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Abstract

We study a family of line segment visibility problems, related to classical art gallery problems, which are mo-
tivated by monitoring requirements in commercial data centers. Given a collection of non-overlapping line
segments in the interior of a polygon and a requirement to monitor the segments from one side or the other we
examine the problem of finding a minimal guard set. We consider combinatorial bounds of problem variants
where the problem solver gets to decide which side of the segments to guard, the problem poser gets to decide
which side to guard, and many others. We show that virtually all variants are NP-hard to solve exactly, but also
provide heuristics and experimental results using data from large commercial data centers to give insight into
the associated practical problems.

1 Introduction

We study a family of line segment visibility problems, related to classical art gallery problems, which are mo-
tivated by monitoring and surveillance requirements in commercial data centers. In traditional art gallery
problems (see [15], [21], [23] and [26]) an entire polygonal region must be kept under surveillance. In our case it
is a prescribed collection of non-overlapping line segments in the interior of the polygon that must be kept under
surveillance, and moreover, typically it is important just to see one side of each segment. Czyzowicz et al. [4]
and Toth [24] studied a similar problem to ours, without the presence of a boundary, and where line segment
visibility could be from either side – a variant of our problem family that we call the “solver’s choice” problem.
Toth [24] also studied the problem where lone segments had to be viewed from both sides.

We model a data center as a two-dimensional polygonal enclosure where the objects of principal interest from
a monitoring perspective are the air intake regions of servers. Servers are typically stored in racks and the air
intake regions of the servers are aligned in rows facing in towards the source of cool air which is vented up into a
raised floor area through perforated tiles. One technique for monitoring the air intake temperatures of servers,
and the technique of interest in the present investigation, is to use statically placed thermal imaging (infrared)
cameras. Thermal imaging cameras, however, are relatively expensive and so the challenge is to deploy as few
of these cameras as possible while still viewing, in total, all of the air intake regions.

The first data center we studied, a relatively small research data center located in Southbury, Connecticut,
is depicted in Figure 1. This data center is especially simple since all air intake regions are vertically aligned.
Our visibility problem then reduces to one of finding a minimum set of guards that see all sides of a specified
set of segments, where visibility is from a specified side of each segment. Data centers with this property are the
easiest to study and have especially simple combinatorial properties. After reviewing related work, we consider
cases of this sort, where all line segments in our model are vertically aligned.

A second much larger industrial data center, located in Poughkeepsie, New York, is depicted in Figure 2.
This data center has air intakes located in both vertical and horizontal orientations, which is fairly typical. More
generally, the air intakes of machines needing monitoring can be oriented arbitrarily. After discussing the case
of all vertical segments, for which tight combinatorial bounds are easily found, we consider these latter cases in
greater detail. Preliminary results from this work have previously been reported in [5] and [17].
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†IBM Haifa Research Lab, Mount Carmel, Haifa, Israel 31905. elip@il.ibm.com.
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Figure 1. A small research data center in Southbury, Connecticut. The thick black line segments depict the walls (six in number, including
a very short vertical segment) of the main room of the data center. Racks of servers are depicted in light grey. The air inlet sides of the
servers are indicated with blue line segments. Perforated tiles venting cool air into the raised floor area are depicted using cross-hatched
squares. The two air conditioning units, or CRAC (Computer Room Air Conditioning) units in this facility are shown in light blue. The
side/direction to which they are venting air is indicated with dark blue segments. Rectangles in the additional colors indicate different
sorts of data center equipment, not of direct concern to us in this study.

1.1 Structure of the paper

In the next section we survey related work. In Section 3 we discuss combinaturial bounds for the models defined
in this work. In Section 4 we prove that the problems we are studying are all NP-hard. We then present
heuristics to solve them in Section 5, and describe experiments we performed along with their implementations
in Section 6. We wrap up with conclusions and suggestions for further study in Section 7.

2 Related Work

Our work is closely related to the classical art gallery problem – the problems we define and study in this paper
can be viewed as its variants.

The art gallery problem was first studied in 1973 when Victor Klee posed the question of how many guards
are sufficient to guard the interior of a simple polygon. One of the earliest results was that bn3 c guards are
always sufficient, and sometimes necessary, to guard a simple n-sided polygon [3, 10]. It is easy to compute a
solution with this number of guards by triangulating the polygon, coloring the resulting vertices with three colors,
and then placing guards on the vertices with the least used color. However, such a solution is usually far from
optimal. In 1986 Lee and Lin proved that finding the minimum number of guards for an arbitrary simple polygon
is NP-hard [15]. Over the years numerous variants of the art gallery problem have been presented and studied.
Common features that have been altered in different publications are the location of the guards (arbitrary, edge
or vertex), their mobility (static or mobile), guarding requirements (guarding the interior of the domain, the
boundary of the domain, or specific elements inside the domain), the shape of the polygon (orthogonal, non-
orthogonal, with or without holes) and many more. Most variants have been shown to be NP-hard with the
exception of some simplified models.

It has become evident over time that even approximating the solution of many of the art gallery variants is a
difficult task. Except for the trivial bn3 c approximation for the classical problem, researchers have struggled with
devising efficient approximations. An interesting result, however, for the classical Klee variant of the problem
is the Masters thesis work of Sarma [22], which presented a pseudopolynomial time algorithm that achieves an
O(log2 n)-approximation factor. In subsequent work [7] Sarma and colleagues improved the approximation to
O(log n). As far we know, these algorithms have not been implemented and tested. Approximation algorithms
with logarithmic approximation ratios are known for somewhat restricted versions of the problem, e.g., requiring
guards to be placed at vertices, or at points of a discrete grid [9, 11, 12]. Constant-factor approximations are
known for restricted versions, such as for guarding 1.5D terrains [2], and exact methods are known for the special
case of rectangle visibility in rectilinear polygons [9]. For further reading on the art gallery problems, we refer
the reader to surveys on the art gallery problem [23,26] and to the book of O’Rourke [21].
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Figure 2. A 72, 000 square foot industrial data center in Poughkeepsie, New York. The data center contains a large number of servers, 72
air conditioning units or CRACs, and many other types of equipment. The inset polygon (not part of the data center) is a control room.

For three decades interest in art gallery problems has mainly focused on theoretical aspects. However, since
the experimental work of Amit et al. [28] in 2010, a flood of experimental projects have been reported, most of
which provide approaches to the classical problem variant. The aim of this recent body of experimental work
has been to find close-to-optimal solutions in reasonable time. We refer the reader to a survey of some of these
projects [6].

