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Abstract—In this paper we address the use of mobile phone
location data to build urban sensing applications. In the past
decade, several research works have proposed the use of different
types of location data from the telecommunication network to
characterise people mobility in the city. Thus, several applications
to infer urban dynamics where proposed. However, different
papers have used different types of mobile phone location data,
making it is difficult to understand whether a particular dataset
provided by a telecom operator is indeed effective for a specific
urban sensing application. In this paper we address this issue
by comparing the quality of the insights extracted from different
types of mobile phone location data, with specific reference to two
urban sensing applications: people count by location, and people
flow between locations. Experiments executed on a real dataset
provided by a telecom operator in Belgium show the advantages
of using network-driven mobile phone location data (collected
regardless on whether people are using their phone) compared
to the widely used Call Detail Records.

I. INTRODUCTION

Mobile phone location data from telecom operators in the
form of Call Detail Record (CDR) has been widely studied,
especially to extract insights into urban dynamics [5]. Such
massive data can be useful to extract patterns of human
mobility at an incredible scale. This data allows sampling the
location of a mobile device every time the device is actively
interacting with the network, e.g. at call time, while sending an
SMS, or while connecting to the Internet with Smartphones.
The disadvantage of such data collection method is that the
spatio-temporal sampling of each individual mobile phone user
trajectory over time might be very uneven, and perhaps biased
to specific locations (e.g. home locations) or times (e.g. during
the evenings or during working hours). Moreover, different
users might interact more or less with the network, resulting
in more or less mobility information recorded from them.
This could result in under-sampling the population, or more
problematically, biasing the extracted insights.

We then ask the question whether insights extracted from
actively collected-mobile phone location data are a good proxy
for human mobility. To answer this question, we compare such
results, with results extracted by both actively and passively
sampling user location, which constitute a richer set of location
information.

We used a real dataset collected from a telecom operator
in Belgium, which had a system which allowed to collect
both CDR, records of Internet connections (which we call
IPDR), and passively generated data (which we call Signaling).
Since each location event was tagged with the specific type of
event generating it, we were able to decompose the dataset

in three different ones: only CDR, CDR + IPDR, and all
data. We specifically take as reference a set of urban sens-
ing applications which have been proposed in the past, and
compare the patterns extracted from both datasets, to evaluate
the limitations of active-only user sampling.

The paper is structured as follows: Section II reports related
work in the area of urban sensing using mobile phone location
data. Section III describes the process under which mobile
phone location data is generated in telecommunication net-
work. Section IV describes the data used in this paper for the
evaluation. Section V describes the results of an application-
independent comparison of the datasets. Section VI evaluates
the insights extracted from the different datasets, considering
specific urban sensing applications. Section VII concludes the
paper with a discussion on the provided comparison, and draws
conclusions.

II. RELATED WORK

In the past decade, there has been a rising interest in using
mobile phone location data to infer user trajectories [1], [8],
and to study human mobility and their patterns [7]. Different
types of data have been used in these studies. CDR data were
used in [7],[2],[6]. CDR information, enriched with records
from Internet access was exploited in [4]. Data from idle
phones were also used in [9] to estimate the road traffic.
However, to the best of our knowledge, no work so far has
specifically compared the different types of datasets that a
telecom operator can collect. Moreover, no work so far has
analysed the limitations of using a specific dataset for a given
urban sensing application.

III. MOBILE PHONE NETWORK DATA GENERATION

In this section we describe different types of location
information that can be collected by a telecom operator related
to interaction of the mobile phones and the telecommunication
network. When a mobile phone is switched on, it regularly
notifies its position reporting the actual cell where it is cur-
rently located. The notification of the mobile phone position
can be triggered by events (call, sms, or Internet usage) or
by updates of the network (for a more detailed description of
the technologies and standards used to derive the position of
mobile phones see [11]).

