagonal entries oz, in the
Fﬁ’easurements, thBL entries ofX, using (1). The distor-

tlor_1, togeth_er with a description (_)f how standard, supestis tions are introduced by combined effects of system inefiicie
calibration is performed. In section 3 we propose an exten-

) . . . ! cies, such as environmental (e.g. temperature) changes, or
sion to blind calibration for compressed sensing [10, 1], 12 e.g P ) 9

hich perf inth f the additi ise. Farth mismatches in cable lengths of the cables connecting statio
which performs inthe presence ot the additive NoISe. FHINE o yants to 4 common central processing unit. Note that the

; . ) . $bceivers’ primary beam, and therefdse are mostly known
ways to reduce it. Using simulations and LOFAR real datafrom electromagnetic modeling during the design of the sta-

in section 4, we illustrate how considerably higher acairaCyinn - However, if this is not the case, station calibratien r
than the state of the art — Weighted Alternating Least Sqauarequires to estim’ate the entries Bfas wéll [13]

(WALS) station calibration [5, 7], can be achieved by the-pro Previous station calibration methods are formulated in

plosed bl'.nd caJI;_bragon technique. Finally, we draw our-con terms of the measurements’ correlation matrix, estimated b
clusions in section 5. R = L-'XXH. From (1) we get,

1.2. Notation R = GABE,B"A?GH + 3, 2

Lowercase bold denotes column vectors (e, while up- WhereX; = L~'SS” and¥, = L~'NN*. Since the
percase bold denotes a matrix (eB). Unless otherwise columns ofS andN are samples of zero mean white Gaussian
stated, all values are complex. The Hermitian transpose af@ndom processes, for a large enough samplesjiZ8, =

the Moore-Penrose pseudo-inverse of a matrix are shown §iad[f1, fz, .-, fol), and %, = diag([07,03,...,0%]),
(.)¥ and(.)T, respectively. Frobenius normis shown|byi», ~ Wheref; ando? denote the power (flux, variance) of source
and||.||; denotes the, norm of matrices, which returns the ¢ and the noise power (variance) of receiyerespectively
sum of the absolute values of the entries of matrices. Esti13]. Therefore, from (2), the general data model of a statio

mated parameters are shown(by is formulated as,

R =GAXAMGH +32,, (3)

2. STATION CALIBRATION
where
C_onsider a_vectos € Ce containir_lg signals_ of) _spatiglly > — Bx.B” (4)
discrete point sources, approaching a statiorPdtlentical
receivers placed closely together. is a diagonal matrix of apparent source powers.
Let G = diag(g), whereg € C” denotes the instrumen- In supervised calibration, th@ sources are assumed to

tal gain and phase distortions in data, common for all direcbe strong and their positions and intensity known. The exact
tions in the field of view. LeB = diagb), whereb € C?  values of the source power mat¥;, and the array response
represents the receivers’ primary (reference) béamthe@  matrix A then immediately follow. If the receivers’ primary
source directions. Finally, leA € CP*? be the array re- beamB, is known, then from (4), the apparent source powers
sponse (sensing) matrix expressing the phase shifts ialsign in X are also known. Therefore, supervised station calibration
associated with the geometry of the receivers and the seurceestimates onlyG and X, from the data model given by (3).
Then the total signal measured by the receivers in a singl@therwise, it first estimatel, and then, using knowkls and

time bin,x € C¥, can be formulated by [13], (4), it estimates the directional gains and phases sampBd i
as well [6, 13, 14]. These estimations can all be obtaineld wit
x = GABs + n, relatively low computational cost [7]. However, weak sasc

in the field of view, or strong sources located in directionis ¢
wheren represents the station’s additive thermal noise, whichesponding to low sensitivity of the receiver beams, reisult
is assumed to have i.i.d zero mean complex Gaussian entriggther contributions to the additive noise. This limitdilsea-

The receivers of the st}ajlti(zn colleEtmeasurements tion accuracy. On top of that, performance is directly like
X = [x1,%,...,xg] € C™%, over a Short Term Integra- to the accuracy with which th@ sources, and consequently,
tion interval (STI) [13]. Within a STI, the system charadter >, andA can be known.
tics, thusA, B, andG, are assumed invariant. Therefore, The most commonly used supervised station calibration

technique is the Weighted Alternating Least Squares (WALS)
station calibration method [5, 7, 14], and as such the main
focus of comparison in this paper. It iteratively estimates

