
RC25543 (WAT1509-0064) September 16, 2015
Mathematics

Research Division
Almaden – Austin – Beijing – Brazil – Cambridge – Dublin – Haifa – India – Kenya – Melbourne – T.J. Watson – Tokyo – Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report for
early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After
outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties). Many reports are available at http://domino.watson.ibm.com/library/CyberDig.nsf/home.

IBM Research Report

Scalable Computation of Regularized Precision Matrices via
Stochastic Optimization

Yves F. Atchadé
University of Michigan
Ann Arbor, MI USA

Rahul Mazumder
MIT

Cambridge, MA USA

Jie Chen
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598 USA

Precision Matrix Computation via Stochastic Optimization

Scalable Computation of Regularized Precision Matrices via
Stochastic Optimization

Yves F. Atchadé yvesa@umich.edu
Department of Statistics,
University of Michigan,
Ann Arbor, MI, USA

Rahul Mazumder rahulmaz@mit.edu
MIT Sloan School of Management and Operations Research Center,
Massachusetts Institute of Technology,
Cambridge, MA, USA

Jie Chen chenjie@us.ibm.com

IBM Thomas J. Watson Research Center,

Yorktown Heights, NY, USA.

Editor:

Abstract

We consider the problem of computing a positive definite p × p inverse covariance matrix
aka precision matrix θ = (θij) which optimizes a regularized Gaussian maximum likelihood
problem, with the elastic-net regularizer

∑p
i,j=1 λ(α|θij |+ 1

2 (1− α)θ2ij), with regularization
parameters α ∈ [0, 1] and λ > 0. The associated convex semidefinite optimization problem is
notoriously difficult to scale to large problems and has demanded significant attention over
the past several years. We propose a new algorithmic framework based on stochastic proxi-
mal optimization (on the primal problem) that can be used to obtain near optimal solutions
with substantial computational savings over deterministic algorithms. A key challenge of
our work stems from the fact that the optimization problem being investigated does not
satisfy the usual assumptions required by stochastic gradient methods. Our proposal has
(a) computational guarantees and (b) scales well to large problems, even if the solution is
not too sparse; thereby, enhancing the scope of regularized maximum likelihood problems to
many large-scale problems of contemporary interest. An important aspect of our proposal
is to bypass the deterministic computation of a matrix inverse by drawing random samples
from a suitable multivariate Gaussian distribution.

Keywords: Graphical Lasso, Ridge Regularization, `1-regularization, Gaussian Maximum
Likelihood, Precision Matrices, Stochastic Optimization, Proximal Gradient Descent

1. Introduction

We consider the problem of estimating an inverse covariance matrix aka precision ma-
trix (Lauritzen, 1996) θ, from a data matrix Xn×p comprised of n samples from a p dimen-
sional multivariate Gaussian distribution with mean zero and covariance matrix Σ = θ−1,

i.e., xi
i.i.d.∼ N(0,Σ) for i = 1, . . . , n. If n < p it is a well known fact that the Maximum

Likelihood Estimate (MLE) does not exist, and even if it does exist (n ≥ p) the MLE can
be poorly behaved and regularization is often called for. Various forms of regularization are

1

Atchadé, Mazumder and Chen

used to improve the statistical behavior of covariance matrix estimates (Pourahmadi, 2013;
Bühlmann and Van De Geer, 2011; Hastie et al., 2009) and is a topic of significant interest
in the statistics and machine learning communities. This paper deals with the problem of
computing such regularized matrices, in the settings where p is much larger than n or both
p and n are large. To motivate the reader, we briefly review two popular forms of precision
matrix regularization schemes under a likelihood framework: sparse precision matrix estima-
tion via `1-norm regularization, and its dense counterpart, using an `2-norm regularization
(ridge penalty); both on the entries of the matrix θ.