Event-Driven Mobile Phone Network Data. Today, there
are two primary sources of these data: communication and
Internet usage. Most telephone networks generate Call Detail
Record (CDR): records produced by a telephone exchange
documenting the details of a phone call or sms passed through
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Fig. 1. (a) Location area and base stations; (b) Periodic update; (c) Handover; (d) Mobility Location Update.

the device. A CDR is composed of data fields that describe
the telecommunication transaction such as the user id of the
subscriber originating the transaction, the user id receiving the
transaction, the transaction duration (for calls), the transaction
type (voice or sms), etc. Each telecommunication operator
decides which information is emitted and how it is formatted.
As an example, there could be the timestamp of the end of the
call instead of the duration.

The second source of data is Internet usage. In telecom-
munications, an IP Detail Record (IPDR) provides information
about Internet Protocol (IP)-based service usage and other
activities. The content of the IPDR is determined by the
service provider, the Network/Service Element vendor, or any
other community of users with authority for specifying the
particulars of IP-based services in a given context. Examples
of IPDR data fields are: user id, type of the website, time of
event, number of bytes transmitted, etc. It is important to note
that the margin of error in this case varies widely according
to whether the device to which the IP address is attached is
mobile, and to the density and topology of the underlying IP
network.

Both communication and Internet usage can be associated
to the cell phone towers used during the interaction.

Network-Driven Mobile Phone Network Data. A cellular
network is a radio network of individual cells, known as
base stations. Each base station covers a small geographical
area which is part of a uniquely identified location area. By
integrating the coverage of each of these base stations, a
cellular network provides a radio coverage over a much wider
area. A group of base stations is named a Location Area (LA),
or a routing area. A LA is a set of base stations that are grouped
together to optimise signaling (see Figure 1(a)).

Typically, tens or even hundreds of base stations share
a single Base Station Controller (BSC). The BSC handles
allocation of radio channels, receives measurements from the
mobile phones, controls handovers from base station to base

station.

In such a context, different types of location update can
happen:

1) Periodic Update, which is generated on a periodic
base and provides information on which cell tower
the phone is connected to (see Figure 1 (b)).

2) Handover, which is generated when a phone in-
volved in a call moves between two cell areas (see
Figure 1 (c)).

3) Mobility location update, which is generated when
the phone moves between two Location Areas (see
Figure 1 (d)).

Location updates also happen when the phone changes type
of connectivity it uses to access the telecommunication in-
frastructure (e.g., from 2G to 3G). Finally, operators might
install systems to monitor the signaling messages from the
links between the cellular Radio Access Network and Core
Network (specifically on the A, Gb, IuPS and IuCS interfaces).
The frequency of these updates strongly depend on how the
operator has deployed the different connectivity technologies.

Another important aspect is how the user’s location can be
detected. Location information can be extracted as part of the
interaction data between the mobile phone and the telecom-
munication infrastructure. In most cases it is represented by
the cell tower position or the cell sector to which the mobile
phone is connected.

An operator might decide to record some of the above
information for further uses. This might involve installing
additional hardware and software to be able to connect to the
data streams, and of course specific storage capacity. Usually
data is only stored for a limited time. Thus, it is possible that
in a real setting only one type of information can be made
available for use for urban sensing applications. In this paper,
we have been able to get access to all above described location
data, and thus we can compare the quality of the insights



extracted by any combination of the datasets. This study can
serve as a basis for choosing which investments and effort an
operator has to put in place to collect specific data used to
provide effective urban sensing applications.

IV. AVAILABLE DATA

In this paper we used anonymised mobile phone location
data from a telecom operator in Belgium, for users in the
area around the city of Mons, Belgium. To safeguard personal
privacy, individual phone numbers were anonymised by the
operator before leaving storage facilities. In particular, each
data item is of the form: < id, timestamp, cellid, type >,
where id is a user identifier, and the type field allows to specify
the reason for the location data. In particular, such reason can
be:

• Event-driven signaling due to:
◦ Callsetup, generated at the beginning of a call

(either originated or terminated);
◦ SMS, generated at time of SMS message being

sent;
◦ Internet data packets (IPDR), generated for

internet traffic;

• Network-driven signaling due to:
◦ location updates;
◦ radio access network;
◦ data sessions.