The present work is motivated by practical issues of thermal monitoring of servers in data centers, and
the desire to keep equipment safe while keeping cooling and monitoring costs to a minimum. One approach
to understanding temperature distributions in data centers is to deploy a large number of static temperature
sensors [1]. Often one then feeds the data obtained into a computational fluid dynamics (CFD) model to
help understand how changes in the settings of the center’s air conditioning units will affect the temperature
distribution. The advantage of such an approach is that the cost of sensors is low, however there can be
substantial management costs associated with instrumenting all of the necessary equipment with sensors and
tying the sensor data into an appropriate backend system. Moreover, the sensors sometimes get in the way of
working with the hardware.

Another approach is to outfit a mobile hand-operated cart with sensors and manually move this cart around
the data center to gather temperature measurements, as in the work on the Measurement and Management
Technology (MMT) system of Hamman et al. [13, 14] The advantage of this method is that it can quickly be
adapted to be used in data centers that have not previously been outfitted with sensors (a process that takes a
substantial amount of time). It potentially also has lower management costs. However, this method requires a
fair amount of manual labor, which can be expensive. A third approach is to outfit a robot with sensors and have
the robot autonomously navigate the center and monitor temperatures, either throughout the data center, or at
specific locations [16, 20]. A final approach is the one discussed here, that of deploying fixed thermal imaging
cameras. Such an approach is discussed in depth in [18], though not from the perspective of placing a minimum
number of cameras, as in the current study.

3 Combinatorial Bounds

We shall consider the cases where the segments to be monitored are either all vertical, all axis-aligned, or
alternatively, all arbitrarily aligned. Segments are assumed to be non-overlapping/non-intersecting. Within
these cases we identify several variants of the basic visibility problem. Namely, if visibility must be from a given
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side, but that side is specified by the problem poser, we say the problem is an instance of the Poser’s Choice
problem. If, on the other hand, the solver has the choice of which side to monitor the segment from, we say that
it is an instance of the Solver’s Choice problem. We consider two variants of the Solver’s Choice problem, a
variant where the solver must monitor the entire segment, but may monitor some points from one side and some
points from the other side (the problem studied by Czyzowicz et al. [4] and Toth [24]), and a variant where the
solver must monitor the entire segment from one side. A final variant is where the solver must monitor the entire
segment from both sides (a variant also considered by Toth [24]).

An additional variation that slices through all these variants is to consider the problem where we are satisfied
with guarding all segments except for a length of δ along each segment (or, what turns out to be equivalent, an
omission of length δ when summed over all segments) for a fixed arbitrarily small δ > 0. In all of these cases
we ask what is the worst-case number of guards needed to see a set of N segments. In what follows we use the
terms “guards” and “cameras” interchangeably.

3.1 All Vertical Segments

In this section we obtain tight combinatorial bounds for the case where all segments are vertically aligned. In
this and subsequent sections we consider the problem where all segments are contained in a bounding rectangle.
As noted earlier, the choice of bounding region has only an O(1) impact on the combinatorial bounds.

Theorem 1 Given n vertical segments in the plane and a bounding rectangle,

(a) dn2 e cameras are sufficient, and for each n sometimes necessary, to entirely see all n segments from the left
(i.e. from the same prescribed side).

(b) d 2n3 e+ 1 cameras are sufficient, and for each n sometimes necessary, to entirely see all segments from both
sides.

(c) dn3 e cameras are sufficient, and for each n sometimes necessary, to entirely see all segments from one side
or the other (Solver’s choice).

(d) bn2 c+ 1 cameras are sufficient, and for each n sometimes necessary, to entirely see all segments from one
side or the other (Poser’s choice).

Proof. In all problem instances let ε be the closest any segment endpoint comes to the boundary rectangle
and in an effort to establish the upper bounds asserted in the theorem (sufficiency conditions), let us extend all
segments so each top and bottom endpoint is exactly distance ε from the rectangle boundary. Cameras which
see the extended segments entirely will surely see the shorter segments entirely (from whatever prescribed sides).

In case (a) we number the segments in left to right order `1, ..., `k (ignoring all segments but the top-most
ones if there are segments lying directly above one another) and then position cameras cj for j = 1, ..., dk2 e above
and to the left of each `i for i odd so that cj can see `2j−1 and `2j (if there is an `2j), and any segments lying
below these segments from the left. This establishes that dn2 e cameras are sufficient. To see that dn2 e cameras
may also be necessary, take ε to be very small (much smaller than the height h and width w of the bounding
rectangle) and now group segments, all of height h − 2ε at the same distance from one another, such that any
camera which sees two consecutive segments from the left sees only a tiny fraction of the segment next over to
the right (if there is such a segment). In such an arrangement, dn2 e cameras are clearly necessary.

In case (b) we again use the left to right segment numbering used in case (a), ignoring all segments but the
top-most ones. We shall use a single camera to see the left side of the left-most segment and another camera
to see the right side of the right-most camera. Neglecting these segment sides, let us start with the first group
of 4 segments (deferring consideration of the case where we have fewer than 4 segments until later). We then
place a camera just above and to the left of the second segment so that the camera can entirely see the right
side of the first segment, the left side of the second segment and the left side of the third segment, and place
a second camera just above and to the right of the third segment so that it entirely sees the left side of the
second segment, the right side of the third segment and the left side of the fourth segment. Next place a camera
just above and to the left of the fifth segment and another camera above and to the right of the sixth segment.
Analogously, place cameras just above and to the left of the (3i− 1)st segment and just above and to the right
of the 3ith segment. Figure 3
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Figure 3. Positioning of cameras to show that d 2n
3
e+ 1 cameras can always see both sides of all of n vertical segments. The red-marked

cameras see the red-marked sides of segments and the blue-marked cameras seen the blue-marked sides of segments. red cameras are
placed just above and to the left of the (3i− 1)st segment and blue cameras are placed just above and to the right of the 3ith segment.

illustrates these camera positions and the associated segment-wise coverage by the various cameras. For the
case n ≥ 4, n ≡ 0 mod 3, since each of n

3 red and n
3 blue cameras sees 3 independent segment sides, with the

exception of the right-most blue camera, which sees just two sides, and all segment sides are thus-wise covered
by one camera with the exception of the left-most segment side, which can be covered by placing a camera at
the very left of the rectangle we see that we can, in this case, use 2n

