
RC25536 (BRA1505-003) May 6, 2015
Computer Science

Research Division
Almaden – Austin – Beijing – Brazil – Cambridge – Dublin – Haifa – India – Kenya – Melbourne – T.J. Watson – Tokyo – Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report for
early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After
outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties). Many reports are available at http://domino.watson.ibm.com/library/CyberDig.nsf/home.

IBM Research Report

Introduction to CircuitML: Modeling Local Processing Units
in the Drosophila Brain

Daniel Salles Chevitarese
IBM Research

Avenide Pasteur, 138 – Urca
Rio de Janeiro – RJ, 22290-240

Brazil
and

Pnotifical Catholic University

Dilza Szwarcman
Computer Science Department

UEZO
Rio de Janeiro, Brazil

Marley Vellasco
Electrical Engineering Department

Pontifical Catholic University
Rio de Janeiro, Brazil



Introduction to CircuitML: Modeling Local
Processing Units in the Drosophila Brain

Daniel Salles Chevitarese
Electrical Engineering Department

Pontifical Catholic University
Rio de Janeiro, Brazil

Email: daniel@chevitarese.com.br

Dilza Szwarcman
Computer Science Department

UEZO
Rio de Janeiro, Brazil

Email: dilzamattos@uezo.rj.gov.br

Marley Vellasco - IEEE Senior Member
Electrical Engineering Department

Pontifical Catholic University
Rio de Janeiro, Brazil

Email: marley@ele.puc-rio.br

Abstract—The brain of the fruit fly Drosophila Melanogaster
is an attractive system for studying the logic underlying neural
circuits because it implements a rich behavior repertoire with a
number of neural components that is five orders of magnitude
smaller than that of vertebrates. Analysis of the fly’s connectome
using a powerful toolkit of well-developed genetic techniques and
advanced electrophysiological recording tools enables the fly’s
neural circuitry to be experimentally mapped into functional
units, called Local Processing Units (LPU). Many tools are
already available to enable neuroscientists to create an accurate
model of the entire fly brain, but none of them provides a
method to specify those circuits in a way that both biologists and
engineers can work together. Also, the development of plausible
LPU models requires the ability to specify and instantiate
subcircuits without explicit reference to their constituent neurons
and internal connections. To this end, we present a neural circuit
specification language called CircuitML for construction of LPUs.
CircuitML has been designed as an extension to NeuroML; it
provides constructs for defining subcircuits that comprise neural
primitives supported by NeuroML. Subcircuits are endowed with
interface ports that enable connections to other subcircuits via
neural connectivity patterns. We have used CircuitML to specify
an LPU-based model of the fly olfactory system.

Keywords—Drosophila melanogaster, simulation models, XML,
python language, CUDA.

I. INTRODUCTION

The research on the fruit fly transformed this tiny insect
into one of the most powerful genetic model organisms [1],
which uncovers many developmental principles, genetic regu-
lation and cell signaling. Such principles are conserved across
species [1] and may help scientists understand more complex
brains and explain some inherited diseases.

In addition to the genetic toolkit, recent advances in exper-
imental methods for precise recordings of the fly’s neuronal
responses to stimuli [2], [3], [4], [5], [6], as well as in tech-
niques for analyzing the fly’s behavioral responses to stimuli
[7], [8], [9], [10] have been facilitating the shaping of circuits.
Also, progress in the reconstruction of the fly’s connectome
[11], [12], by using identified neurons - stereotyped neurons
that can be located in every fly [13] - has contributed much to
circuit modeling.

On the engineering perspective, the reasonable compromise
between tractability and richness is one advantage, since flies
have an interesting behavioral repertoire and possess, approx-

imately, 150,000 neurons [14], which means five orders of
magnitude smaller than that of vertebrates.

Studies on the brain of the Drosophila Melanogaster
have revealed that it comprises about 40 distinct modular
subdivisions, most of which correspond to anatomical regions
in the brain associated with specific sensory modalities and
locomotion. These modules are referred as Local Processing
Units (LPUs), because they possess a characteristic population
of local neurons. Given that many LPUs are associated with
specific stimulus processing that controls behavior, they can
be regarded as the functional building blocks of the fly brain.
Also, many LPUs’ local synaptic connectivity is organized
into distinctive and repeated canonical subcircuits that appear
integral to their respective functions. To model these LPUs, it is
then highly desirable to be able to specify and connect multiple
instances of subcircuit models without having to explicitly
refer to their contents.

An important tool that is available for the specification of
neural circuitry is NeuroML [15], a meta-language, based on
XML (Extensible Markup Language). Although very simple
and easy to use, it is very powerful because it allows detailed
models and their components to be defined in a standalone
form to be used across multiple simulators (NEURON [16],
GENESIS [17], MOOSE [18], NEST [19]) and to be archived
in a standardized format [15]. NeuroML addresses many
compatibility issues between software tools, facilitating the
reproduction of published models descriptions and results. It
also allows the sharing and reuse of model components and the
development of new tools for detailed computational modeling
[15].