The data covers users connected to 150 distinct cell towers
in the city area. For each cell tower, we were given the
coordinate and the azimuth of each cell sector. Thus we were
able to derive a voronoi tessellation of the space, following the
approach presented in [3]. Some cells cover the same area (i.e.
2G and 3G antennas installed on the same tower), resulting in
being able to discriminate among 58 distinct locations in the
city.

The available data covers one week in October 2014. We
use the available data to simulate 3 different scenarios:

• availability of only CDR information, in which we
only use the CALL and SMS data items, and are
representing cases in which only CDR information is
provided.

• availability of CDR and IPDR, in which we use the
above data, together with IPDR, to represent cases
where all Event-driven signaling information is pro-
vided.

• availability of all signaling information
(CRD+IPDR+Signaling), which will be our reference
for comparison.

Figure 2 depicts an illustrative example of temporal se-
quence of events for a user in the dataset. We also depict the
trajectory that we are able to detect, given the tree different
scenarios. The example clearly shows that for this user, the
availability of all information allows detecting 3 different
visited locations, and an estimated stop time for locations 2
and 3. If no Signaling information is available, only two visited
places could be detected, and the estimated stop time would

Fig. 2. Example of temporal sequence of events (top), and estimated
trajectories using three different datasets (bottom). To simplify the reading, the
locations have been drawn in one dimension (as opposed to the two dimensions
(latitude and longitude).

also be reduced, with lowest accuracy in the case of only CDR
information available.

At the general level, the advantages of using Network-
driven location data (in addition to event-driven) include:
i) sampling more users (people who are not making
calls/SMS/Internet connections); and ii) having more samples
of user locations, particularly at times where users are not
too active, e.g. at night). Motivated by this example, in the
following sections we quantitatively and qualitatively analyse
the difference of the different datasets from the point of
view of extracting accurate trajectories. This is firstly done
by extracting application-independent characteristics. Then, we
selected frequently used urban sensing applications designed
to make use of mobile phone location data, and compared the
accuracy of the extracted insights among the different datasets,
highlighting in which cases one dataset is preferable compared
to the others.

V. APPLICATION-INDEPENDENT COMPARISON

We can compare the three datasets along different dimen-
sions: number of sampled users, number and timing of events,
spatial dispersal, and finally we can try to classify users based
on the available data.

A. Sets of users

Let us define as #CDRi, #IPDRi and #Signi, the
number of CDR, IPDR and Signalling events for user i. A
first comparison between the three datasets is in terms of the



Fig. 3. Percentage of users per data type and relative intersections.

set of sampled users. We counted, for each user, the number of
the three different types of events (CDR, IPDR and Signaling).
Figure 3 shows a Venn diagram of the unique users by data
type. Only for about 11% of the users we can see all three
different types of events. This is due to several reasons:

• Not all users have smartphones for which IPDR can
be generated;

• Some users are only seen very temporary in the dataset
(users only traversing the city), and so only Signaling
information is available;

• We can also have users for which only CDR informa-
tion is generated (without any Signaling information).
This can be explained by people spending only a
limited time in the area under analysis, and for which
no location updates happened in that period.

B. Number and timing of events

Not all users generate the same number of events. The
number of events by user follows a long tail distribution,
as shown in Figure 4. Clearly considering only CDR or
CDR+IPDR events, the average number of events per user is
smaller. This is even more clear if we look at the total number
of events per hour, see Figure 5. CDR events represent around
10% of all events, signaling about 2%. Clearly, majority of
events are due to IPDR, given the number of packages being
downloaded or uploaded for each internet connection.

