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ABSTRACT

Radio interferometric arrays as imperfect instruments require
calibration to correct for instrumental gain and phase errors in
observations. One point of calibration, our focus, is before the
time-series of groups of compact receivers are beam-formed.

Traditional supervised calibration approaches tune instru-
mental parameters using prior sky source information. This
can prove problematic when information is either insuffi-
ciently accurate or missing.

We propose to apply the blind (unsupervised) calibration
approach for compressed sensing in the calibration of com-
pact phased-arrays. The approach exploits a sparsity descrip-
tion of the sky, using no prior knowledge of actual objects
within. Simulations as well as real-data analysis admite that
the blind calibration approach is indeed an improvement over
existing supervised calibration methods.

Index Terms— Calibration, radio interferometry, phased-
array, sparsity, station

1. INTRODUCTION

Radio interferometry is the technique that combines mea-
surements of multiple antennas so as to achieve upgraded
resolution in astronomical observations [1, 2]. The new
generation of interferometers, such as the Square Kilometre
Array (SKA)1, the Murchison Widefield Array (MWA) [3],
and the LOw Frequency ARray (LOFAR) [4], surpass con-
ventional sensitivity, resolution, and frequency coverage, cor-
relating unprecedented number of receivers over extremely
large areas.

These giant instruments have a hierarchical system ar-
chitecture in the sense that they are phased-arrays of several
smaller phased-arrays (groups of compact receivers) called
stations (or subarrays). Consequently, beam-forming tech-
niques adopted within these instruments also follow the same
hierarchy, performed initially for individual stations, and later
on for the whole instrument.

To exploit full sensitivity potential, station calibration
prior to beam-forming is essential. This calibration estimates
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1http://www.skatelescope.org

gain and phase shift compensation parameters, correcting for
system losses and delays in station measurements [4, 5, 6, 7].
Most known methods are of the supervised variety, using
known properties of known sources to estimate instrumental
unknowns. They have two main drawbacks:

• Prior sky information is for strong sources. Disregard-
ing weak sources can considerably affect accuracy [7].

• Performance is sensitive to strong source data accuracy.

Blind, that is unsupervised, calibration works without re-
course to previous sky data. As such, it can circumvent the
outlined difficulties.

Redundancy calibration [8] is the only blind station cal-
ibration method introduced to date. It makes explicit use of
redundant baselines, those with the same length and orienta-
tion, to repeatedly observe the same resultant Fourier sample
of the sky. With sufficient groups of redundant baselines, it
can estimate gains and noise more accurately and faster than
supervised calibration. Note, however, that such a scheme is
only feasible upon deployment of antennas that are entirely
devoted to this task, rather than using them for further base-
lines.

In the context of compressed sensing [9], blind calibration
has been introduced as a general sparsity problem which aims
to estimate signals along with associated instrumental gain
and phase distortions in the absence of additive noise [10].In
this paper, we present a novel application of this approach,
using convex optimization for parameter estimation as in [10,
11, 12], to the specific case of radio interferometric station
calibration. For this purpose, we extend the blind calibration
method to the case of additive noise in measurements. The
fundamental reason why it is feasible is that, at low Signal to
Noise Ratio (SNR) level in station observations, there are only
a few strong sources detectable, with weaker ones buried be-
neath the noise. Thus, the observations are to all intents and
purposes sparse. The proposed blind calibration technique
can be applied to any station design and has a very promising
performance in the presence of additive noise. It is observ-
able on simulated and real data experiments that the method
accomplishes an accuracy superior to the one of supervised
calibrations.



1.1. Organisation

Section 2 presents the general measurement model for a sta-
tion, together with a description of how standard, supervised
calibration is performed. In section 3 we propose an exten-
sion to blind calibration for compressed sensing [10, 11, 12]
which performs in the presence of the additive noise. Further-
more, we examine its computational complexity and suggest
ways to reduce it. Using simulations and LOFAR real data,
in section 4, we illustrate how considerably higher accuracy
than the state of the art – Weighted Alternating Least Squares
(WALS) station calibration [5, 7], can be achieved by the pro-
posed blind calibration technique. Finally, we draw our con-
clusions in section 5.

1.2. Notation

Lowercase bold denotes column vectors (e.g.,g), while up-
percase bold denotes a matrix (e.g.,R). Unless otherwise
stated, all values are complex. The Hermitian transpose and
the Moore-Penrose pseudo-inverse of a matrix are shown by
(.)H and(.)†, respectively. Frobenius norm is shown by||.||F ,
and||.||1 denotes theℓ1 norm of matrices, which returns the
sum of the absolute values of the entries of matrices. Esti-
mated parameters are shown bŷ(·).