3 + 1 cameras to see all segment sides. If
n ≡ 1 mod 3 then d 2n3 e+ 1 affords one more camera then for n− 1 ≡ 0 mod 3. If we consider the segments to
be added in left to right order then the right-most blue camera already sees the left side of the nth segment so a
single additional camera can be added to see the right side of this nth and right-most segment. If n ≡ 2 mod 3,
again d 2n3 e+ 1 affords one more camera then for n− 1 ≡ 1 mod 3. Again considering the segments to be placed
in left to right order, if we place the second to last camera between the n − 1st and nth segments, then with
our additional camera we just have to guard the rightmost side of the right most camera which is easily handled
by placing the camera anywhere to the right of the segment. Hence the cases n ≥ 4 of arbitrary modularity are
handled. A glance at Figure 3 for the cases of n = 1, 2 and 3 segments shows that d 2n3 e+ 1 suffices in these cases
as well.

To complete case (b), it remains to show that d 2n3 e+ 1 cameras are sometimes necessary for arbitrarily large
n. Let us assume our rectangle is axis-aligned and let xk denote the x-coordinate of a kth segment `k. Then, for
any ε > 0 we can place n equally spaced vertical segments (equally spaced in the sense that xi+1−xi = xj+1−xj
for any 1 ≤ i, j ≤ n− 1), each extending sufficiently close to the boundary rectangle such that a camera c placed
such that xi ≤ x(c) < xi+1 can see at most ε of segments xk for k ≤ i− 2 and k ≥ i+ 2. Moreover, c can see at
most 3 segment sides. Further, note that any camera that sees the left side of the left-most segment or the right
side of the right-most segment will see at most one additional segment plus at most ε of any others. Since we
must see the left side of the left-most segment and the right side of the right-most segment, to see all 2n sides
of all segments requires k + 2 cameras where

3k + 4 ≥ 2n (1)

so that

k + 2 ≥ 2n

3
+

2

3
(2)

which is equivalent to

k + 2 =
⌈2n

3

⌉
+ 1. (3)

Case (c) is rather easy. To see that dn3 e cameras are sufficient, in the worst case, again assume that no
two segments are positioned one on top of the other since viewing segments entirely will be easier if they are
positioned one on top of another. As usual, extend all segments so the top-most points are the same distance
from the top of the rectangle and the bottom-most points are the same distance from the bottom of the rectangle.
Assuming n ≡ 0 mod 3, i.e. n = 3k for some positive integer k, position the ith camera just above and to the
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Figure 4. n segments (for n ≡ 0 mod 2) placed in such a way that with a poser’s choice of sides as shown (by the “ticky” marks), a
solution seeing all sides requires bn

2
c+ 1 cameras. The cameras must be placed between `2i and `2i+1 for 1 ≤ i ≤ n−2

2
. If n ≡ 1 mod 2,

just remove the rightmost segment to get an analogous case, still requiring bn
2
c+ 1 cameras.

right of the (3i− 1)st segment so that it can entirely see the right side of the (3i− 2)nd and (3i− 1)st segments
as well as the left side of the 3ith segment. If n ≡ 1 or n ≡ 2 mod 3, and so n = 3k + 1 or n = 3k + 2, then
do the same for the first 3k segments and position a final camera anywhere between the final two segments to
either see the (3k + 1)st segment from the right if n = 3k + 1 or the (3k + 1)st segment from the right and the
(3k + 2)nd segment from the left if n = 3k + 2. The argument that dn3 e cameras are sometimes necessary is
essentially the same as the necessity proof in case (b).

For case (d), first let us consider the case n ≡ 0 mod 2 and consider the segments `1, ..., `n numbered left to
right. Let us say the a segment `k is “left-pointing” if we are required to see it from the left side, and “right-
pointing” otherwise. If `1 is not left-pointing then we can use one camera to see the left two segments, surround
the right-most n − 2 segments with a smaller rectangle than our original bounding rectangle, with left edge to
the right of `2 and be done by induction. If `1 is pointing leftward then we can assume `2 is pointing rightward
since otherwise we again could see `1 and `2 with a single camera and complete the argument by induction.
But since `2 is pointing rightward we can see `2 and `3 with a single camera, and in fact would also be able to
see `4 with this camera if it were pointing leftward. If in fact `4 were pointing leftward then we could see the
left-two-most segments with two cameras and so be able to finish off the argument by induction. Hence we may
assume `4 is pointing rightward. We continue the argument in this way , seeing `1 with a single camera and all
pairs (`2i, `2i+1) with a single camera for 1 ≤ i ≤ n−2

2 and then at the end, see `n with a single camera. In all
we see the n segments with n−2

2 + 2 = bn2 c+ 1 cameras. The same argument now applies for the case n ≡ 1 mod
2 but now we see the first segment with a single camera and the remaining n − 1 segments with n−1

2 cameras
for a total of n−1

2 + 1 = n+1
2 = bn2 c+ 1 cameras once again. The examples described in Figure 5 also show that

Figure 5. n segments (for n ≡ 0 mod 2) placed in such a way that with a poser’s choice of sides as shown (by the “ticky” marks), a
solution seeing all sides requires bn

2
c+ 1 cameras. The cameras must be placed between `2i and `2i+1 for 1 ≤ i ≤ n−2

2
. If n ≡ 1 mod 2,

just remove the rightmost segment to get an analogous case, still requiring bn
2
c+ 1 cameras.

bn2 c+ 1 cameras are sometimes necessary. 2
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Remark 2 Note that stipulating just that all but some δ of each segment be guarded still requires the same
number of cameras in each of the cases of Theorem 1.

3.2 Axis-Aligned Segments

We now proceed to the considerably harder case of arbitrary axis aligned segments. We consider first the Solver’s
Choice problem. There are two natural variants of this problem, one (a) where the solver is able to choose to
see some points on a given segment from one side and some points from the other side, and another variant
(b) where, though the solver gets a choice of sides, all points on each segment must be viewable entirely from
one side or the other. Solver’s Choice variant (a) for axis-aligned segments was first considered by Czyzowicz et
al. [4], where they showed that dn+1

2 e cameras always suffice. A little bit of an addition to their argument shows
that dn+1

2 e cameras also suffice for Solver’s Choice variant (b). We present this extended argument below.

