
RC25523 (WAT1502-038) February 12, 2015
Computer Science

Research Division
Almaden – Austin – Beijing – Brazil – Cambridge – Dublin – Haifa – India – Kenya – Melbourne – T.J. Watson – Tokyo – Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report for
early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After
outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties). Many reports are available at http://domino.watson.ibm.com/library/CyberDig.nsf/home.

IBM Research Report

Integrator: An Architecture for an Integrated
Cloud/On-Premise Data-Service

Avraham Leff, James T. Rayfield
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598
USA



Integrator: An Architecture for an Integrated
Cloud/On-Premise Data-Service

Avraham Leff, James T. Rayfield
IBM T.J. Watson Research Center

1101 Kitchawan Road
Yorktown Heights, NY 10598

Email: {avraham, jtray}@us.ibm.com

Abstract—Large enterprises have built very large “on-
premise” data-sets that are critical to many business functions.
With the availability of cloud-based storage, many of these
enterprises are considering whether and how to make some of
this data available on the cloud. One motivation is to offload
the processing of new mobile application workloads from the on-
premise system to the cloud. Another motivation is to improve the
performance of these mobile applications. However, because of
the importance of this data, and because of regulatory constraints,
many enterprises are unwilling to simply move their data from an
on-premise environment to the cloud. Instead, they prefer to keep
the “master” version of the data on-premise, while projecting a
subset of the data to the cloud.

Several challenges face these enterprises. First, how can
large data-sets be efficiently made available on the cloud with
minimal disruption to the ongoing on-premise business function?
Second, how can this data be represented in a way that will
be useful to cloud developers? Typically, cloud developers want
data represented in a way that is easily consumable by REST
APIs, but the on-premise representation may not be amenable
to such usage. Our INTEGRATOR project addresses these chal-
lenges by providing an integrated cloud/on-premise data-service.
Importantly, the INTEGRATOR architecture is broadly applicable
across various back-end systems. In this paper we describe the
INTEGRATOR architecture and a prototype implementation for a
specific on-premise system. We examine alternative architectures
– “table based” and “business object based” – and explain why
we chose the business object approach.

I. INTRODUCTION

Over time, large enterprises build data warehouses that
store data-sets containing tens of millions of records [1]. These
data-sets provide critical business function and are accessed
through programs that represent the core business logic for
that enterprise. Recently, with the availability of cloud-based
storage and servers, many of these enterprises are considering
moving or copying these on-premise data-sets to the cloud.
Typically, this migration involves two types of cloud services:
using a Database-as-a-Service (DBaaS) (e.g., [2], [3]); and
using a mid-tier REST service (e.g., Node.js R© [4] hosted on
BluemixTM [5] which accesses the DBaaS as part of the API
implementation. Motivations include seeking to reduce the
cost of business operations; offloading new mobile application
workloads from the on-premise system to the cloud; and
improving the performance (e.g., latency, throughput, and
availability) of new mobile applications. Such migrations are
becoming more plausible with the creation of multi-tenant,
large-scale DBaaS systems [6].

At this time, however, many of these enterprises are cautious
about actually moving these important data assets from on-
premise to the cloud. For example, security considerations or
regulatory requirements may require that the master or primary
copy of the data continue to reside on-premise. Or, the data
warehouse software may not be able to run correctly on a
given cloud software stack. Instead, enterprises may prefer to
only cache subsets of their on-premise data in the cloud. With
this decision, the enterprise must decide the best strategy for
loading the on-premise data to the cloud, and keeping the cloud
cache synchronized with the on-premise master copy in a way
that:

• minimally disrupts the ongoing operation of the on-
premise systems, and

• makes the cloud data available in a useful form for its
consumers, typically mobile application developers.

The second requirement is especially important as enterprises
evolve from “systems of record” to “systems of engage-
ment” [7], because it raises the issue that the on-premise data
representation may not be in the right form for the cloud cache.