Although NeuroML addresses the compatibility problem in
many ways, it has its limitations regarding the specification
of local processing units, since it was intended to address
the variety of neurological systems organized in a biological
fashion. In order to have specifications of functional units with
their canonical subcircuits abstractions, it is necessary to have
a tool that offers both a standardized language and support
to components that abstract new blocks on the engineering
perspective. This is the main objective of the new neural
circuit specification language, called CircuitML, presented in
this paper.



II. SPECIFYING NEURAL CIRCUITS AS FUNCTIONAL
BUILDING BLOCKS

CircuitML (CML) is a framework for modeling virtual
brains as a set of functional building blocks, instead of
representing them as networks of interconnected neurons. Each
building block comprises smaller components, allowing one to
study, for example, consequences of targeted brain disruption
in a “IF-THEN” manner, as proposed by [1]: “if this neuron is
removed, what behavior would be affected?” or “if someone
changes the motion detection system, then...”, or even “if
one adds more channels [5] to the fly’s olfactory system,
then...”. It also allows scientists to share new discoveries
among research groups, and share those new circuits with the
scientific community.

In order to achieve this new level of abstraction, we present
the design and implementation of CircuitML, a structured
description language, which had its first version published in
[20]. CML can describe neuronal circuits at a level above
NeuroML (NML) level 3 (NetworkML), inheriting its support
to many tools and simulators, and allowing scientists to share
and validate their discoveries [15]. In addition, such inheritance
gives to CircuitML a great variety of elements, ranging from
neuronal morphologies, with MorphML [15], to an entire brain
comprised by LPUs.

As a companion tool for CircuitML, we also developed
a Python API, called libCircuitML. The main goal of libCir-
cuitML is to provide easy-to-use utilities for the manipulation
of CircuitML using pythonic tools familiar to programmers.
Such tool can be imported into a Python script allowing users
to:

• load and validate CircuitML and NeuroML files;

• parse and edit circuit models, which follow the XML
language standard;

• save valid XML files either on NeuroML format or on
CircuitML format;

• use additional functionality that make it easier to
create large models;

• connect to neurokernel [20], [21], [22] for simulation
purposes.

A. CircuitML overview

A CircuitML document consists of XML elements de-
scribing the circuit components of the neuronal system. The
structure of a valid CircuitML document is defined using XML
Schema Definition (XSD) files and, therefore, standard XML
handling libraries can be used to check its validity. An error
will be generated if, for example, the name attribute is missing
from the subcircuit element.

Once an XML file is known to be in accordance to the
CircuitML format, the contents of the file can be transformed
into other formats in a number of different ways, such as SAX
(Simple API for XML) or DOM (Document Object Model).
It is also possible to convert the original file onto other text
or script formats with Extensible Stylesheet Language (XSL)
files, which makes CircuitML accessible from simulators in-
cluding NEURON, GENESIS and PSICS. This approach has

the advantage that applications need not be reimplemented to
natively support CircuitML, but can still have access to models
in the format.

Before starting to describe CircuitML, it is important to un-
derstand the differences between NeuroML and CircuitML. By
encapsulating the entire neuronal system into LPUs, CircuitML
helps scientists to perceive neural systems as a big circuit with
interconnected “chips” (LPUs). Each “chip” has its own and
unique functionality and a well-defined interface. Such aspect
of CircuitML takes us back to the very beginning of object-
oriented theory, when Booch [23] stated that the proposed
paradigm would help to manage the complexity of massive
software-intensive systems. Also, while NeuroML provides all
primitives and functionality declarations, CircuitML provides
all data abstraction and information hiding needed to make
the entire specification process simpler. The advantages of
CircuitML over NeuroML are:

• minimum-to-zero coupling between circuit elements
(“chips”);

• clearly defined interfaces, allowing the abstraction of
data and circuit details inside elements;

• reuse and code clearness.

The current scope of CircuitML covers the definition of
functional modules (LPUs) with interfaces, smaller modules,
called subcircuits, and the connectivity module that glues all
modules together. Figure 1 shows the overall structure of
CircuitML.

B. Levels of Abstraction

CircuitML offers new components to abstract Local Pro-
cessing Units by hiding its local circuitry and exposing projec-
tion neurons and input ports. Canonical subcircuits, comprising
populations of neurons and their own connectivity, can be in-
stantiated many times, which simplifies the specification code.
Figure 2 shows the relationship between the biological scale of
information processing in neural systems and CircuiML. The
very first level is MorphML followed by ChannelML (level 2)
and, then, NetworkML (level 3); all three levels are defined
in the NeuroML’s abstraction stack. This work introduces a
fourth level (CircuitML) over the other ones, which adds the
functional modularity through LPUs.