2. STATION CALIBRATION

Consider a vectors ∈ CQ containing signals ofQ spatially
discrete point sources, approaching a station ofP identical
receivers placed closely together.

Let G = diag(g), whereg ∈ CP denotes the instrumen-
tal gain and phase distortions in data, common for all direc-
tions in the field of view. LetB = diag(b), whereb ∈ CQ

represents the receivers’ primary (reference) beam2 in theQ
source directions. Finally, letA ∈ CP×Q be the array re-
sponse (sensing) matrix expressing the phase shifts in signals
associated with the geometry of the receivers and the sources.
Then the total signal measured by the receivers in a single
time bin,x ∈ CP , can be formulated by [13],

x = GABs+ n,

wheren represents the station’s additive thermal noise, which
is assumed to have i.i.d zero mean complex Gaussian entries.

The receivers of the station collectL measurements
X = [x1,x2, . . . ,xL] ∈ CP×L, over a Short Term Integra-
tion interval (STI) [13]. Within a STI, the system characteris-
tics, thusA, B, andG, are assumed invariant. Therefore,

X = GABS+N ∈ C
P×L, (1)

whereS = [s1, s2, . . . , sL], andN = [n1,n2, . . . ,nL].

2Primary beam of a receiver is referred to its direction dependent gain and
phase behavior [13]. Identical receivers have identical primary beams.

Standard station calibration is estimation of the direction
independent distortions, theP diagonal entries ofG, in the
measurements, thePL entries ofX, using (1). The distor-
tions are introduced by combined effects of system inefficien-
cies, such as environmental (e.g. temperature) changes, or
mismatches in cable lengths of the cables connecting station
elements to a common central processing unit. Note that the
receivers’ primary beam, and thereforeB, are mostly known
from electromagnetic modeling during the design of the sta-
tion. However, if this is not the case, station calibration re-
quires to estimate the entries ofB as well [13].

Previous station calibration methods are formulated in
terms of the measurements’ correlation matrix, estimated by
R̂ = L−1XXH . From (1) we get,

R = GABΣsB
HAHGH +Σn, (2)

whereΣs = L−1SSH andΣn = L−1NNH . Since the
columns ofS andN are samples of zero mean white Gaussian
random processes, for a large enough sample sizeL, Σs =
diag([f1, f2, . . . , fQ]), and Σn = diag([σ2

1
, σ2

2
, . . . , σ2

P ]),
wherefi andσ2

j denote the power (flux, variance) of source
i, and the noise power (variance) of receiverj, respectively
[13]. Therefore, from (2), the general data model of a station
is formulated as,

R = GAΣAHGH +Σn, (3)

where

Σ = BΣsB
H (4)

is a diagonal matrix of apparent source powers.
In supervised calibration, theQ sources are assumed to

be strong and their positions and intensity known. The exact
values of the source power matrixΣs, and the array response
matrixA then immediately follow. If the receivers’ primary
beam,B, is known, then from (4), the apparent source powers
in Σ are also known. Therefore, supervised station calibration
estimates onlyG andΣn from the data model given by (3).
Otherwise, it first estimatesΣ, and then, using knownΣs and
(4), it estimates the directional gains and phases sampled inB

as well [6, 13, 14]. These estimations can all be obtained with
relatively low computational cost [7]. However, weak sources
in the field of view, or strong sources located in directions cor-
responding to low sensitivity of the receiver beams, resultin
further contributions to the additive noise. This limits calibra-
tion accuracy. On top of that, performance is directly linked
to the accuracy with which theQ sources, and consequently,
Σs andA can be known.

The most commonly used supervised station calibration
technique is the Weighted Alternating Least Squares (WALS)
station calibration method [5, 7, 14], and as such the main
focus of comparison in this paper. It iteratively estimates

{Ĝ, Σ̂, Σ̂n} = argmin
G,Σ,Σn

∥∥∥W(R̂−R(G,Σ,Σn))W
∥∥∥
2

F
,



whereW = R− 1

2 is the optimal weight matrix.

3. STATION CALIBRATION DONE BLINDLY

We now derive a convex optimization for obtaining instru-
mental parameters, which does not use a priori information
about individual sources in the sky [10, 11]. This calibration
can be applied to any station design.