Sparse precision matrix estimation — the Graphical Lasso

One of the most popular regularization approaches and the main motivation behind this
paper is the Graphical Lasso (Yuan and Lin, 2007; Banerjee et al., 2008; Friedman et al.,
2007b) procedure aka Glasso. Here, we estimate θ under the assumption that it is sparse,
with a few number of non-zeros. Under the multivariate Gaussian modeling set up, θij = 0
(for i 6= j) is equivalent to the conditional independence of xi and xj given the remaining
variables, where, x = (x1, . . . , xp) ∼ N(0,Σ). Glasso minimizes the negative log-likelihood
subject to a penalty on the `1 norm of the entries of the precision matrix θ. This leads to
the following convex optimization problem (Boyd and Vandenberghe, 2004):

minimize
θ∈M+

− log det θ + Tr(θS)︸ ︷︷ ︸
:=f(θ)

+λ
∑
i,j

|θij |, (1)

where, S = 1
n

∑n
i=1 xix

′
i is the sample covariance matrix, M+ denotes the set of positive

definite matrices and λ > 0 is a tuning parameter that controls the degree of regularization1.
In passing, we note that the Glasso criterion, though motivated as a regularized negative
log-likelihood problem, can be used more generally for any positive semidefinite (PSD) matrix
S.

In modern statistical applications we frequently encounter examples where Problem (1)
needs to be solved for p of the order of several thousands. Thus there is an urgent need to
develop fast and scalable algorithms for Problem (1). In this vein, the past several years have
witnessed a flurry of interesting work in developing fast and efficient solvers for Problem (1).
We present a very brief overview of the main approaches used for the Glasso problem,
with further additional details presented in the Appendix, Section A. A representative list
of popular algorithmic approaches include (a) block (where, each row/column is a block)
coordinate methods (Banerjee et al., 2008; Friedman et al., 2007a; Mazumder and Hastie,
2012b); (b) proximal gradient descent type methods (Banerjee et al., 2008; Lu, 2009; Rolfs
et al., 2012); (c) methods based on Alternating Direction Method of Multipliers (Scheinberg
et al., 2010; Boyd et al., 2011; Yuan, 2012); (d) specialized interior point methods (Li and
Toh, 2010); and (e) proximal Newton type methods (Hsieh et al., 2014; Oztoprak et al., 2012).
All the aforementioned methods are deterministic in nature. Precise (global) computational

1. As long as λ > 0, the minimum of Problem (1) is finite (see Lemma 2) and there is a unique minimizer.
In some variants of Problem (1), the diagonal entries of θ are not penalized—such an estimator can infact
be written as a version of Problem (1), with S ← S − λIp×p where, I is a p × p identity matrix. The
minimum of this problem need not be finite. In this paper, however, we will consider formulation (1)
where the diagonals are penalized.

2

Precision Matrix Computation via Stochastic Optimization

guarantees are available for some of them. It appears that most of the aforementioned
computational approaches for Problem (1), have a (worst-case) cost of at least O(p3) or
possibly larger—this is perhaps not surprising, since for λ = 0, finding the MLE requires
computing S−1 (assuming that the inverse exists), with cost O(p3). Many of the state-of-
the art algorithms for Glasso (Hsieh et al., 2014; Friedman et al., 2007a) (for example)
make clever use of the fact that solutions to Problem (1) are sparse, for large values of λ.
Another important structural property of Glasso, that enables the scalable computation of
Problem (1) is the exact thresholding property (Mazumder and Hastie, 2012a; Witten et al.,
2011). The method is particularly useful for large values of λ, whenever the solution to the
Glasso problem decomposes into smaller connected components; and becomes less effective
when the solution to the Glasso problem is not sufficiently sparse. In short, computing
solutions to Problem (1) become increasingly difficult as soon as p exceeds a few thousand.

All existing algorithms proposed for Glasso, to the best of our knowledge, are deter-
ministic batch algorithms. To improve the computational scalability of Problem (1), we
consider a different approach in this paper. Our approach, uses for the first time, ideas from
stochastic convex optimization for the Glasso problem.