We then ask the question whether this decrease in the
number of events is concentrated in particular hours of the
day, or is equally spread over time. Figure 6(a) show the
distribution of users by number of distinct hours for which
there is at least one event. This is computed, user by user,
by counting the number of distinct hourly intervals (from 00
to 59) in which we have at least one record for that user.
Curves CDR and CDR+IPDR look very close, to show that
the large amount of IPDR events are on average concentrated
in the same number of hours as the CDR events. Moreover,
majority of Internet usage tends to be bursty and associated

Fig. 4. Distribution of user by number of events

Fig. 5. Number of events per hour

to people’ use of mobile apps for a limited amount of time.
On the contrary, Signaling events are able to sample the user
location over many more hours. However, if we only consider
daily hours (from 6 to 22), as reported in Figure 6(b) we notice
that the difference in terms of number of monitored hours
decreases. This behaviour indicates that the probability to be
able to locate a user in space during daily hours is relatively
similar for the 3 different datasets. This is very important for
many urban sensing applications, as we will see i the following
section.

C. Spatial dispersal

We analysed the distribution of users by number of distinct
visited locations. Figure 7 shows that majority of users visits
less then 6 locations in the week. There is no much change
between the different datasets, showing the all datasets are able
to detect the most visited locations for each user, which usually
are also the ones that characterise most of the user’s mobility
(e.g. home and work locations).
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Fig. 6. Distribution of user by number of hours for which at least one event

Fig. 7. Distribution of users by number of distinct visited cells

D. Classes of users

We cluster users by the number of different types of events.
Figure 8 shows 4 clusters extracted running K-means on the
set of users1, given the feature vector for each user i:(

#CDRi

maxi #CDRi
,

#IPDRi

maxi #IPDRi)
,

#Signi

maxi #Signi

)
The representatives of each cluster are shown in Figure 9(a).
Cluster 1 corresponds to very low interacting users. Cluster 2
corresponds to users mainly using their phones for calls and
sms. Cluster 3 corresponds to users mainly using their phones
for Internet access. Cluster 4 corresponds to highly interacting
users, for which both the volume of call, sms and Internet
connection is high. In Figure 9(b), we reported the percentage
of users having only CDR in the 4 clusters. We can see that
Clusters 2 and 4 are well represented in the CDR dataset, while
the other two classes of users are only partially represented.
This shows that using only CDR information could result in
partially biasing the results toward some specific classes of
users.

VI. APPLICATION-DEPENDENT COMPARISON

In this section, we have taken frequently used examples of
urban sensing applications using mobile phone location data: i)
the count estimation over time, such as the number of people

1k=4 was chosen based on maximising the average silhouette of the clusters

Fig. 8. Cluster of users based on relative number of events

(a) Cluster centroids (b) Percentage of CDR-only users

Fig. 9. Clustering results

being in a certain location in a given time interval; ii) the
Origin Destination (OD) flow estimation, such as the number
of people travelling from a certain origin to a destination in a
given time interval. We extracted this two kinds of information
from the 3 datasets and we compared the obtained results.

We provide an extensive series of results considering all the
users, and a summary of the results considering only the 11%
of users having all three CDR, IPDR and Signaling information
recorded.

A. Count estimation

This application involves the estimation of number of users
by location, as a time series. This information is highly relevant
for many sectors, such as Retail, Property, Leisure and Media,
since it allows to compare locations in terms of expected
crowd. Clearly, an accurate estimation of the time series of
number of users by location is crucial to provide trustable
insights. Given a user locations dataset, we apply the following
method to estimate the number of users by location:

• select a time interval (e.g. 1 hour);

• find, for each user, the location at which it has been
seen for most of the time;

• assign to each location and time interval, the count of
users based on the step above;



CDR+IPDR+Signaling CDR CDR+IPDR
Antenna ID Rank Density Rank Density Rank Density

7934 1 20742 1 10867 1 13546
7932 2 20636 2 9488 2 12413
8736 3 10838 3 5185 3 6754
8000 4 9412 4 4725 5 5950
7933 5 8555 5 4538 4 5934

19976 6 7744 7 3610 6 5561
8256 7 7183 16 2104 10 3570
8001 8 6663 9 3146 9 4083
8032 9 5979 11 2488 12 3260
8034 10 5954 6 3808 7 4642

TABLE I. RANK AND COUNT ESTIMATION OF TOP 10 ANTENNAS IN
SIGNALING ON THE THREE DATASETS.