In addition to the abstraction stack, Figure 3 shows one
example of functional blocks in the Drosophila olfactory
system. Behind the LPU box, there is a representation of part
of the fly brain with some neuropils delineated in black, where
many of them can be regarded as functional blocks. Inside the
box, there is a simple model of the Antenna Lobe LPU (AL
left hemisphere) with multiple olfactory channels (subcircuits).
Each channel comprises olfactory receptor neurons (ORNs)
and projection neurons (PNs).

The fourth level of CircuitML defines new components to
allow the specification of system modules and the connectivity
between them. This level has also the purpose to extend
NetworkML providing mecanisms to encapsulate networks and
their connectivity into functional modules with standardized
interfaces. At this level, brain areas can be specified by Local



Fig. 1. Overall structure of CircuitML. The top-level element of CircuitML, circuitml (black), contains a number of child elements of various types. Dotted
elements are cells that are interconnected by synapses (dashed) in a point-to-point fashion. Both cells and synapses elements are encapsulated, respectively, by
populations and projections (light-gray). In turn, populations and projections are encapsulated by lpu or subcircuit elements (gray), which communicate through
interfaces (gray) that exposes inner elements. In the white box, the connectivity element is presented, which comprises projections of synapses that will be used
to connect LPUs.

Fig. 2. Abstraction levels in CircuitML and their relationship with the biological scale in neural systems, where MorphML, ChannelML and NetworkML are,
respectively, levels 1, 2 and 3 of NeuroML’s abstraction stack. On top, the new level is presented comprising the functional structures: LPU and subcircuit; and
the connectivity between structures.

Fig. 3. The fruit-fly brain with many neuropils deliniated on the left hemisphere and the Antenna Lobe neuropil filled in gray. Inside the box, the antenna lobe
LPU with two channels, dashed and solid lines, regarding the Antenna Lobe neuropil on the left.

Processing Units (LPU), where each unit stands for a particular functionality.



As mentioned before, local processing units can be com-
pared to chips in a circuit. Each chip has its own internal
functionality, which is independent of the external circuit, and
has its own standardized interface. Although chips can be very
simple, either in its internal circuits or in its functionality, with
a small number of elementary kinds of chips combined, it is
possible to create complex systems with a great variety of
functions.

CircuitML implements four core elements, which are de-
picted in Figure 1:

1) lpu (gray box): encapsulates a functional unit with an
interface exposing input and output neurons;

2) subcircuit (gray box): encapsulates smaller circuit
parts for reuse inside an LPU. Subcircuits may con-
tain other nested subcircuits, neurons, synapses, and
other NeuroML elements;

3) interface (gray box): generates externally accessible
names for neurons comprised by constituent subcir-
cuits;

4) connectivity (white box): describes synaptic connec-
tions between two LPUs.

In Figure 3, some of the CircuitML elements are used
to recreate one of the fly’s sensory systems, the olfactory:
Antenna lobe (AL), which can be specified as an lpu ele-
ment; olfactory channels that can be specified as subcircuits
(subcircuit element); sets of neurons, where each set can be
regarded as a population element [15]. On the blue box, lamina
(lpu) comprises multiple cartridges (subcircuit), each of which
receives 8 photoreceptors (population of photoreceptors).

C. Interface element

The interface element can be understood as a map between
the outside of an LPU and its inner circuits. Listing 1 shows
an example of an interface exposing 4 neurons, respectively,
2 input ports and 2 output ports. In line 2, input 0 exposes
neuron 0 from population “my pop”, and in line 4, neuron 3
output is exposed by the interface port 2. Notice that, in this
example, neuron 2 of the same population is inaccessible from
the outside, because it is not listed in “my interface”.

Listing 1. Example of an interface
1 <interface id="my_interface">
2 <port id="in_0" in="0", out="my_pop/0"/>
3 <port id="in_1" in="1", out="my_pop/1"/>
4 <port id="out_0" in="my_pop/3" out="2"/>
5 <port id="out_1" in="my_pop/4" out="3"/>
6 </interface>

D. Subcircuit element

LPUs may comprise not only networks of neurons, but
also smaller functional structures, containing or not neurons,
called subcircuit. They are very similar to network elements
except that they can encapsulate external components, such
as filters, pre and post processors, etc. Currently, subcircuit
supports the same kind of elements that lpu does (populations,
projections, etc.), but in future releases, it will be possible to
add inner elements other then neurons or synapses. This is an
important feature for designing a sensory system, for example,
that needs pre-processing of analogue inputs or some special
spiking encoding.

Fig. 4. Example of a fictitious LPU (1) that detects if some input matches
the type expected. The boxes numbered with 2 comprise circuits with some
function associated and the gray ellipse represents a population of cells
that sends some info to the LPU output. Arrows numbered with 4, refers
to projections between interface ports and arrows nubered with 3 refers to
projections between inner circuits, and between inner circuits, respectively.
The ellipse numbered with 5 stands for a population of neurons.

Notice that subcircuit elements are not LPUs, either be-
cause they have to expose all inner elements (removing the data
abstraction), or because they have no complete functionality
(disregarding the main point of an LPU).