Our work therefore should be viewed as investigating a
variant of hybrid cloud/on-premise architectures (e.g., [8], [9])
where the enterprise constrains the cloud portion of the hybrid
architecture to be only a read-only cache of on-premise data.
We have examined these issues in our INTEGRATOR prototype
and implemented a solution within a specific set of technology
capabilities and constraints. In this paper, we explain why we
believe that the INTEGRATOR approach is broadly applicable
to a range of data-warehouses and technologies. We discuss
alternative architectures that we considered, and illustrate some
of the benefits of our hybrid cloud/on-premise data service
by describing a mobile application that we deployed to the
INTEGRATOR environment. Our paper is therefore structured as
follows. Section II discusses alternative strategies for replicating
on-premise data to the cloud. In Section III, we explain the
details of our INTEGRATOR prototype and describe a mobile
application that uses the hybrid cloud/on-premise cache. We
conclude by summarizing our work and mentioning possible
extensions to INTEGRATOR in Section IV.

II. ALTERNATIVE REPLICATION STRATEGIES

In this section we present and contrast alternative strategies
for replicating on-premise data to the cloud. We also explain
why the characteristics of the on-premise data led us to adopt
the second strategy in our INTEGRATOR prototype.



Fig. 1. “Table Based” Replication

A. Table-Based Replication

Our initial prototype used a table-based replication approach
from the on-premise system to the cloud (see Figure 1). The
approach is straight-forward: first, identify the set of database
tables to be cached; then, copy (and keep in sync) these tables
to the cloud. This approach leverages the mature set of “change
data capture” (or CDC [10]) technologies to:

1) detect that a data-event of interest (e.g., “create”,
“update”, “delete”) has occurred

2) trigger the execution of specific code to respond to
that event (e.g., by copying the data that was just
created on the on-premise system to the cloud-cache).

From a performance viewpoint, the table-based replication
approach has the advantage of being able to do the initial
bulk copying of large data-sets efficiently, while also efficiently
implementing the subsequent trickle-sync activity. In fact, this
approach works well for “simple” data-sets: i.e., where little
business logic is need to use the raw data in a given business
function. For example, if a PERSON is represented in the on-
premise system as a single tuple – regardless of the number
of database columns – copying large sets of PERSONs to a
cloud database works well. Whether or not the cloud database
presents a relational API or a NoSQL API such as Cloudant [2],
application business logic can manipulate PERSON instances
using only the cloud database’s representation. We found,
however, that table-based replication breaks down for “complex”
data-sets. By “complex” we mean that the on-premise’s existing
applications do not directly access or manipulate the raw data-
sets. Instead, applications access the data through a substantial
business logic layer that is packaged as part of the data-
warehouse itself. It is precisely this type of mediating business
logic layer that systems of record build into their systems,
making the table-based replication approach impractical. For
such systems, the data are not the application.

To see why, consider Figure 1. Here the on-premise system
is IBM’s Master Data Management (MDM [11]) product.
MDM manages data about business entities such as customers,
products, and accounts; enterprises use MDM to present a
common view of such important business entities whose
underlying data are stored and replicated across IT systems.
When attempting to replicate MDM PERSON instances to the
cloud, we found that the underlying data is stored in multiple
database tables with complex business rules governing, for

example, the relationship between a person’s address and the
person’s phone number. When a client invokes a simple API
such as “query by last name”, the on-premise system must
perform multiple database join operations while enforcing
business rules about concepts such as address and organization
cardinality, in order to assemble a PERSON entity that can be
returned to the client. Thus, after doing table-based replication
of PERSONs to the cloud (the middle of Figure 1) as a set of
JSON documents, we found that we could not provide an API
for applications to “retrieve person” without duplicating the
business logic of the on-premise system. This is an error-filled,
expensive, process especially in situations where the cloud-
service software stack differs from the on-premise system.