We computed user count time series for each location in the
city covered by a cell tower, starting from the three different
datasets. Cumulative count estimation by location is show in
Figure 10(a), ranked by increasing value of count (based on
the reference dataset). If results using the different datasets
were similar, we would expect to see a non decreasing curve
for the estimated count using either CDR or CDR+IPDR. In
order to compare the different count estimations, we computed
two measures of error:

• Root mean square error, calculated as√√√√nloc∑
i=1

ntimes∑
t=1

(
countR(t, i)− countc(t, i)

countR(t, i)

)2

where countR is the reference count estimated using
all data (CDR+IPDR+Signaling), while countc is the
count computed using either CDR or CDR+IPDR. The
error ranges from 0 to 1, and low values correspond
to low error.

• Normalised discounted cumulative gain (nDCG) [10]
which is used in recommender systems to measure
rank quality. We have chosen this measure to evaluate
whether the estimated ranking of crowded locations
is kept the same by using CDR or CDR+IPDR only
information. The error ranges from 0 to 1, and high
values correspond to low error. This measure is dif-
ferent from the RMSE, since it does not take into
account the absolute estimated count for each location
or time, but just the relative ordering of such counts by
location. This measure is directly useful in application
scenarios such as choosing the most crowded place
between a set of locations.

An example of the results of the estimated counts and
the ranking for a set of antennas is reported on Table I. We
selected the top 10 antennas in terms of count estimation for
the Signaling dataset and reported the corresponding values
and ranks obtained using the other 2 datasets. As we can see,
there are big differences among the datasets if we consider the
absolute values and this phenomenon is measured through the
RMSE. Instead, the differences in terms of rank are smaller,
and this is measured with the nDCG computation.

Table II shows the average errors for the 2 datasets. As
expectable, the error is higher if we only consider CDR
information. Moreover error measured in terms of nDCG is
much lower (since the value is very close to 1), and there
is no much difference in using CDR or CDR+IPDR data.
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Fig. 10. Density estimation

CDR CDR+IPDR
RMSE nDCG RMSE nDCG

Count estimation 0.51 0.994 0.34 0.995
Out flow estimation by antenna 0.42 0.993 0.28 0.995

O/D flow estimation by pair 0.50 0.997 0.39 0.998
TABLE II. RMSE AND NDCG OBTAINED ON DIFFERENT ANALYTICS

WITH CDR AND CDR+IPDR DATASETS.

This shows, that for the purpose of comparing user counts
by locations, CDR information is on average a good source of
information. Figure 10(b) shows the average RMSE computed
on the 7 distinct days. As it can be seen, the error is higher
over the weekend (last 2 days). Moreover, Figure 11 shows the
errors as function of the hour of day (averaged over all days).
It’s interesting to see that error is large over the night hours,
and instead quite low during the daylight hours.

In conclusions, we can observe that using CDR or
CDR+IPDR as proxy for user count per location works
relatively well in application scenarios when preserving the
ranking is important, such as choosing the most crowded place
between a set of locations, especially if the focus is on daylight
hours over weekdays.

B. Flow estimation

Origin Destination (OD) matrices are a widely used in-
formation for urban planning and development, specifically
in the transportation community. Generally, this information
is estimated using census information and/or travel surveys.
However, recent work has used Mobile phone location data
to estimate such information [2, 4, 6]. In this section we
want to evaluate whether OD matrices extracted from Event-
driven information are a good proxy of OD matrices. For the
comparison, we used the method presented in [4] to compute
the OD matrices starting from a given set of location data.
Even if starting from the same set of users, we can already see
that the total OD flow volume in the city is different. Figure
12 shows such volumes by time of day. While the total flow
counts by hours are different, the temporal trends seem to be
maintained. To perform a better comparison, we evaluated the
accuracy of estimated OD matrices at different spatio-temporal
granularity.