Assume there areK ≫ Q directions in the sky from
which some signal sources may radiate towards a station.
Since the calibration coefficients ing are non-zero, defining
∆ = G−1, (1) can be re-parameterized by,

∆X = A(BS+A†∆N) = AY, (5)

where
Y = BS+A†∆N. (6)

If K > P , thenA†, and consequently, the result of its multi-
plication to∆N, includesK − P dependent rows. Since the
row rank of signal matrixS is roughlyQ (there areQ strong
sources, plus possibly some weak ignored sources), choosing
K so thatK − P ≫ Q leads to a sparseY in (5). Therefore,
fromA ∈ CP×K andX one can estimate

{∆̂, Ŷ} = argmin
Y,∆

‖Y‖
1

subject to∆X = AY,Trace(∆) = c (7)

wherec > 0 is an arbitrary constant. In this convex optimiza-
tion, theℓ1 norm favors the selection of a sparseY among the
ones satisfying the problem constraints3. The trace constraint
ensures the trivial solution{0,0} is excluded.

The main computation in the optimization (7) is the esti-
mation of theKL entries ofY (K andL are both larger than
P ). It can be posed as a Second Order Cone Program (SOCP),
and using a primal-dual interior-point method to solve, at
mostO

(√
2P + 3LK

)
iterations are required, where each it-

eration hasO
(
(2P + 3LK)2(4 + 4PL+ 3KL)

)
complex-

ity [15]. This is for a general SOCP. However, the complexity
can be reduced due to the sparse structure of the optimization
problem (7), and utilizing a smaller number of samples than
L for computation.

Note that the convex optimization formulation of blind
calibration given by (7) is similar to the one proposed by [10,
11, 12]. But, due to the presence of the additive noiseN in
(6), theŶ estimated from (7) is not the true (training) sig-
nal which is estimated in the noise-less case studied in [10,
11, 12]. For this particular application of blind calibration to
radio interferometric station calibration, however, there is no

3In (7), there arePL+ 1 equations (∆X = AY, andTrace(∆) = c)
constrainingKL+ P unknowns (entries ofY, and diagonal entries of∆).
If PL+1 ≥ KL+P , a unique solution for the blind calibration was simply
obtained by solving the equations. Otherwise, theℓ1 norm searches for the
sparsest solution consistent with the equations.
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Fig. 1. (i) is the simulated sky image with no calibration, ob-
tained fromR̂. (ii) is the target image with perfect calibration
parameters, obtained fromG−1R̂(G−1)H .

need to estimate the true signals. The reason is that the out-
put of station calibration which is needed for station beam-
forming (and later on, for getting correlated with the beam-
formed signals of the other stations) is in fact∆X [14].

4. ILLUSTRATIVE EXAMPLES

We now compare the performance of the proposed blind sta-
tion calibration to that of the WALS method using simulated
and real observations.

4.1. Simulation

The configuration details were as follows. A station of
P = 36 receivers were oriented on a6 × 6 nodes rectan-
gular grid. The minimum baseline was 1m. These elements
observed a sky consisting of three sourcesA,B, andC, at
(l,m) coordinates(−0.294, 0.648), (−0.455, 0.322), and
(0.486,−0.632), and with power equal to140, 130, and40
Jy (Jansky), respectively. The station collectedL = 1200
samples per STI, at 160 MHz frequency. The elements are
assumed to have a uniform primary beam shape (B = I), and
SNR = 0.1. The instrumental gains and phases, calibration
parameters ing, were drawn from a normal real distribution
N (1, .2) and a uniform real distributionU(0, .2) respec-
tively. This is considered a realistic simulation of LOFAR
[8]. 300× 300 pixel images using the beamforming imaging
technique [13] were generated.

For comparison purposes, Fig. 1 shows image recon-
struction without calibration (from correlation matrix̂R =
L−1XXH ) as image (i), and with perfect calibration – using
known gains (from corrected correlation matrix obtained by
G−1R̂(G−1)H ) as image (ii). Note that calibration is exe-
cuted once per STI, and the resulted parameter estimation,
Ĝ, is used to correct data from several consecutive STIs.
Therefore, image (ii) of Fig. 1 is in fact the target image, in
the sense that the same image must be obtained fromR̂ being
corrected by calibration solution̂G. With noise ten times
stronger than the signal the blurry images of Fig. 1 look quite
similar.
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Fig. 2. Images of WALS (i) and blind (ii) calibrations’ re-
constructed data. WALS underestimates sourcesA andB,
and completely misses sourceC. Blind calibration accurately
reconstructs all three.