B. Business-Object Replication

The fact that enterprises invest considerable effort in present-
ing a “business object” (or “entity”) API on top of the underlying
data suggests that a replication strategy should leverage this
existing investment. After all, the on-premise system already
knows how to assemble a PERSON correctly from the various
database tables. Therefore, rather than replicating the raw data to
the cloud, enterprises should replicate business objects such as
PERSONs to the cloud. The business-object replication strategy
is shown in Figure 2: MDM assembles a PERSON instance
from the on-premise data, and replicates the business object to
Cloudant as a JSON document. In contrast to the table-based
replication approach of Figure 1, when a client requests a given
PERSON instance from the mid-tier cloud server, the instance is
already assembled on the cloud server and can be immediately
returned by the server. From a performance perspective, this
approach pays the cost of assembly “up-front” in contrast to
the table-based strategy which lazily assembles the instance
from the cache as necessary. The key point, however, is that the
on-premise’s business logic is not replicated to the cloud, a less
costly, and less error-prone approach. The relative disadvantage
of business-object replication occurs if new cloud applications
wish to use the raw data in ways that are not anticipated
by the on-premise API. In that case, applications will have
to “disassemble” the PERSON instance, perhaps injecting new
business logic to join the data with other data sources. However,
in such scenarios, we anticipate that the cloud server will itself
create the new APIs, removing that burden from the applications
themselves. Typically, the enterprise’s business needs require
that the existing use cases – as reflected by the existing on-
premise APIs– be projected to the cloud before developing



new requirements. As a result, the business-object replication
strategy is a better strategy for developing a hybrid cloud/on-
premise data-service

We discuss the details of the INTEGRATOR implementation
in Section III. At a high-level, the on-premise system must sat-
isfy the following requirements for business-object replication
to be feasible. For every class of business object B OBJECTi,
the on-premise system must:

1) be able to specify a list of identifiers corresponding
to the business object instances that will be copied to
the cache.
Combined with the next requirement, this requirement
makes it possible to do an initial “bulk-load” of the
on-premise business objects to the cache.

2) have an API through which an instance with identifier
idj can be retrieved.
The details of the API (e.g., JSON versus XML or HTTP
versus RMI are of secondary importance.

3) be able to detect when a life-cycle event (e.g., “create”,
“update”) has occurred to business object instance idj
and to “publish” both the event and the id.
Implementation details for this requirement (e.g., “pub-
sub” versus polling) do matter, but are less important
than the basic capability on the part of the on-premise
system.
This requirement makes it possible to efficiently
perform ongoing “trickle-sync” operations, through
which the cloud cache is kept in sync with the on-
premise system. In combination with the second
requirement, the cache can update an existing business
object or propagate the creation of a new instance on
the on-premise system. The requirement also makes
it possible for “delete” events to be propagated from
the on-premise system to the cache.

III. INTEGRATOR

In this section, we present the details of our INTEGRATOR
prototype, and show how rich mobile applications can be
created when this sort of hybrid cloud/on-premise data-service
is available. A more detailed description and pointer to sample
code is available [12].

As shown in Figure 3, MDM [11] is the on-premise system
whose data we integrated into the hybrid data-service. In our
prototype, we focused copying a set of PERSON instances to a
Cloudant [2] database. Using a straightforward SQL query, on-
premise system administrators can generate a set of PARTYIDs
for the set of PERSONs that are to be cached in the cloud.
Recently, MDM added a set of REST APIs through which a
PERSON instance with given PARTYID can be retrieved from
MDM as a JSON document. These capabilities satisfy the first
two requirements for business-object replication that we listed
in Section II-B. In addition, MDM provides a “message queue”
through which its business object implementations can publish
events such as “created person” or “updated person”; clients
can subscribe to this event queue using the JMS [13] API. This
satisfies the third requirement of Section II-B.

The use of DataStage R© [14] in Figure 3 is an example
of using high-level visual programming to simplify difficult
system integration tasks. We use DataStage to implement both

the initial “bulk load” of PERSON instances into the cloud and
the subsequent “trickle sync” phase in which the cloud cache
maintains its synchronized state with the on-premise system.

DataStage consists of a visual data-flow design tool and
a parallel run-time engine for design and deployment of
Extract, Transform and Load (ETL) -style jobs. In the ETL
jobs described next, we are using various function blocks,
including: relational table iteration, REST call origination,
data-flow switching, data-flow gathering, JavaTM interface,
computational, and sequential-file output blocks. After the
DataStage job is compiled, it is loaded into the engine and
executed.

A. Bulk Load

The Bulk Load job (Figure 4) is fairly straight-forward.
The contact table block reads the contact table in MDM. The
contact table contains the PARTYIDs of both PERSONs and
ORGANIZATIONs. The party id type carries both the PARTYID
and party type to the party load block, which is a Hierarchical
Data stage. party id type also carries a constant ’1’ for the
MDM inquiry level.