E. Local Processing Unit element

A simple example of an lpu is depicted in Figure 4, which
shows a basic module called partner detector, containing three
main blocks: (1) TEM (Time Encoding Machine), which en-
codes the input analogue signal to spikes, (2) an analyser that
processes the encoded signal from TEM and (3) a pre motor
unit that sends information to the outside of the LPU. In this
example, the “partner detector” LPU classifies inputs into two
classes: valid and invalid. An input is considered valid if it was
generated by an animal of the same species, and an invalid if
otherwise. A similar system is found in the auditory system of
the fruit fly [24], [25], [26], [27], [28], [29].

The first block (Figure 4 - TEM box) contains a Time
Encoding Machine (TEM) [30] that converts analogue sig-
nal coming from sensors, for example, to spikes that neu-
rons inside this LPU understand. For simplification purposes,
let’s consider that someone specified a subcircuit called tem
that implements a Time Encoding Machine. The output of
“my tem” goes to the “Analyser” block (Figure 4 - Analyser
box), which is a network of IAF cells that processes the signal
and classifies it as belonging to a valid partner or not. In
Listing 2, the Analyser block comprises two populations of
IAF cells, respectively, first step and second step (lines 6-7).
In line 9, a projection connects both populations following a
full connected pattern, since no other connectivity pattern was
indicated.

Listing 2. Example of the Analyser block
1 <circuitml id="ana_block">
2 <refractiaf id="cell_A" threshold="-40mV"

refractoryPeriod="5ms" capacitance="1nF"
vleak="-80mV" gleak="100pS" vreset="-70mV"
v0="-70mV" deltaV="10mV" />

3 <refractiaf id="cell_B" threshold="-35mV"
refractoryPeriod="6ms" capacitance="2nF"
vleak="-80mV" gleak="89pS" vreset="-70mV" v0
="-70mV" deltaV="10mV" />

4 <expOneSynapse id="syn_1" gbase="0.5nS" erev="0
mV" tauDecay="3ms" >

5 <network id="analyser">



6 <population id="first_step" cell="cell_A" size
="50">

7 <population id="second_step" cell="cell_B"
size="2">

8 <!-- Since there is no Connectivity info
inside this Projection, it will be assumed
a full connected pattern -->

9 <projection id="first_to_second"
presynapticPopulation="first_step"
postsynapticPopulation="second_step"
synapse="syn_1" />

10 </network>
11 </circuitml>

The last block (Figure 4 - gray ellipse) comprises a
population of neurons that will send their output signals to the
interface of the LPU. Listing 3 shows all elements instantiated
inside the LPU “partner detector”. In lines 3 and 4 of Listing 3
there is a new element, called Include, that substitutes the
regular include. This new element indicates to libCircuitML
parser that the included code must be preprocessed and all
internal connectivity must be merged with the code that is
importing it. In the end of this process, each LPU will comprise
a single internal connectivity matrix, which optimizes both
memory usage and access.

Listing 3. Example of the lpu depicted in Figure 4
1 <circuitml id="partner_detector">
2 <!-- Including external references -->
3 <Include href="tem_block.xml" />
4 <Include href="ana_block.xml" />
5 <!-- NeuroML elements -->
6 <iafCell id="pm_cell" reset="-50mV" C="0.03nF"

thresh="-25mV" leakConductance="1uS"
leakReversal="-50mV" />

7 <expOneSynapse id="pm_syn" erev="20mV" gbase="65
nS" tauDecay="3ms" />

8 <expOneSynapse id="ana_syn" erev="15mV" gbase="
85nS" tauDecay="2ms" />

9 <!-- LPU specification -->
10 <lpu id="partner_detector">
11 <!-- Interface -->
12 <interface id="my_interface">
13 <port id="analogue_input" in="0", out="

tem_block/tem_block/0"/>
14 <port id="valid_out" in="ana_block/analyser/

second_step/0" out="1"/>
15 <port id="invalid_out" in="ana_block/analyser/

second_step/1" out="2"/>
16 <port id="pm_out_0" in="pre_motor/0" out="3"/>
17 ...
18 <port id="pm_out_29" in="pre_motor/29" out="32

"/>
19 </interface>
20 <!-- Populations -->
21 <population id="tem" structure="tem_block" size

="1"/>
22 <population id="analiser" structure ="ana_block

" size="1" />
23 <population id="pre_motor" component="pm_cell"

size="30" />
24 <!-- Projections -->
25 <projection id="tem_analyser"

presynapticPopulation="tem_block/tem_block"
postsynapticPopulation="ana_block/analyser
/first_step" synapse="ana_syn" />

26 <projection id="analyser_pm"
presynapticPopulation="tem_block/tem_block"
postsynapticPopulation="ana_block/analyser
/first_step" synapse="ana_syn" />

27 </projection>
28 </lpu>
29 </circuitml>

F. Connectivity element

The last component presented here is the connectivity
element, which can be understood as the glue between LPUs.
Since elements such as projections and connections are not
able to exist outside the LPU, the connectivity element acts as a
wrapper for projections and connections that will link not cells
or synapses, but interface ports. In order to understand how
such element works, let’s consider a new system, depicted in
Figure 5, where the “partner detector” (Figure 4 and Listing 3)
receives an analogue signal from an external sensor (Figure 5
- top box) and it sends the valid/invalid signals to another LPU
that will somehow convert it into a True/False result.