Both the Czyzowicz et al. argument and our addition utilize the following classic theorem of Tutte’s [25]1:

Theorem 3 (Tutte) A graph G has a perfect matching iff every subset of vertices S is such that the number of
connected components of G \ S of odd order is less than or equal to the number of vertices in S.

Theorem 4 Given n axis-aligned segments contained in a bounding rectangle, it is always possible to see the
solver’s choice of sides, where the solver must choose to see each segment entirely from one side or the other,
using at most dn+1

2 e cameras.

Proof. Czyzowicz et al. [4] actually considered the problem in the plane, where the bound is exactly the same
as it is in a rectangle – indeed, the first step in the Czyzowicz et al. proof is to place the segments in a bounding
rectangle – a rectangle which in our case is just given to us. Next, extend all segments so they come within
some very small ε of another segment or one of the rectangular “walls.” After extending all n line segments in
this fashion, it is easy to see by induction that we end up with n + 1 “rooms.” See Figure 6 which is taken

Figure 6. n = 11 segments extended so they come within some very small ε of one another or one of the rectangular walls, leaving
n+ 1 = 12 “rooms” R1, ..., R12.

from Czyzowicz et al. [4] – as is this entire illustration and figures including the two sub-figures of Figure 7.
Consider the graph whose vertices are the rooms and such that there is an edge between vertices iff there is, in
Czyzowicz et al.’s terminology, a “door” between rooms, in other words there is a path between the rooms that
does not pass through any other room (this is not equivalent to the rooms sharing a common corner; see Figure
9 and, for example, rooms R2 and R4 in Figure 6.). We claim that this graph has a near-perfect matching (a
perfect matching if n is even and a perfect matching on n − 1 of the vertices if n is odd. Assume the graph
has an even number of vertices (i.e. by throwing in an extra axis-aligned segment if necessary) and try to apply
Tutte’s Theorem. Remove a set of vertices S and let k equal the number of connected components after removing
vertices in S. See Figure 7. We consider the remaining connected components to be orthogonal polygons, given
by the union of the associated closed rooms, as shown in the right-hand drawing in Figure 7. Each of the k
orthogonal polygons contains at least 4 corner points, or at least 4k corner points in total. Now consider adding

1To gain insight into this theorem consider the tree of height two with three leaves and then look at variations on the same theme.
For extra insight into Tutte’s Theorem we recommend the wonderful proof due to Lovász in [19].
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Figure 7. On the left, the room connectivity graph and on the right, the graph after removing the set of vertices S, leaving k = 2 connected
components.

vertices back to the graph, in other words, adding rooms back. Adding a room back, removes at most 4 corner
points from the cumulative set of rooms, at most one corner point for each of its corners. So we go from at
least 4k corner points down to 4 corner points by the time we add all |S| vertices back. Hence |S| ≥ k − 1 or
k ≤ |S|+ 1. Tutte’s Theorem says that G has a perfect matching if the number of connected components of odd
order is no bigger than |S|. The only way then that we could not have a perfect matching is if k = |S|+ 1 and
all connected components are of odd order. But then, remember that the total number of vertices, |V |, was even

and |V | = |S|+
∑k

i=1 |CCi|, where |CCi| denotes the number of vertices in the ith connected component. Thus

if (1) |S| is odd, then k is even and since each |CCi| is odd,
∑k

i=1 |CCi| must be even and |V | = |S|+
∑k

i=1 |CCi|
is the sum of an odd and an even and so odd, a contradiction. On the other hand, if (2) |S| is even, then k is odd

and
∑k

i=1 |CCi| is odd , so again |V | = |S|+
∑k

i=1 |CCi|, being the sum of an even and an odd, is odd, which is
again a contradiction. Thus it must be that k ≤ |S| so that Tutte’s Theorem applies and we have a near perfect
matching.

To finish up we need to show how to use a camera at the junction (“doorway”) between every pair of rooms
in the near perfect matching and a single camera in the interior of the possibly one remaining room so as to see
all segment sides and associated room walls, from the solver’s choice of sides. Regardless of choice of segments
we shall show how to guard the right sides of the vertical segments and the top sides of all horizontal segments.
To see that such camera placements are always possible suppose we have connected rooms A and B separated
by a horizontal wall. Figure 8 gives a generic depiction of all such examples. There is one additional way in
which rooms A and B can be separated by a horizontal wall, as in Figure 9, but note that in this case rooms A
and B do not share a “door” and hence are not connected. If A and B share the same left vertical wall like they
do in cases (a), (b) and (d) in the figure, we place the camera to the upper left of the separating horizontal wall
(denoted by h in the figure). If A and B have distinct left vertical walls, as in cases (c) and (e) in the figure, then
we place the camera just above and to the right of the right edge of h, so the camera sees the entire left walls
of both A and B in case (c) and the entire left wall of A and all of the left wall of B except for a small “blind
spot” in case (e). In all cases the camera also sees the upward pointing side of the bottom wall of B. By an
analogous and symmetrical argument camera placements are possible in the case where A and B are separated
by a vertical wall (rotate each of (a) through (e), along with the associated camera placements by 90 degrees in
the counter-clockwise direction) which also see the right and top sides of all room walls, modulo a small blind
spot on the bottom right in rotated version of case (e). Let us then further investigate case (e), noting that the
argument for the rotated version is completely analogous.

We note that there is necessarily an additional room on the other side of the “doorway” at the upper left
corner of room B. In the near perfect matching this room is either a singleton or connected to another room.
If the room is a singleton the single camera used to see the right side of the left wall and the top side of the
bottom wall can clearly also cover the previously left blindspot. If not a singleton, then either the connected
rooms are separated by a vertical or horizontal wall. If separated by a horizontal wall then it is easy to survey
the cases (a) - (e) to see that next camera, which will “hug” a vertical segment above h will, in coordination
with a suitably placed first camera, will be able to see the previously left blind spot, since the second camera
can be positioned to have a sharper angle on the previously left blind spot and the blind spot can be made
arbitrarily small and arbitrarily close to the original segment h. If the rooms are instead separated by a vertical
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Figure 8. The different ways in which two connected rooms A and B can be separated by a horizontal wall and the associated camera
placements used to see the tops of all horizontal walls and the right side of all vertical walls. In cases (a) through (d) these walls are seen
completely. In case (e) there is a small “blind spot that does not allow the left wall of room B to be seen completely.