The Hierarchical Data stage is primarily used to compose
JSON and XML, make REST calls, and parse the JSON or XML
results. The REST substage is completely configurable as to
the use of SSL, authentication, reuse of connections, etc. The
Hierarchical Data stage also has various transformation stages,
including H-Pivot, which we use to convert a multi-valued
record into several XML entities.

The request is sent to MDM in XML format. The first step
of party load is an H-Pivot to place the three values on the
same element. The next stage is an XML Composer step named
Build getParty. This generates a TCRMService element, which
is populated by the incoming values. The TCRMInquiry element
is getParty.

The third stage is the actual REST call to MDM. The fourth
step tests whether the REST call was successful. If the call
was successful, the fifth step is a JSON Parser step. The sixth
step tests for SUCCESS in the ResultCode element.

The party load block has two outputs: json body and
person org. The first output is the returned JSON body text, and
the second is either ’P’ (for person) or ’O’ (for organization).

The next step is a Switch step named person org switch.
This step divides the JSON bodies between PERSONs and
ORGANIZATIONs. For PERSONs, the data flow is to the
person parse and insert step, which is a Hierarchical Data
stage. person parse and insert first does a JSON parse with all
the possible parameters of a getParty response when called for
a PERSON party. Then it builds a Cloudant insert JSON string,
and POSTs the string to Cloudant. Finally, the Cloudant REST
status is checked, along with the HTTP status code. Any error
returns are sent to the output.

The org parse and insert step is similar, except that it
parses the JSON for ORGANIZATIONs. Finally, any errors from
person parse and insert or organization parse and insert are
gathered by a Funnel, and written to a log file.



Fig. 2. “Business Object” Replication

System of Engagement 

System of Record 

MDM DataStage 

Parse	  

REST	  
Call	  

REST	  
Call	  

SIB 

MDM 
Change 

messages 

MDM 
Queries 

Message 
Queue 

Cloudant	  
Bulk	  load	  

&	  trickle	  sync	  

“Person”	  APIs	  
(Bluemix)	  

Mobile	  
App	  

Fig. 3. Integrator Prototype Implementation

Fig. 4. Using DataStage for Initial Bulk Load of Data

B. Trickle Sync

The party trickle load job (Figure 5) is a bit more com-
plicated. The initial stage is a Java stage which contains a
JMS Listener that listens for MDM change broadcast mess-
sages. The Java stage parses each message, searching for the
PARTYID, PERSONID, or ORGANIZATIONID. The Java stage
passes the id and the transaction name to the next stage. The
transaction name (addPerson, updatePerson, addOrganization,
or updateOrganization) is extracted from the XML message.

The next stage is a Transformer stage called

add PartyType InquiryLevel. This stage adds the party
type converted to a single character (’P’ or ’O’) and an inquiry
level fixed at ’1’.

The next stage is a Hierarchical Data stage called
party load. The stage starts with an H-Pivot step to put
PARTYID, PartyType, and InquiryLevel on the same element.
Then it builds a TCRMService call with TCRMInquiry of
getParty to load the item that was added or updated from MDM.
The full current state of the PERSON or ORGANIZATION is
loaded on each add or update message, regardless of what
was changed. This makes it easier to add/update the Cloudant



Fig. 5. Using DataStage for “Trickle Syncronization” of Data

record.

The next step is a HEAD call to MDM. This is used to
reestablish the HTTP connection to MDM in case it has timed
out. Then a getParty is executed against MDM, and the status
of the REST call is checked.

The next stage is a Switch stage named
person org add update. This stage routes the data to one
of four Hierarchical Data stages: person parse and insert,
person parse and update, org parse and insert,
or org parse and update. We will first consider
person parse and insert.

person parse and insert first does a JSON parse of the body
returned by MDM. If MDM returned ResultCode SUCCESS, it
composes a Cloudant insert of the MDM record. Then a HEAD
call is made on the Cloudant HTTP connection to recover from
connection timeouts. Finally the Cloudant insert is executed,
and the response is tested for success.

person parse and update is more complicated. First, a JSON
parse of the MDM body is done, and the ResultCode is checked.
Then a HEAD call is made on the Cloudant connection in case
it has timed out. Then, Cloudant is queried to find out what
the current revision ID is for the Cloudant record. The current
revision is needed for the Cloudant update call. The Cloudant
query is parsed to determine the revision ID, and then the
ID is mixed into the MDM data to determine the Cloudant
update JSON string. Finally the Cloudant update REST call is
executed, and the return code tested.