X = GABS + N ¢ CP*E, (1)

whereS = [s1,s92,...,s.], andN = [n1,ns, ..., nz].
PN . 2

2primary beam of a receiver is referred to its direction depengain and {Gn 3, En} = argmin HW(R - R(G, 3, zn))WH s
phase behavior [13]. Identical receivers have identiciah@ry beams. G.X.%, F




whereW = R is the optimal weight matrix.
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3. STATION CALIBRATION DONE BLINDLY
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We now derive a convex Optlle&tIOﬂ for obtalnlng Instru-

mental parameters, which does not use a priori informatic Source C
about individual sources in the sky [10, 11]. This calibvati
can be applied to any station design.

Assume there ardd > (@ directions in the sky from ™ < ~ E
which some signal sources may radiate towards a statio
Since the calibration coefficients @nare non-zero, defining
A = G, (1) can be re-parameterized by,

Source C

%ig. 1. (i) is the simulated sky image with no calibration, ob-
tained fromR. (ii) is the target image with perfect calibration
parameters, obtained fro@ ' R(G 1),

AX = A(BS + ATAN) = AY, (5)
need to estimate the true signals. The reason is that the out-
where put of station calibration which is needed for station beam-
Y =BS +ATAN. (6) forming (and later on, for getting correlated with the beam-

If K > P, thenAf, and consequently, the result of its multi- formed signals of the other stations) is in faX [14].

plication to AN, includeskK — P dependent rows. Since the
row rank of signal matriXS is roughly@ (there are? strong 4. ILLUSTRATIVE EXAMPLES
sources, plus possibly some weak ignored sources), clgposin

K sothatk — P > ( leads to a spars¥ in (5). Therefore, We now compare the performance of the proposed blind sta-
from A € CP*K gndX one can estimate tion calibration to that of the WALS method using simulated

and real observations.
{A,Y} = argmin | Y],
Y.A 4.1. Simulation
subject toAX = AY, Trace(A) = ¢ (7) , , . .

The configuration details were as follows. A station of
wherec > 0 is an arbitrary constant. In this convex optimiza- P = 36 receivers were oriented ontax 6 nodes rectan-
tion, the?; norm favors the selection of a spafgeamong the gular grid. The minimum baseline was 1m. These elements
ones satisfying the problem constraftShe trace constraint Observed a sky consisting of three sources3, and C, at
ensures the trivial solutiof0, 0} is excluded. (I,m) coordinates(—0.294,0.648), (—0.455,0.322), and

The main computation in the optimization (7) is the esti-(0-486, —0.632), and with power equal ta40, 130, and 40
mation of theK L entries ofY (K andL are both larger than JY (Jansky), respectively. The station collected= 1200
P). It can be posed as a Second Order Cone Program (SOCIgmples per STI, at 160 MHz frequency. The elements are
and using a primal-dual interior-point method to solve, a@Ssumed to have a uniform primary beam shape(I), and
mostO (v2P + 3LK) iterations are required, where each it- SNR = 0.1. The instrumental gains and phases, calibration
eration has) ((2P +3LK)%(4+ 4PL + 3KL)) complex- parameters irg, were drawn from a normal real distribution
ity [15]. This is for a general SOCP. However, the complexity’V (1,-2) and a uniform real distributior/(0, .2) respec-
can be reduced due to the sparse structure of the optimizati¢Vely- This is considered a realistic simulation of LOFAR
problem (7), and utilizing a smaller number of samples thad8l- 300 x 300 pixel images using the beamforming imaging
L for computation. technique [13] were generated. _ _

Note that the convex optimization formulation of blind ~ FOr comparison purposes, Fig. 1 shows image recon-
calibration given by (7) is similar to the one proposed by, [10 Struction without calibration (from correlation matR =
11, 12]. But, due to the presence of the additive nawa L~ XX') as image (i), and with perfect calibration — using
(6), the Y estimated from (7) is not the true (training) sig- knOYVD galnlsh(’from corrected correlation matrix obtained by
nal which is estimated in the noise-less case studied in [16* R(G~')") as image (ii). Note that calibration is exe-

11, 12]. For this particular application of blind calibito ~ cuted once per STI, and the resulted parameter estimation,
radio interferometric station calibration, however, therno G+ iS used to correct data from several consecutive STIs.