In Listing 4, the connectivity on lines 5 to 8 specifies
how both LPUs, “partner detector” and “decode lpu”, will be
connected, i.e., the synapse of each connection and which port
to link.

Listing 4. Example of two LPUs inter-connected (Figure 5)
1 <circuitml id="lpus">
2 <Include href="partner_detector.xml" />
3 <Include href="decode_lpu.xml" />
4 <expOneSynapse id="my_syn" erev="20mV" gbase="65

nS" tauDecay="3ms" />
5 <connectivity id="pd_to_decoder" lpu1="

partner_detector" lpu2="decode_lpu">
6 <connection from="partner_detector/valid_out"

to="decode_lpu/valid" synapse="my_syn"/>
7 <connection from="partner_detector/invalid_out"

to="decode_lpu/nvalid" synapse="my_syn"/>
8 </connectivity>
9 </circuitml>

III. RESULTS

At this point, it is crucial to understand how interconnected
LPUs can facilitate the specification of complex systems. In
order to be able to model an entire fly brain and then simulate
such system, it is imperative to have a good representation
scheme to support annotation and modeling [1]. Furthermore,
recent progress in neuroinformatics confirmed that compre-
hensive brain wiring maps are needed to formulate hypotheses
about how information flows and is processed inside a brain
[14]. These are the two main motifs behind the development
of CircuitML: functional modularity and connectivity.

To illustrate how functional structures work, we specified a
small demo of the olfactory system of the fruit fly, which is a
useful model for studding because of its reduced cell numbers
and its similar design with the mammalian olfactory system,
which may reflect common functional constraints [31]. The
sensory system of the fruit fly has been studied by various
groups [32], [33], [34], [31], but the model presented here is
based on the Bionet (Columbia University) demo published in
[22].

The early olfactory system in Drosophila comprises two
Antennal Lobes LPUs, one in each side of the brain, as
shown in Figure 3 as a gray neuropil. Each of these LPUs
has approximately 49 morphologically defined glomeruli that
receives information from approximately 30 Olfactory Recep-
tor Neurons (ORN) expressing the same odorant receptor. The
axons of each ORN connect to the dendrites of approximately
3 projection neurons (PNs) in the glomeruli that are responsible
to transmit olfactory information to the higher regions of the



Fig. 5. Two LPUs inter-connected by a connectivity element. Inner circuits are depicted with dashed borders, because they are not visible from the outside of
the LPUs.

brain, the mushroom body (MB) and the lateral horn. ORNs
also send information to local neurons (LNs), whose connec-
tions are restricted to the lobes. The entire early olfactory
system in Drosophila contains approximately 4000 neurons
[31].

The current model, in CircuitML, of Drosophila’s olfactory
system specifies two Antennal Lobes (AL and al) comprising,
each, 49 channels - Listing 5. In turn, each channel (Listing 6)
encapsulates approximately 30 ORNs transmitting information
to 3 projection neurons. PNs can be regarded as the output of
the current specification. The entire model comprises 2,800
neurons, or 70% of the fly’s entire antenna lobe. All neurons
in the system are modeled using the Leaky Integrate-and-Fire
(LIF) model [35] and all synaptic currents elicited by spikes
are modeled using alpha functions [36]. Parameters for 24 of
the glomerular channels are based upon currently available
ORN type data [37]; all other parameters are configured with
artificial data by Bionet.

In Figure 6, each channel is depicted by lines on different
types (solid, dotted, dashed, dash-dot). As discussed before, the
antenna lobe contains local neurons (LNs), whose connections
are restricted to the lobes that includes synaptic connections
between ORNs and PNs, ORNs and LNs, LNs and PNs,
and feedback from PNs to LNs (current specification does
not include local neurons, yet). By encapsulating some of
those neurons into channels, it becomes easier to provide
mechanisms by which the activation of different sets of ORNs
is transformed into an odor perception in the fly brain that
produce a given behavioral output. Eventually, by improving
the AL specification, it would be possible to abstract such mod-
ule and focus on gathering more information about secondary
centers’ input and how this data is processed.

In Listing 5, some of the lines were removed to reduce
space. From line 5 to line 22, antenna left is specified with
1470 inputs and 147 outputs, where the connectivity pattern
between I/O and the neurons inside the LPU is defined from
line 7 to line 16 by using the component interface. Since all
projection neurons comprised by each glomerulus may emit
output visible to other LPUs, their connectivity to the outside
is defined inside interface, where every port will be exposed
by the LPU. Local neurons or ORNs that connect glomeruli
do not emit any output to other LPUs and their connectivity is
defined inside an LPU component, where they are not exposed
by the LPU.