Now we compare blind and WALS calibration. WALS
was most accurate when solving only for the two brightest
sourcesA,B, when their exact powers and coordinates are
used. As such, we show this optimistic case. For blind cali-
bration, we made a9 × 9 nodes rectangular grid to cover the
whole field of view, considering itsK = 81 nodes as source
directions in the sky. The smallest distance between the nodes
and any of the three source directions is 12 degrees. There-
fore, no node actually matches the positions of the sources.
The calibration is run using 250 samples ofX.

Consider Fig. 2, which shows images obtained from the
data reconstructed by the two calibration techniques. For
WALS calibration, the image is obtained fromR(Ĝ, Σ̂, Σ̂n),
and in the case of blind calibration, it is obtained from
(250)−1∆̂−1AŶŶHAH{∆̂−1}H . WALS calibration un-
derestimates sourcesA andB by 3 Jy, and completely misses
sourceC. However, blind calibration accurately reconstructs
all three. When glancing at the result of blind calibration
to image (i) of Fig. 1 this may not be striking. We must,
however, take into account that blind calibration used only
250 data samples for estimation. An image constructed from
these 250 samples would have no visible difference to the one
from blind calibration’s reconstructed data.

Fig. 3 shows the images obtained from the corrected data,
Ĝ−1R̂(Ĝ−1)H . We see the superior accuracy achieved by
blind calibration, with the image much closer to the target
image (image (ii) of Fig. 1) than the one from WALS.

In order to have a quantitative handle on the results, we
also calculated the distance between the true (simulated) pa-
rametersg and the WALS and blind calibrations’ estimated
parameterŝg. The results are shown in Table 1. Blind calibra-
tion achieves a smaller||g− ĝ||F , and thus superior accuracy,
when compared to WALS calibration.

4.2. Real Observation

We calibratedL = 1024 data samples obtained from a single
polarization state ofP = 46 receivers (orthogonal dipoles)
of a LOFAR HBA (High Band Antenna) station. The obser-
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Fig. 3. Images of WALS (i) and blind (ii) calibrations’ cor-
rected data. Blind calibration has an image much closer to the
target image, image (ii) of Fig. 1.

Calibration method WALS Blind

||g − ĝ||F 1.3903 0.9925

Table 1. Comparison of the distance between the true pa-
rametersg and the WALS and blind calibrations’ estimated
parameterŝg. As the results of the Frobenius norms show,
blind calibration solutions are closer to the true parameters.

vation is around 3C 401 (Cygnus A, CygA) at 173.2 MHz.
Figure 4 demonstrates a500 pixel image of the data.

We applied WALS and blind calibration to the data. For
WALS calibration, the apparent power and position of CygA
are used. For blind calibration, similar to section 4.1, a9× 9
nodes rectangular grid is used and calibration is executed only
on 250 data samples. Images obtained from the residual of
the data subtracted the calibrations reconstructed data are pre-
sented in Fig. 5. The residual image of WALS calibration,
image (i) of Fig. 5, shows structures observable as the milky
way (in red on the left sign). The blind calibration residual,
image (ii), is consistant, in contrast, with zero mean random
noise. The better performance of blind calibration therefore is
clearly shown, which is due to the fact that it considersK =
81 potential source directions in the sky, rather than WALS
calibration which considers only one (from CygA). The per-
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tion state of receivers of a LOFAR HBA station at 173.2 MHz.
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Fig. 5. Residual images around CygA obtained by WALS
(i) and blind (ii) calibrations. Clear structures resembling the
milky way are observable in (i), while the residual in (ii) re-
sembles that expected from zero mean random noise.

formance of blind calibration gets even more improved by in-
creasing the number of data samples.

5. CONCLUSIONS

The effectiveness of supervised calibration of compact aper-
ture array stations is limited by the SNR of the strongest ob-
served unresolved point sources. Melting low SNR sky ob-
jects into background noise limits calibration accuracy. More-
over, performance is based on the accuracy of the properties
of the known strongest sources.

We overcome these drawbacks by a novel application
of the blind calibration technique using convex optimiza-
tion [10] to the station calibration problem. It estimates
the unknown instrumental parameters based only on a gen-
eral sparsity assumption on the sky, without using any prior
knowledge about its individual sources. Deployable for any
station configuration, the proposed blind calibration achieves
more accurate solutions than supervised station calibration
for the experiments thus far tested.

Its computational complexity is currently higher when
compared to alternatives. As such, complexity reduction
without loss of accuracy is the main focus of future work.
Larger scale testing also merits investigation. This will in-
clude Monte Carlo simulations and performance comparison
between various convex optimization approaches that can be
used for solving the blind calibration problem [12].
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