The org parse and insert and org parse and update are
very similar. Finally, all the MDM errors are collected by a
Funnel stage, and all the Cloudant errors are collected by
another Funnel, and each Funnel is written to a separate log
file.

C. Mobile Application

One of the benefits of an integrated cloud/on-premise data-
service such as INTEGRATOR is that it allows enterprises to
quickly project their data assets into the cloud so that it can
be used to create new systems of engagement (SOE) [15], [16].
These systems of engagement provide social and collaborative
features on top of existing business data from systems of
record (SOR) to provide additional value to the consumer [7].
For example, consider an enterprise that has a purchase-order
application with a critical dependency on well-defined PERSON
entities. Now, the enterprise wants to create an “engaging”
mobile application that will allow clients to create purchase-
orders (by connecting to the existing SOR application) and –
in addition – associate purchase-orders with a “chat” feature
that allows clients to directly ask for help as they create the
purchase-order.

Rather than enhancing the existing SOR to include a chat
feature, it will typically be easier to create the system of
engagement as a cloud-service using the PERSON data from
the cloud data-service. With the INTEGRATOR approach, the
enterprise can restrict sensitive parts of PERSON data to the
existing (controlled) SOR applications, and only cache portions
of the PERSON on the cloud. As shown in Figure 3, we took
this approach in a demo mobile application. We created a set
of REST APIs, hosted in BlueMix [5] through which mobile
developers can easily consume the PERSON data; in addition,
the mobile application is hosted as a Bluemix service, removing
workload from the on-premise system. This approach simplifies
the task of linking the chat system to the purchase orders as an
SOE deployed as a cloud service, decoupled from the existing
SOR.

In Code-Sample 1, we show some of the REST APIs used to
construct the mobile application. Although the DataStage jobs
extract a JSON document from MDM, the JSON is mapped very
closely to the original, deeply nested, XML document making



1 

Fig. 6. Sample Integrator Mobile Application

Code Sample 1 Cloud APIs to Simplify Consumption of On-Premise Data
curl -i -X GET -H "Accept: application/json" http://mdmcloudantsample.mybluemix.net/mcs/person/nnn

curl -i -X GET -H "Accept: application/json" http://mdmcloudantsample.mybluemix.net/mcs/org/nnn

curl -i -X POST -H "Accept: application/json" http://mdmcloudantsample.mybluemix.net/mcs/search/person/?name=xxx

curl -i -X POST -H "Accept: application/json" http://mdmcloudantsample.mybluemix.net/mcs/match/person?last_name=xxx



it difficult for developers to navigate the complex document.
Our REST APIs simplify this task. For example, they allow a
client to retrieve a PERSON by invoking the /person API, and
supplying a PARTYID parameter. A corresponding API is used
to retrieve an organization instance by supplying a PARTYID.
The search APIs enable a client to retrieve the set of all PERSON
instances that match a given last name or the set of all PERSON
instances that match a concatenation of a first and last name.

Figure 6 sketches the data-flows of a mobile application we
created to use our INTEGRATOR prototype. The far-left of the
Figure takes the viewpoint of a mobile developer who (1) wants
to consume the valuable SOR data hosted in the on-premise
MDM system but (2) would prefer not to have to understand the
APIs made available by the on-premise system which produces
complex XML documents. Deploying INTEGRATOR satisfies
the mobile developer’s requirements: interactions with the on-
premise system are replaced with REST API interactions with
the mid-tier that produce easily consumable JSON documents.
At the same time, the business processes of the on-premise
system continue to function without being affected by the new
mobile applications. They continue to create and modify the
MDM data using the existing business logic that provide the
high-quality data required by the enterprise. On the far right,
through the business-object replication algorithms described
above, MDM keeps the cloud cache synchronized with its own
state.