Therefore, image (ii) of Fig. 1 is in fact the target image, in
®In (7), there arePL + 1 equations X = AY, andTrace(A) = ¢)  the sense that the same image must be obtainedRdraing

constrainingK L + P unknowns (entries oY, and diagonal entries aA). : : P : ; :
If PL4+1 > KL+ P, aunique solution for the blind calibration was simply corrected by calibration solutio. With noise ten times

obtained by solving the equations. Otherwise, thaexorm searches for the sFro.nger than the signal the blurry images of Fig. 1 lookejuit
sparsest solution consistent with the equations. similar.
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Fig. 2. Images of WALS (i) and blind (ii) calibrations’ re- Fig. 3. Images of WALS (i) and blind (ii) calibrations’ cor-

constructed data. WALS underestimates souréeand B,  rected data. Blind calibration has an image much closergo th

and completely misses sour€e Blind calibration accurately targetimage, image (ii) of Fig. 1.

reconstructs all three.

Calibration method WALS ‘ Blind ‘
llg —gllr 1.3903‘ 0.9925‘

Now we compare blind and WALS calibration. WALS
was most accurate when solving only for the two brightest
sourcesA, B, when their exact powers and coordinates are

used. As such, we show this optimistic case. For blind cali- bi _ f the di b h
bration, we made & x 9 nodes rectangular grid to cover the Table 1. Comparison of the |5Fance .etwleen ,t € .true pa-
whole field of view, considering it& — 81 nodes as source rametersg and the WALS and blind calibrations’ estimated

directions in the sky. The smallest distance between thesod pa_lramet_erg._ As the_results of the Frobenius norms show,
and any of the three source directions is 12 degrees. Thelind calibration solutions are closer to the true paramsete
fore, no node actually matches the positions of the sources.

The calib.ration. is run us.ing 250 samples)bf , vation is around 3C 401 (Cygnus A, CygA) at 173.2 MHz.
Consider Fig. 2, which shows images obtained from thq:igure 4 demonstratesia pixel image of the data.

data reconstructed by the two calibration techniques. For We applied WALS and blind calibration to the data. For
WALS calibration, the image is obtained frd(G, 33, Xy), WALS calibration, the apparent power and position of CygA

and in the case of blind calibration, it is obtained fromare used. For blind calibration, similar to section 4.9,>a9

“AIAN-LAVVHAH{AN-IVH ; ;
((1250) . ATAYY e‘g‘ B?; b }3:] WA:;S calltlaratllon UN" " hodes rectangular grid is used and calibration is executld o
erestimates sourcesan y 3 Jy, and completely misses ., o5 gata samples. Images obtained from the residual of

sourceC’. However, bI|n_d calibration accurate[y reconstruCtSy, o yata subtracted the calibrations reconstructed daf@rar
all three. When glancing at the result of blind calibration

. : . . o sented in Fig. 5. The residual image of WALS calibration,
to image (i) of Fig. 1 this may not be striking. We must

h ke | hat blind calibrati q I’image (i) of Fig. 5, shows structures observable as the milky
owever, take into account that blind calibration used on ay (in red on the left sign). The blind calibration residual

250 data samples for estimation. An image constructed frorf?nage (ii), is consistant, in contrast, with zero mean rando

these 2.50 sar_nple; would have no visible difference to the ONfbise. The better performance of blind calibration theref®
from blind calibration’s reconstructed data. clearly shown, which is due to the fact that it consid&rs=

Fig. 3 shows the images obtained from the corrected datgy ,tential source directions in the sky, rather than WALS

_, 9. 2 show : :
G~'R(G™')". We see the superior accuracy achieved by, jinration which considers only one (from CygA). The per-
blind calibration, with the image much closer to the target

image (image (ii) of Fig. 1) than the one from WALS.

In order to have a quantitative handle on the results, we
also calculated the distance between the true (simulated) p
rametersg and the WALS and blind calibrations’ estimated
parameterg. The results are shown in Table 1. Blind calibra-
tion achieves a smalléjg — g|| r, and thus superior accuracy,
when compared to WALS calibration.

4.2. Real Observation

-0.1 (I) 0.1

We calibrated. = 1024 data samples obtained from a single
polarization state of? = 46 receivers (orthogonal dipoles) Fig. 4. A CygA observation performed by a single polariza-
of a LOFAR HBA (High Band Antenna) station. The obser-tion state of receivers of a LOFAR HBA station at 173.2 MHz.
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