Fig. 6. Circuit of adult olfactory system. The adult olfactory pathway is
characterized by converging and diverging connectivity in the AL. Here, each
type of line (solid, dotted, dashed, dash-dot) that goes from one ORN to one
AL is encapsulated into a structure called channel [31] and represent groups
of neurons that express the same odorant receptor.

Listing 5. Simple version of the olfactory system.
1 <circuitml id="antenna_demo">
2 <!-- Including external specification -->
3 <Include href="channel_demo.xml" />
4 <!-- First LPU: left antenna -->
5 <lpu id="antenna_left" input="1470" output="147"

>
6 <!-- LPU I/O -->
7 <interface id="io">
8 <!-- output -->
9 <port id="Or2a_ch0" in="0" out="channel/0/OSN

/0"/>
10 <!-- ... -->
11 <port id="Or2a_ch49" in="1469" out="channel

/49/OSN/0"/>
12 <!-- output -->
13 <port id="gl_0_0" in="channel/0/GL/0" out="0"/

>
14 <!-- ... -->
15 <port id="gl_48_2" in="channel/48/GL/2" out="

146"/>
16 </interface>
17 <!-- Network specification -->
18 <network id="antenna">
19 <!-- Channels instantiation -->
20 <population id="channels" structure_type="

channel" size="49"/>
21 </network>
22 </lpu>
23 <!-- Second LPU: right antenna -->
24 <lpu id="antenna_right" input="1470" output="147

">
25 <!-- SAME AS ABOVE -->
26 </lpu>
27 </circuitml>



The inner network of neurons is specified using channels,
which is defined on Listing 6. Synapses and neurons are de-
fined in synapses.xml (ln3) and iafcells.xml (ln5), respectively.
Also, some of the lines were hidden to reduce space. From
line 8 to line 21, channel’s inner circuit is specified, where
all neurons and synapses, once declared on external files,
are instantiated by populations (for neurons) and projections
(synapses).

Listing 6. Simple version of the channel subcircuit.
1 <subcircuit id="channel_demo">
2 <!-- Synapses types -->
3 <Include href="synapses.xml" />
4 <!-- Neuron cells -->
5 <Include href="iafcells.xml" />
6 <iafCell id="pn" V="-0.07" reset="-0.07" thresh=

"-0.02" leakConductance="1.01" C="0.07"/>
7 <!-- Channel definition -->
8 <network id="channel">
9 <population id="GL" cell_type="pn" size="3"/>

10 <population id="Osn_default" cell_type="
osn_default" size="1"/>

11 <population id="Osn_Or43b" cell_type="osn_Or43b
" size="1"/>

12 <population id="Osn_Or9a" cell_type="osn_Or9a"
size="1"/>

13 ...
14 <population id="Osn_Or85a" cell_type="osn_Or85a

" size="1"/>
15 <population id="Osn_Or67a" cell_type="osn_Or67a

" size="1"/>
16 <!-- Conectivity -->
17 <projection id="proj_osn_glomerulus"

presynapticPopulation="OSN"
postsynapticPopulation="GL" synapse="
syn_osn" />

18 <projection id="Osn_default-DA1"
presynapticPopulation="Osn_default"
postsynapticPopulation="GL" synapse="
osn_default-DA1" />

19 <!-- ... -->
20 <projection id="Osn_Or67a_24-DM6"

presynapticPopulation="Osn_default"
postsynapticPopulation="GL" synapse="
osn_Or67a_24-DM6" />

21 </network>
22 </subcircuit>

Before CircuitML, the way many scientists used to specify
such system in a common format, would be using graphs,
where nodes are neurons and edges are synapses. Using graphs
to represent those systems has many advantages on the engi-
neering perspective, but not for the scientist who is specifying
the system with thousands, or even, millions of nodes and
edges. The specification using gexf format (http://gexf.net),
which is the current standard at Bionet, takes 21,559 lines
to specify cells and 49,500 lines to specify synapses.

In addition to the difference between the number of lines
necessary to specify the system, CircuitML was envisioned to
make the specification much clearer. In Listing 5 and Listing 6
it is easy to understand the big picture of the entire system:
the LPUs with input and output, and how circuits are orga-
nized and interconnected. Also, using CircuitML, the amount
of memory used to save the same specification is reduced.
In the case of the Drosophila’s olfactory system presented
in this paper, the graph version uses 3MB not compressed
and 210KB compressed, whereas the CircuitML version uses
790KB not compressed and 171KB compressed. Notice that

the not compressed version of CircuitML is 3,89 times smaller
than the graph version, but the compressed version is only 20%
smaller. The reason is that CircuitML specification files tend
not to have repetitive text in it, which is usually explored by
text compressors.