1) Antenna-based: In some application scenarios (e.g. es-
timating the number of visitors of a certain location), we are
interested in the cumulative incoming or outgoing flow from
a given location. In order to measure the error in this case,
we ranked antennas by increasing flow volume (based on the
reference dataset) and we plotted the corresponding volumes
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Fig. 11. Density estimation error by hour of day
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Fig. 12. OD flow over time, by data type. Time goes from 00:00 of October
20th, to 23:59 of October 26th.

computed using the other data, see Figure 13(a). If results
using the different datasets were similar, we would expect to
see a non decreasing curve for the estimated OD. However,
we see some fluctuations, which are more explicit for the OD
extracted solely on CDR data.

Figures 14(a) and 15(a) shows the relative error mea-
surement, for different hours of day, and days of the week
respectively. As also seen in the count estimation, the error is
lower over weekday daylight hours.

2) Pair-based: In application scenarios in which we are
interested in specific OD pair flows (e.g. in transportation
planning where we would like to estimate the number of
travellers between two locations in order to design a new
road or transit service), we are interested in flows from two
specific locations. In order to measure the error in this case, we
ranked the OD flow by pair, based on order using the reference
dataset, see Figure 13(b). Unlike Figure 13(a), the fluctuations
are much more evident, showing a much higher error on a
pair-by-pair basis. Figures 14(b) and 15(b) shows the relative
error measurement, for different hours of day, and days of the
week respectively. As opposite to what seen in the antenna
based error estimation, the error is lower over weekends and
nights. This is due to the fact that over these periods, majority
of OD pairs experience no flow (using any of the datasets) and
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Fig. 14. Error of OD flow by hour of day

this brings down the average error. However, if we consider
weekday daylight hours, the error is quite high, showing that
OD flow extracted from CDR or CDR+IPDR are not a good
proxy for OD flow extracted using the reference dataset.

We perform the same comparisons among the 3 datasets
only for the users that present at least one entry on all of
them. Therefore, we select only the 11% of users being the
intersection presented in Figure 3. For the sake of readability,
we report in Table III only the overall results on the different
analytics. As expected the RMSE decreases since the differ-
ences between the datasets, in terms of number of observed
users, are smaller, as it is possible to observe in Figure 16 for
the case of OD flow. Instead the nDCG presents very similar
results.

CDR CDR+IPDR
RMSE nDCG RMSE nDCG

Count estimation 0.63 0.993 0.50 0.995
Out flow estimation by antenna 0.57 0.992 0.46 0.994

O/D flow estimation by pair 0.59 0.997 0.49 0.998
TABLE III. RMSE AND NDCG OBTAINED ON DIFFERENT ANALYTICS
WITH CDR AND CDR+IPDR DATASETS CONSIDERING ONLY USERS WITH

AT LEAST ONE ENTRY FOR EACH DATASET.

VII. CONCLUSION AND FUTURE WORKS

In this paper we have compared different types of mobile
phone location data, with respect to different urban sensing
applications. The goal was to evaluate whether CDR informa-
tion alone, which is collected based on user-generated events,
would be sufficient for specific urban sensing applications
like user count estimation and flow estimation. The results
of the comparison on real mobile phone location data show
the opportunities and limitations of using event-driven location
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Fig. 16. OD flow over time, by data type. Time goes from 00:00 of October
20th, to 23:59 of October 26th.

information as opposed to network-driven and more frequently
updated location information.

While some of the reported results might depend on
the specific mobile phone usage of a particular country or
region, and on the configuration of the monitoring system
that the telecom operator used, the methodology we presented
to evaluate the limitation of each dataset are general, and
can be applied for other telecom operators to measure the
effectiveness of using each individual dataset for urban sensing
applications. Moreover, we are planning to extend the analysis
to others, and more complex, urban sensing applications, such
as event detection, trajectory pattern extraction and trajectory
clustering.
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