From sparse to dense regularization

We consider another traditionally important regularization scheme, given via the following
optimization problem:

minimize
θ∈M+

− log det θ + Tr(θS) +
λ

2

∑
i,j

θ2
ij , (2)

for some value of λ > 0. This can be thought of as the ridge regularized version2 of Prob-
lem (1). We will see in Section 6 that Problem (2) admits an analytic solution which requires
computing the eigen-decomposition of S, albeit difficult when both n and p are large. Note
that many of the tricks employed by modern solvers for Glasso, anticipating a sparse solu-
tion, no longer apply here. The stochastic convex optimization framework that we develop
in this paper also applies to Problem (2), thereby enabling the computation of near-optimal
solutions for problem-sizes where the exact solution becomes impractical to compute.

In this paper, we study a general version of Problems (1) and (2) by taking a convex
combination of the ridge and `1 penalties:

minimize
θ∈M+

− log det θ + Tr(θS)︸ ︷︷ ︸
:=f(θ)

+
∑
i,j

(
αλ|θij |+

(1− α)

2
λθ2

ij

)
︸ ︷︷ ︸

:=gα(θ)

, (3)

with α ∈ [0, 1]. Following Zou and Hastie (2005), we dub the above problem as the elastic net
regularized version of the negative log-likelihood. Notice that for α = 1 we get Glasso and
α = 0 corresponds to Problem (2). We propose a novel, scalable framework for computing
near-optimal solutions to Problem (3) via techniques in stochastic convex optimization.

2. Note that some authors (Warton, 2008) refer to a different problem as a ridge regression problem, namely
one where one penalizes the trace of θ instead of the frobenius norm of θ. Such regularizers are often used
in the context of regularized discriminant analysis (Friedman, 1989; Hastie et al., 1995). However, in this
paper we will denote Problem (2) as the ridge regularized version of the Gaussian maximum likelihood
problem.

3

Atchadé, Mazumder and Chen

1.1 Organization of the paper

The remainder of the paper is organized as follows. Section 2 provides an outline of the
methodology and our contributions in this paper. We study deterministic proximal gradient
algorithms in Section 3. We present the stochastic algorithms, proposed herein—Algorithm 2
and Algorithm 3 in Section 4. We describe the exact thresholding rule for Problem (3) in
Section 5. The application of the stochastic algorithm (Algorithm 2) to the ridge regularized
problem (Problem 2) is presented in Section 6. We present some numerical results that
illustrate our theory in Section 7. The proofs are collected in Section 8, and some additional
material are presented in the appendix.

2. Outline of the paper and our contributions

Deterministic Algorithms

The starting point of our analysis, is the study of a (deterministic) proximal gradient (Nes-
terov (2013); Beck and Teboulle (2009); Becker et al. (2011); Parikh and Boyd (2013))
algorithm (Algorithm 1) for solving Problem (3). A direct application of the proximal gra-
dient algorithm (Nesterov (2013); Beck and Teboulle (2009), for example) to Problem (3)
has some issues. Firstly, the basic assumption of Lipschitz continuity of the gradient ∇f(θ),
demanded by the proximal gradient algorithm, is not satisfied here. Secondly, the proximal
operator associated with Problem (3) is difficult to compute, as it involves minimizing an `1
regularized quadratic function over the coneM+. We show that these hurdles may be over-
come by controlling the step-size. Loosely speaking, we also establish that ∇f(θ) satisfies
a Lipschitz condition (and f(θ) satisfies a strong convexity condition) across the iterations
of the algorithm—a notion that we make precise in Section 3. Using these key aspects of
our algorithm, we derive a global linear convergence rate of Algorithm 1, even though the
objective function is not strongly convex on the whole feasible set M+. Furthermore, the
algorithm has an appealing convergence behavior that we highlight: its convergence rate
is dictated by the condition number3 of θ̂, a solution to Problem (3). For a given accu-
racy δ > 0, our analysis implies that Algorithm 1 has a computational cost complexity of