Figure 9. Two adjacent rooms separated by a horizontal wall that are not connected since they do not have a “door” between them.

wall then a similar analysis results in the same conclusion. Since there are only finitely many rooms, this process
of seemingly pushing the possible blindspot forward, terminates after only finitely many steps. The theorem is
thus proved. 2

We make the additional observation that our choice to place cameras to see all vertical segments from the
right and all horizontal segments from the top was completely arbitrary. Therefore we have the following:

Corollary 5 Given n axis-aligned segments contained in a bounding rectangle, it is always possible to see the
poser’s choice of sides, if the poser is constrained so specify the same side (right or left) for all vertical segments,
and the same side (top or bottom) for all horizontal segments, using at most dn+1

2 e cameras.

The above result is comparable to Theorem 1 (a) - which gives essentially the same bound in the all vertical
case. By virtue of the “sometimes necessary” part of Theorem 1 (a) we know that dn2 e cameras are sometimes
necessary if all segments are required to be viewed from the poser’s choice of sides, if the poser is constrained
to specify all segments of a given type be viewed from the same side. With the addition of horizontal segments
we do not know of an example that actually requires dn+1

2 e when dn+1
2 e > d

n
2 e, in other words when n is even.

In the case of Solver’s Choice for axis aligned segments where the solver must see all points on a given segment
from the same side (Theorem 4) there is a more significant gap. Theorem 1 (c) showed that dn3 e cameras are
always sufficient to guard n vertical segments from the solver’s choice of sides. However, Figure 10 gives an
example that requires d 3n8 e cameras to view a set of n axis aligned segments from the solver’s choice of sides,
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Figure 10. A set of n axis aligned segments requiring 3n
8

cameras to entirely see the solver’s choice of sides.

while Theorem 4 established the sufficiency of dn+1
2 e cameras. In Figure 10 we have a sequence of alternating

vertical and horizontal segments. The pictured sequence has 10 vertical segments and 9 horizontal segments but
an arbitrary alternating sequence of such segments works just the same, as long as the sequence starts and ends
with a vertical segment. The left three segments in this figure require two guards to see all segments entirely
from a single side. Any placement of a single guard, for example, between the two vertical segments, will leave
at least a tiny “blindspot.” These two guards then will see most if they are positioned with one just above and
to the right of the second vertical segment from the left, and the other just below and to the right of the second
vertical segment. In this case the two guards together see all of the first five segments. There must now be a
guard that sees the third horizontal segment and it is easy to see that there is no benefit in seeing only part of
this third horizontal segment. Thus to see most, the guard responsible for seeing the third horizontal segment
should be placed either above and just to the right of the fourth vertical segment, or below and just to the right
of the fourth vertical segment. Either way the three guards see the first eight segments entirely as well as just
over half of the ninth segment, which is also the fifth vertical segment. Unfortunately one can easily see that
there is no way to leverage the half seen vertical guards when placing further guards.

Thus we are left with the same guarding situation that we started with, but with 8 fewer segments and 3
guards already used. Hence we conclude that this example and a generic axis aligned set of segments may require
as many as d 3n8 e cameras to view all segments from the solver’s choice of sides when all points on a segment
must be viewed from the same side.

Note, however, that if it were sufficient to see all but some arbitrarily small length δ of each segment, then
we could actually get away with one camera for every three segments in the example of Figure 10. The segments
may be thought of as a sequence of triplets of segments, starting with a vertical, then a horizontal and vertical,
or VHV for short, and following with a horizontal, then a vertical and then a horizontal, or HVH, and continuing
in this fashion. One can guard all but δ of each VHV by placing a guard just above and to the right of the
horizontal segment, and one can guard all of each HVH by placing a guard just above and to the right of the
vertical segment. In this all-but δ variant of the solver’s choice problem we know of no worse case then the one
that required dn3 e cameras for all vertical segments.

If the problem poser has full choice of which sides of segments he can specify to be viewed, then more than
n
2 + O(1) cameras may be necessary, as the example in Figure 11 shows. The segments in each “H” (or, in the

Figure 11. A set of n segments (the segments in black) for the full Poser’s Choice problem, requiring 2n
3

cameras. The tiny red segments
are not part of the problem, but rather indicate which side of the respective segments must be seen. The segments in each of the “H”’s
require 2 segments for all of the specified segment sides to be seen entirely.

nomenclature of the previous paragraph, each VHV) require two guards for all of the specified segment sides to
be seen entirely. We can add a vertical segment to the left of all segments pointing to the left and a vertical
segment to the right of all segments pointing to the right and the resulting collection will require 2n

3 +2 cameras.
The best upper bound we have been able to establish for the full Poser’s Choice problem is the following:

Theorem 6 Given n axis-aligned segments contained in a bounding rectangle, it is always possible to see the
poser’s choice of sides using at most d 3n4 e cameras.
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Proof. As in the proof of Theorem 4 extend all segments so they come within some very small ε of another
segment or of the bounding rectangle. Once gain use the near-perfect matching guaranteed by Tutte’s Theorem
to pair up adjacent rooms. There are only two cases in which we have adjacent rooms, and a poser’s choice of
segment sides, such that a single camera cannot see all required sides of segments within the rooms. These cases
are shown in Figure 12. Call matches of the form shown in Figure 12 “bad matches” since a single camera cannot

Figure 12. Two examples where a single camera cannot see all points on the required segment sides because of the inevitable blindspot.

entirely see all the needed segment sides. Note that in each of these two examples, one can use two cameras to
entirely see the needed segment sides in the two rooms, marked respectively A and B in each example. We will
actually use two cameras to see the three problematic segments entirely in each bad match. If we do this one
bad match at a time, we can avoid having too many bad matches, since once a segment has been seen entirely
by one camera it doesn’t need to be seen again. Thus, under the assumption that none of the problematic edges
of one bad match appear in another bad match, there can be at most n

3 bad matches.