IV. CONCLUSION AND FUTURE WORK

In this paper, we presented the specification language
CircuitML that extends NeuroML in order to have neuronal
systems designed as functional building blocks. Each of those
building blocks, also presented as LPU, may comprise ele-
ments ranging from single populations of cells to complex
circuitry with many layers of abstractions. Although LPUs
can be very complex in the inside, they are endowed with
interface ports, which hide such complexity by exposing only
necessary parts to be interconnected via neural connectivity
patterns, which makes CircuitML a very powerful specification
language for neuronal circuitry.

As the Drosophila Melanogaster represents a good model
for studding LPUs, for the reasons presented here, it may
also be an excellent study case for CircuitML. The specifi-
cation of the entire sensory system of the fruit fly with its
individual interconnections and its singularities, may prove
that CircuitML is able to address the entire system and also
will point to possible issues, such as missing connectivity
patterns. In addition, since many parts of those systems are still
missing, CircuitML may help scientists to reconstruct the fly
brain by providing support to functional building blocks that
can be tested and validated independently. By sharing their
discoveries, research groups will be able to focus on single
LPUs, disregarding other parts that are already encapsulated
into other LPUs.

Finally, the simple example presented here, describing the
early olfactory system, already shows that the specification
of neuronal systems as circuits with interconnected chips that
have their own functionality, makes the resulting code cleaner
and more systematically delineated. As the visual system is
already being studied by many groups, the next steps on the
development of CircuitML, also aiming additional innovations,
include the specification of the visual system and its complete
integration to the olfactory system.

REFERENCES

[1] J. D. Armstrong, J. I. van Hemert, J. D. Armstrong, and J. I. van Hemert,
“Towards a virtual fly brain,” Philosophical Transactions of the Royal
Society A: Mathematical, Physical and Engineering Sciences, vol. 367,
no. 1896, pp. 2387–2397, 2009.

[2] A. J. Kim, A. A. Lazar, and B. S. Yevgeniy, “2d encoding of concentra-
tion and concentration gradient in drosophila orns,” in Computational
and Systems Neuroscience Meeting, Salt Lake City, Utah, 2010.

[3] A. J. Kim, A. A. Lazar, and Y. Slutskiy, “System identification of dm4
glomerulus in the drosophila antennal lobe using stationary and non-
stationary odor stimuli,” BMC Neuroscience, vol. 11, no. Suppl 1, p.
P174, 2010.

[4] ——, “Drosophila projection neurons encode the acceleration of time-
varying odor waveforms,” in Computational and Systems Neuroscience
Meeting, 2011, p. 2.

[5] A. J. Kim, A. A. Lazar, and Y. B. Slutskiy, “System identification
of drosophila olfactory sensory neurons,” Journal of computational
neuroscience, vol. 30, no. 1, pp. 143–161, 2011.



[6] R. I. Wilson, “Understanding the functional consequences of synaptic
specialization: insight from the¡ i¿ drosophila¡/i¿ antennal lobe,” Cur-
rent opinion in neurobiology, vol. 21, no. 2, pp. 254–260, 2011.

[7] S. A. Budick and M. H. Dickinson, “Free-flight responses of drosophila
melanogaster to attractive odors,” Journal of experimental biology, vol.
209, no. 15, pp. 3001–3017, 2006.

[8] A. Y. Katsov and T. R. Clandinin, “Motion processing streams in¡ i¿
drosophila¡/i¿ are behaviorally specialized,” Neuron, vol. 59, no. 2, pp.
322–335, 2008.

[9] G. Maimon, A. D. Straw, and M. H. Dickinson, “A simple vision-based
algorithm for decision making in flying¡ i¿ drosophila¡/i¿,” Current
Biology, vol. 18, no. 6, pp. 464–470, 2008.

[10] M. E. Chiappe, J. D. Seelig, M. B. Reiser, and V. Jayaraman, “Walking
modulates speed sensitivity in¡ i¿ drosophila¡/i¿ motion vision,” Current
Biology, vol. 20, no. 16, pp. 1470–1475, 2010.

[11] D. B. Chklovskii, S. Vitaladevuni, and L. K. Scheffer, “Semi-automated
reconstruction of neural circuits using electron microscopy,” Current
opinion in neurobiology, vol. 20, no. 5, pp. 667–675, 2010.

[12] S.-y. Takemura, A. Bharioke, Z. Lu, A. Nern, S. Vitaladevuni, P. K.
Rivlin, W. T. Katz, D. J. Olbris, S. M. Plaza, P. Winston et al., “A
visual motion detection circuit suggested by drosophila connectomics,”
Nature, vol. 500, no. 7461, pp. 175–181, 2013.

[13] S. R. Olsen and R. I. Wilson, “Cracking neural circuits in a tiny
brain: new approaches for understanding the neural circuitry of¡ i¿
Drosophila,” Trends in neurosciences, vol. 31, no. 10, pp. 512–520,
2008.