IV. SUMMARY & FUTURE DIRECTIONS

Our INTEGRATOR prototype presents a “business-object”
replication design pattern through which enterprises can effi-
ciently construct an integrated cloud/on-premise data-service.
We validated the design pattern in a concrete implementation
using IBM’s MDM product to cache PERSON and ORGANI-
ZATION business entities in a Cloudant cache. Importantly,
we showed that the requirements for this design pattern can
typically be met by many on-premise systems because they
have increasingly created web APIs that make this integration
feasible.

The value of the INTEGRATOR design-pattern is that it is a
low-risk approach through which sub-sets of critical enterprise
data – which may be subject to regulatory or other constraints
– can be safely made available for cloud consumption. New
mobile applications can then be created without imposing new
workload stress on the on-premise system. We also showed how
cloud APIs can be constructed to make it easier to use the on-
premise data, especially when integrating the system-of-record
data with system-of-engagement functions.

One direction we are considering taking with the INTEGRA-
TOR prototype is to see whether, and to what extent, concrete
implementations across on-premise systems with different data-
warehouse products can use a common infrastructure layer.
We think this may be possible despite the fact that business-
object replication depends so critically on the semantics of the
business APIs.

V. ACKNOWLEDGEMENTS

The authors would like to thank: Lena Woolf, for super-
vising the project and giving us insights as to how MDM can
best leverage the hybrid on-premise/cloud architecture; Joseph

Tsang for writing the MDM REST interfaces, organizing the
sample release, and numerous other tasks; and Dan Wolfson
for insisting that we confront the real-world challenges of
data-warehouse products.

REFERENCES

[1] C. Bontempo and G. Zagelow, “The ibm data warehouse architecture,”
Communications of the ACM, vol. 41, no. 9, pp. 38–48, 1998.

[2] “Technical overview: Anatomy of the cloudant dbaas,” https://cloudant.
com/resources/white-papers/, 2015.

[3] C. Curino, E. P. Jones, R. A. Popa, N. Malviya, E. Wu, S. Madden,
H. Balakrishnan, and N. Zeldovich, “Relational cloud: A database-as-
a-service for the cloud,” http://dspace.mit.edu/handle/1721.1/62241,
2011.

[4] T. Hughes-Croucher and M. Wilson, Node: Up and Running. O’Reilly,
2012, iSBN:978-1-4493-9858-3.

[5] “Explore ibm bluemix,” http://www.ibm.com/developerworks/cloud/
library/cl-bluemix-dbarnes/, 2013.

[6] D. Agrawal, S. Das, and A. El Abbadi, “Big data and cloud computing:
current state and future opportunities,” in Proceedings of the 14th
International Conference on Extending Database Technology. ACM,
2011, pp. 530–533.

[7] J. Bersin, “The move from systems of record to systems of engagement,”
Forbes, 2012.

[8] B. Sotomayor, R. S. Montero, I. M. Llorente, and I. Foster, “Virtual
infrastructure management in private and hybrid clouds,” Internet
Computing, IEEE, vol. 13, no. 5, pp. 14–22, 2009.

[9] H. Zhang, G. Jiang, K. Yoshihira, H. Chen, and A. Saxena, “Intelligent
workload factoring for a hybrid cloud computing model,” in Services-I,
2009 World Conference on. IEEE, 2009, pp. 701–708.

[10] R. K. . J. Caserta, The Data Warehouse ETL Toolkit: Practical Techniques
for Extracting, Cleaning, Conforming, and Delivering Data. John Wiley
& Sons, 2004.

[11] “Master data management,” http://www-01.ibm.com/software/data/
master-data-management/, 2015.

[12] “Using the mdm and cloudant integration sample for mobile computing,”
http://www-01.ibm.com/support/knowledgecenter/SSWSR9 11.4.0/
com.ibm.swg.im.mdmhs.cloudant.doc/topics/mdmcloudant intro.html,
2015.

[13] D. A. C. Mark Richards, Richard Monson-Haefel, Java Message Service,
2nd ed. O’Reilly Media, 2009.

[14] “Infosphere datastage,” http://www-03.ibm.com/software/products/en/
ibminfodata, 2015.

[15] G. Moore, “Systems of Engagement and The Future of Enterprise IT:
A Sea Change in Enterprise IT,” pp. 1–14, Jan. 2011.

[16] Forrester Consulting, “Systems Of Engagement Demand New Integration
Solutions — And A New IT,” pp. 1–20, Apr. 2013.