We now break the analysis into two cases: (i) There are b ≤ n
4 bad matches, or (2) there are n

4 < b ≤ n
3 bad

matches. In case (i) we use 2 cameras in each bad match to see the three problematic segment sides entirely
along with any other required segment sides required to be seen within the two rooms, and 1 camera in each good
(i.e. non-bad) match to see required segment sides within those rooms, thus using at most 2(n

4 ) + dn4 e = d 3n4 e
guards. In case (2) suppose there are n

3 − h bad matches for 0 ≤ h < n
12 . In this case use 2 cameras to see each

of the 3 problematic defining line segments (i.e. the analogs of m,n, k in Figure 12) and 1 camera to see each
remaining line segment. Again a simple computation shows that d 3n4 e guards suffice. 2

Despite this result and the 2n
3 +O(1) lower bound from Figure 11, we have the following somewhat practical

caveat:

Theorem 7 Given any δ > 0 and n axis-aligned segments contained in a bounding rectangle, it is always possible
to see the poser’s choice of sides, using at most dn+1

2 e cameras if we are required to see all the requested segments
except, cumulatively, at most length δ along these segments.

Proof. Looking back at the proof of Theorem 6, and in particular at Figure 12, we see that the only cases in
which a guard or camera fails to see the requisite side of all requested segments in a given room occurs when it
is required to leave an arbitrarily small blindspot. Since only a finite number of cameras are used they can be
coordinated to leave blindspots of cumulative length at most δ. 2

It is important to note that we cannot hope to see both sides of all segments using this method; in particular
we only ever see one side of the segment k in Figure 12, which separates room A from room B. Indeed, the best
conceivable combinatorial bound for seeing both sides of a set of axis aligned segments cannot be any better
than the d 2n3 e + 1 bound we obtained for the case of all vertical segments back in Theorem 1. Recall that this
bound was tight even when we allowed for omission of up to length δ along all segments.

3.3 Arbitrarily Aligned Segments

Although we have not studied the line segment visibility problem in any detail for non axis-aligned segments
it is worth stating what is known of these results. In 2003 Csaba Toth [24] extended the result of Theorem
4 to the case of the Solver’s Choice Problem for segments of arbitrary orientation where the segments can be
viewed partially from one side and partially from another. The result is still that dn+1

2 e guards suffice to see
all segments. Urrutia [27] has given a construction showing that b 2n−35 c guards are sometimes necessary in the
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Solver’s Choice Problem for arbitrarily aligned segments in either the case where points of a segment can be seen
from either side or just one side.

One of the two tight bounds that are known in 2D (the case of all vertical segments being considered 1D) is
the case of arbitrarily aligned segments where the segments have to be seen from both sides. In this case Toth [24]
has given a b 4n+1

5 c bound as well as provided a concrete example showing that this bound is tight.

The following tables show the state of our knowledge regarding both upper and lower bounds for each of the
problems we have examined, up to constant factors:

Figure 13. A table summarizing what we know for the various problem variants. All stated results are modulo constant factors.

Figure 14. A table summarizing what we know for the various problem variants, where we allow segments to be viewed from the indicated
sides but also allow that up to some fixed δ be left unguarded, for arbitrarily small δ. All stated results are modulo constant factors.

As one moves from the top-left to the bottom-right of each table the problems become consistently harder.
Thus the number of cameras required to solve cell (i, j) is less than or equal to the number of cameras needed
to solve either cell (i + 1, j) or (i, j + 1), for all i, j for the same table. Moreover, the same is true for any
established upper and lower bounds. If we ever understand everything about this family of problems the upper
and lower bounds in each cell will be equal. For now, most have gaps. In many cases, we have not established the
bounds for a given cell independently but the bound is “inherited” from a neighboring cell. For example in the
first table, in the cell showing upper and lower bounds for the problem of viewing both sides in the axis-aligned
problem variant, the upper bound of 4n

5 comes from the same problem for segments with arbitrary alignment.
The upper bound in the axis aligned problem variant can be no higher than this value. Similarly, in this same

12



cell, the lower bound of 2n
3 comes from the same problem for segments that are all vertical. The lower bound

for the axis aligned problem variant can be no lower than this value.

4 Hardness Results

In this section we prove that many variants of the problems we discuss in this paper are NP-hard. We begin
with the simplest version.

Theorem 8 Guarding vertical segments from the left is NP-hard.

Proof. We show a reduction from 3-SAT. Each variable gadget consists of a batch of six segments (of the
same length) and each clause gadget consists of a batch of five segments. Figure 15 illustrates the reduction.

Figure 15. Demonstration of the reduction from 3-SAT in the proof of Theorem 8. On the left are the gadgets for the variables w, x, y
and z. On the right are the gadgets for the clauses (w ∪ x∪ ȳ) and (w ∪ x̄∪ z). The (point) guards associated with the respective literals
are indicated as circles to the left of the respective truth or false gaps. The line of site of a guard to the critical rightmost segment of each
clause, cr is indicated with a dotted line. Lines of sight for guards in the same clause are each of the same color - either black or green
above.

The variable gadgets are located on the left. Each gadget consists of two very close columns of three vertical
segments. Note that each is shifted to the left with respect to the one above it. In each variable gadget we refer
to the gap between the top two segments and the middle two segments as the truth gap, and the gap between
the middle two segments and the bottom two segments as the false gap. We refer to either gap as a literal gap.
The clause gadgets are located on the right in one column. Each clause consists of one short segment on the
right and four segments of the same x-coordinate to its left. For any clause gadget c, we denote by cr the right
segment and by cL the four segments to its left. We define the guarding instance so that all segments have to
be guarded from the left. For any clause gadget c, consider the segment cr. The segments cL will block cr from
seeing almost the entire bounding box. The three gaps in between cL constitute the only way that cr can see
far. They are fine-tuned so that cr sees the gaps in the variable gadgets that corresponds to the gadget literals.

For example, consider Figure 15 which corresponds to a formula with three clauses (two of which are given in
detail) and four variables (w, x, y and z). Consider the middle clause gadget c′ that corresponds to (w ∪ x∪ ȳ):
c′r sees the three literal gaps that correspond to w, x and ȳ (the lines of sight from the guards to the critical
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segment c′r are drawn with dashed black lines). The third clause, (w∪ x̄∪z), is similarly depicted, this time with
green dashed lines indicating the lines of site. The clause gadgets are easy to construct. The segments cr are
equally spaced and in a vertical line. One then connects each of the guards associated with the clause with the
top and bottom of cr. These determine the gaps between the blockers in the associated batch of four segments
cL. To make sure that blocker groups do not overlap with one another, just move all blocker groups sufficiently
far to the right.

Next we prove that a 3-SAT formula with C variables is satisfied if and only if the segments are guarded by
C guards.