[14] A.-S. Chiang, C.-Y. Lin, C.-C. Chuang, H.-M. Chang, C.-H. Hsieh,
C.-W. Yeh, C.-T. Shih, J.-J. Wu, G.-T. Wang, Y.-C. Chen et al.,
“Three-Dimensional Reconstruction of Brain-wide Wiring Networks in
Drosophila at Single-Cell Resolution,” Current Biology, vol. 21, no. 1,
pp. 1–11, 2011.

[15] P. Gleeson, S. Crook, R. C. Cannon, M. L. Hines, G. O. Billings,
M. Farinella, T. M. Morse, A. P. Davison, S. Ray, U. S. Bhalla et al.,
“NeuroML: a language for describing data driven models of neurons and
networks with a high degree of biological detail,” PLoS computational
biology, vol. 6, no. 6, p. e1000815, 2010.

[16] N. T. Carnevale and M. L. Hines, The NEURON book. Cambridge
University Press, 2006.

[17] D. Beeman, “GENESIS Modeling Tutorial,” Brains, Minds, and Media,
vol. 1, 2005.

[18] R. M. Cubert and P. A. Fishwick, “MOOSE: an object-oriented mul-
timodeling and simulation application framework,” Simulation, vol. 6,
1997.

[19] M.-O. Gewaltig and M. Diesmann, “Nest (neural simulation tool),”
Scholarpedia, vol. 2, no. 4, p. 1430, 2007.

[20] D. S. Chevitarese, L. E. Givon, A. A. Lazar, and M. Vellasco, “Cir-
cuitML: a Modular Language for Modeling Local Processing Units
in the Drosophila Brain,” in Frontiers Neuroinformatics. Frontiers
Research Foundation, Jul. 2013, pp. 80–81.

[21] L. E. Givon and A. A. Lazar, “An open architecture for the massively
parallel emulation of the Drosophila brain on multiple GPUs,” BMC
Neuroscience, vol. 13, pp. 1–2, 2012.

[22] ——, “Neurokernel: An open scalable software framework for emu-
lation and validation of drosophila brain models on multiple gpus,”
submitted for publication, 2013.

[23] G. Booch, “Object-oriented development,” Software Engineering, IEEE
Transactions on, no. 2, pp. 211–221, 1986.

[24] A. Kamikouchi, “Auditory neuroscience in fruit flies,” Neuroscience
research, vol. 76, no. 3, pp. 113–118, 2013.

[25] H. T. Spieth, “Courtship behavior in drosophila,” Annual review of
entomology, vol. 19, no. 1, pp. 385–405, 1974.

[26] A. Bretman, J. D. Westmancoat, and T. Chapman, “Male control of
mating duration following exposure to rivals in fruitflies,” Journal of
insect physiology, vol. 59, no. 8, pp. 824–827, 2013.

[27] M. J. Kernan, “Mechanotransduction and auditory transduction in
drosophila,” Pflügers Archiv-European Journal of Physiology, vol. 454,
no. 5, pp. 703–720, 2007.

[28] M. C. Göpfert and D. Robert, “The mechanical basis of drosophila

audition,” Journal of Experimental Biology, vol. 205, no. 9, pp. 1199–
1208, 2002.

[29] F. von Schilcher, “The role of auditory stimuli in the courtship of¡ i¿
drosophila melanogaster¡/i¿,” Animal Behaviour, vol. 24, no. 1, pp. 18–
26, 1976.

[30] A. A. Lazar, E. A. Pnevmatikakis, and Y. Zhou, “Encoding natural
scenes with neural circuits with random thresholds,” Vision research,
vol. 50, no. 22, pp. 2200–2212, 2010.

[31] L. B. Vosshall and R. F. Stocker, “Molecular architecture of smell and
taste in Drosophila,” Annu. Rev. Neurosci., vol. 30, pp. 505–533, 2007.

[32] K.-F. Fischbach and A. Dittrich, “The optic lobe of drosophila
melanogaster. i. a golgi analysis of wild-type structure,” Cell and tissue
research, vol. 258, no. 3, pp. 441–475, 1989.

[33] Y. Zhu, A. Nern, S. L. Zipursky, and M. A. Frye, “Peripheral visual
circuits functionally segregate motion and phototaxis behaviors in the
fly,” Current Biology, vol. 19, no. 7, pp. 613–619, 2009.

[34] S. J. Caron, V. Ruta, L. Abbott, and R. Axel, “Random convergence of
olfactory inputs in the Drosophila mushroom body,” Nature, 2013.

[35] C. Koch and I. Segev, Methods in neuronal modeling: from ions to
networks. MIT press, 1998.

[36] R. S. Zucker and W. G. Regehr, “Short-term synaptic plasticity,” Annual
review of physiology, vol. 64, no. 1, pp. 355–405, 2002.

[37] E. A. Hallem and J. R. Carlson, “Coding of odors by a receptor
repertoire,” Cell, vol. 125, no. 1, pp. 143–160, 2006.