⇒ Direction: Suppose the 3-SAT formula is satisfiable. We place one guard near each corresponding literal
gap. It is positioned infinitesimally to the left of the corresponding gap so that it can see through the entire
gadget so that it would see the vast majority of the bounding box if the clause gadgets were not present. We
argue that all segments are guarded as follows:

• Since the guard is located infinitesimally to the left of a gap, the segments of its gadget are guarded by it.

• The four left segments of the clause gadgets are guarded by all guards since the pairs of vertical segments
associated with a variable gadget are within ε of one another and the guard is just to the left and centered
vertically in the gap, and, moreover, if h is the height of the gap (distance between vertically aligned
segments), then w � ε.

• Since the 3-SAT formula is satisfied, the right segment of any clause gadget is guarded by at least one
guard – this follows by the geometry of the construction.

⇐ Direction: Suppose all segments are guarded by C guards. In order to guard the right segments of each
variable gadget from the left we are forced to position one guard for each such gadget to the left of the right
segments. Note that it is easy to guard the four segments of all clause gadgets: placing a single guard next to
either any truth or false gap will take care of that. However, in order for one of the C guards to see the entire
right segment of a particular clause gadget it must be positioned at the exact location in one of the literal gaps,
just to the left of the left segments in the variable gadget, from which the blocking segments were determined
(a location that henceforth we call a “reference guard location”), or to the right of such a location, but within
a very small distance of the visibility line going from the reference guard location to the midpoint of the right
segment in the clause gadget, so that the guard can still see the entire right segment of the clause gadget. To
see the right segments of the variable gadgets we must use one guard per variable gadget, and to see each of the
right-most segments of the clause gadgets, we must use one of the three guard regions that can be interpreted as
a requisite truth assignment associated with a particular variable in each respective clause. Thus the fact that
the C guards see the left-hand side of all segments implies that there is a satisfying assignment of the associated
3-SAT formula. 2

Theorem 9 The following variants and any combination of them are NP-hard: (a) Guarding vertical segments
from the poser’s choice of side. (b) Guarding vertical segments from both sides. (c) Guarding segments with
any orientation from the poser’s choice of side. (d) Guarding with restricted angle. (e) Guarding at least one
point in each segment from the left. (f) Guarding vertical segments from the solver’s choice of side.

Proof. (a) Generalization from Theorem 8. (b) We add two guards, one to the left of the structure and
one to its right (denoted by gl and gr, respectively). We tune the structure such that gr sees the right side
of all segments except the ones in the left columns of the variable gadgets. So that gr sees the right side of
the right-most segments of the top-most variable gadget we can extend the bounding rectangle down as far as
necessary, while sliding gr down but keeping the rest of the structure fixed. gl will see the left side of segments in
the left columns of the variable gadgets. The decision problem measure will be set to C+ 2. Note that to see the
left side of the left segments in the variable gadgets we need to position a guard to their left and to see the right
side of the right segment of the clause gadgets we must position a guard to their collective right. Additionally,
to see the right side of the left segments of the variable gadgets we need to place an additional C guards, one per
variable gadget. Since neither of the first two guards see the left side of the right-most segments of the clause
gadgets, these are the responsibility off the additional C guards. The rest of the details of the hardness proof
are identical to Theorem 8. See Figure 16 for an illustration. (c) Generalization of Theorem 8. (d) We simply
compress the model horizontally so that the visibility angle of the guards suffice to view everything necessary
for Theorem 8 to hold. (e) It is easy to fine-tune the model (if necessary) to ensure that this variant holds. The
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important segments are (as in Theorem 8) the right segments of the gadget clauses – we make sure that no gap
other than those from the corresponding literal gaps can see any point of these segments. (f) We modify the
proof of (b) as follows. We duplicate all segments and place the replacement twin segments infinitesimally close
to each other, centered about the same point as the original. For any original segment s, let sr and sl be the
two segments that replace it in this segments (sr being the right one, and sl the left one). In order to guard all
segments with C + 2 guards, the solver is forced to guard sr from the right and sl from the left, for each pair
of such segments, mimiking the similar cover shown in (b) above, where each pair of duplicate segment act as a
one segment that needs to be covered from both sides.

It is easy to demonstrate that any meaningful combination of the above variants is also NP-hard. We omit
the details. 2

Figure 16. Demonstration of the reduction Theorem 9(b). Note the changes from Figure 15: the guards are now in between the segments
of the variable gadgets and the two new special guards (in red), gl to the left, and gr to the right.

5 Heuristics for Guarding Data Centers

In this section we describe practical heuristics for computing guarding sets for data centers. A typical data center
can be modeled as a polygon with many rectangular holes, each hole representing a cluster of computers or a
visibility obstacle (e.g. a rack, cluster of racks, or computer room air conditioning unit (CRAC)). Single edges of
some of the holes need to be guarded. These represent the fronts of the racks or clusters, where the computers are
accessible and have their air intakes. This setting is analogous to the algorithmic model where segments need to
be guarded from problem poser’s choice of sides, though we have only thus far investigated theoretical problems
where the segments are free-standing, all segments need to be guarded, and there are no holes. Note that guards
cannot be positioned inside holes, so the segments that need to be guarded will necessarily be guarded from
outside each hole.

Our heuristics proceed as follows. Similar to the approach in [28], we extend the edges of the polygon (only
in the non-convex case where the extension goes through the interior of the polygon) and the holes in both
directions until they hit other holes or the boundary. We then consider the induced arrangement A and place
candidate guards in the center of each face F that does not lie inside a hole. See Figure 17 for a simple example,
where the polygon is a rectangle and, analogous to the case of a data center, the holes are all rectangles. It is
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Figure 17. A sample room with six holes and the induced arrangement A after extending the edges of the holes in both directions until
they hit other holes or the boundary. Since the polygon in this case is just a rectangle (and hence convex), the edges of the polygon need
not be extended.

easy to verify that this set of candidate guards cover the necessary segments (the ones that need to be guarded).

We differentiate between two visibility models:

• Complete guarding: Some guard must fully see each segment that needs to be guarded.

• Shared guarding: A segment can be covered by multiple guards. Each guard can cover different parts of a
given segment This variant potentially decreases the guarding set size, however, it is more costly to process.

Given a set of candidates, we employ two methods for selecting the guarding set: (a) Define the problem as
a set cover problem and formulate an Integer Programming (IP) problem to solve it optimally. (b) Use a greedy
method, similar to [28]. The idea, in this greedy case, is to iteratively select a guard that sees the as-yet largest
number of uncovered segments that need to be guarded, and continues, until all segments are guarded.

5.1 Integer Programming Formulation

5.1.1 Complete Guarding

Let S be the collection of n segments and C the collection of m candidate guards.

Let Mn×m be a matrix whose entry mi,j is 1 if and only if candidate cj sees segment si completely. Conse-
quently, our problem can be formulated as an IP instance as follows:

Min Σ(g ∈ ~G) subject to

M · ~G ≥ ~1
~G ∈ {0, 1}X · · ·X{0, 1}

where G is a vector of m elements that represents the status of the candidates (1 if chosen, 0 otherwise).

5.1.2 Shared Guarding

For each candidate c, we compute its visibility polygon, from which we derive for each segment s the intervals
of s seen by c. We then partition s into a connected set of intervals, each one seen by a fixed set of candidates.
Having partitioning the segments, the formulation is similar to the formulation in Section 5.1.1. Here, instead
of complete segments, we use the set of intervals comprising all the segments.

6 Experiments

We conducted experiments on both real-world and randomly generated data centers. We ran the heuristics
described in Section 5 on each such data center. The layouts of the various data centers we tested, showing only
features of relevance for monitoring, are given in Figures 18 and 19.
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Figure 18. Data center DC1. Segments that need to be guarded are drawn in red. On the left is the data center, on the right we have
added the guards found by our IP heuristic (marked and circled), and in the middle we show connecting lines between the guards and the
segments they see.

The rectangles in the random data centers are obviously not as neatly aligned as their counterparts in the real-
world data centers, and the edges of rectangles that need to be guarded in the randomly generated data centers
do not as systematically face in a given direction (typically the direction of the cool air source, as described in the
Introduction). The random data centers are therefore somewhat more difficult to guard. The only convention
adopted when generating the rectangles in the random data centers, was that the rectangles approximate the
size of real racks or real clusters of racks. Otherwise their locations were picked randomly but such that they do
not overlap.

Before presenting the results, we point out the following important observation. The shared guarding version
of the problem, where multiple guards could collectively be used to see segments, was found to be practically
implementable only for very small data centers. Moreover, the results obtained with it were very similar to the
results with the complete guarding model. Hence, we do not consider this model in our experimental results.

Data cluster # clusters # segments # candidates Greedy solution Greedy time IP solution IP time
to guard (sec.) (sec.)

DC1 97 91 4505 8 27 7 147
DC2 296 239 8318 76 66 X X

Random 19 19 854 4 4 4 1
Random 35 35 2070 6 5 6 11
Random 52 52 3689 10 8 8 49
Random 66 66 4215 12 11 11 78
Random 78 78 5136 16 21 14 158
Random 92 92 5715 20 35 18 284
Random 116 116 6628 27 52 23 406
Random 127 127 6932 30 61 X X

Table 1. Results obtained from our experimental implementations. X refers to cases where the IP implementation did not complete.

The results of our experiments are shown in Table 1 and illustrated in Figure 20. While DC1 was small
enough to be applicable for IP, DC2 was too big for the IP to complete. Our tests with the random data were
helpful in evaluating the performance of the heuristics.

We observed a tradeoff between quality of results and performance in choosing between the greedy and IP
heuristics. The latter usually produces better results, but took more time to complete. This tradeoff is evident in
both Table 1 and Figure 20. In Figure 20 we can also observe the exponential and super linear time performance
of the IP heuristic and the greedy heuristic, respectively. Note that in large instances, the IP instance takes an
unreasonable amount of time due to its exponential behavior, and thus beyond a certain point we are limited to
using the greedy heuristic. We encountered this situation in several instances (note the X’s in the table).

Considering the above, we recommend first trying the IP implementation and if the IP implementation takes
too long to complete, resorting to the greedy heuristic.
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Figure 19. Other data centers. From left to right: data center DC2 and random data centers with two different equipment densities.

7 Conclusions and Future Work

In this paper we have examined a family of visibility problems motivated by the desire to efficiently monitor
critical locations in a computer data center. We have considered several models of these data centers and their
contents. In the simplest case, we modeled the data center as a polygonal enclosure containing a family of
one-sided line segments that need to be guarded. We formulated many variations on the guarding theme, in
some cases the problem solver got to choose which side of the segments to guard and in others it was the problem
poser. Sometimes both sides needed to be guarded, and sometimes everything but some small length δ. We
considered combinatorial bounds for this family of problems and found a number of interesting upper and lower
bounds as summarized in the tables of Figures 13 and 14. Our interest in the subtly different variations is so
that some day we can hopefully characterize precisely where the requirement for more cameras comes from as
we move from the easier to harder problems.

After considering the combinatorial bounds, we showed that finding exact solutions to virtually all of these
problems is NP Hard. From there we moved to a more realistic models of data center where the items to be
monitored, the racks and rack clusters, were rectangles with distinguished edges that needed guarding. We
described two heuristics for coming up with guarding sets and tested these heuristics against real world data
centers as well as randomly generated ones.

Although we have stated and solved the various data center visibility problems as 2D problems, these are
just simplified models of what are really 3D problems. Rather than one sided line segments in a 2D world we
really have 2D rectangular slabs that we must monitor from one side or the other in a 3D world. It would be
natural to next tackle this more realistic model.

An interesting variant of the problems we have stated, that we have not explored at all, is the watchman’s route
variant. Given a set of one sided segment and a segment guarding requirement (or rectangles with distinguished
edges), find the shortest route such that a mobile guard can see all required segment sides (distinguished edges)
at some point during the route. Dumitrescu et al. [8] studied a problem of this ilk for lines and line segments but
where all the lines or line segments are connected and the watchman’s route is constrained to lie within the union
of the lines or line segments. Interestingly, the 2D variants of the Dumitrescu et al. problems are polynomially
tractable, though the 3D variants are not. Our problem is considerably different in that our segments are not
connected and have sidedness constraints. The watchman’s route problem in our case is especially relevant to
the case where the guard is a robot, as in the data center robot of [16, 20], or to a team of robots. The robot
described in [16, 20] travels at unit speed, but makes just L1 moves and has turn costs, so if such a robot is
considered one should consider not the shortest route but the most efficient travel time. How far from optimal
can it be to build a tour out of a minimal guard set?
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