O
(
p3cond(θ̂)2 log(δ−1)

)
to reach a δ-accurate solution, where cond(θ̂) is the condition num-

ber of θ̂. The computational bottleneck of the algorithm is the evaluation of the gradient
of the smooth component at every iteration, which in this problem is ∇f(θ) = −θ−1 + S.
Computing the gradient requires performing a matrix inversion, an operation that scales
with p as O(p3)—we refer the reader to Figure 1 for an idea about the scalability behavior
of direct dense matrix inversion for a p× p matrix, for different sizes of p.

Proximal gradient descent methods on the primal of the Glasso problem has been
studied by Rolfs et al. (2012). Our approaches however, have some differences—our analysis
hinges heavily on basic tools and techniques made available by the general theory of proximal
methods; and we analyze a generalized version: Problem (3). The main motivation behind
our analysis of Algorithm 1 is that it lays the foundation for the stochastic algorithms, our
primary object of study in this paper.

3. defined as the ratio of the largest eigenvalue over the smallest eigenvalue

4

Precision Matrix Computation via Stochastic Optimization

Stochastic Algorithms

For large values of p (larger than a few thousand), Algorithm 1 slows down considerably, due
to repeated computation of the inverse: θ−1 (See also Figure 1) across the proximal gradient
iterations. Even if the matrix θ is sparse and sparse numerical linear algebra methods are used
for computing θ−1, the computational cost depends quite heavily upon the sparsity pattern
of θ and the re-ordering algorithm used to reduce fill-ins; and need not be robust4 across
different problem instances. Thus, our key strategy in the paper is to develop a stochastic
method that completely bypasses the exact computation (via direct matrix inversion) of the
gradient ∇f(θ) = S − θ−1. We propose to draw Nk samples z1, . . . , zNk (at iteration k)

from N(0, θ−1
k−1) to form a noisy estimate S −N−1

k

∑Nk
k=1 ziz

′
i of the gradient S − θ−1

k−1. This
scheme forms the main workhorse of our stochastic proximal gradient algorithm, which we
call Algorithm 2.

(Zoomed)

T
im

e
(i
n
se
co
nd

s)

● ● ● ● ● ● ● ● ● ●
●

●
●

●
●

●

●

●

●

●

●

●

●

10000 20000 30000 40000 50000 60000

0
20

00
40

00
60

00
80

00
10

00
0

x

Ti
m

e
(s

ec
s)

● ●
●

●

●

● ●

●

●

●

●

●

●

●

Eigen Decomposition
Direct Inversion
Cholesky Decomposition

●
●

●

●

●

●

●

5000 10000 15000 20000 25000 30000

0
50

10
0

15
0

20
0

x

Ti
m

e
(s

ec
s)

● ● ● ● ● ● ● ●
● ●

●
●

●
●

●

●

●

●

●

● ● ●
●

●
●

●

●

●

●

●

●

●

●

●

p p

Figure 1: Figure showing the times in seconds to perform a direct eigen-decomposition, inversion

and Cholesky decomposition using dense direct numerical linear algebra methods, for real symmetric

matrices with size of upto p = 65, 000. Eigen decompositions and matrix inversions are less memory

friendly, when compared to Cholesky decompositions for large problem sizes. The timings displayed

in the graphs support the practical feasibility of using Cholesky decomposition methods for large

matrices—a main workhorse for the stochastic optimization algorithms proposed in the paper. [Right

panel] displays a zoomed in version of the left panel plot, showing that Cholesky decompositions

are significantly faster than inversion and eigen-decomposition methods even for smaller problems

p ≤ 30, 000. The tail of the direct inversion curve on the left deviates from the O(p3) trend because

the storage requirement has exceeded the capacity of main memory. Thus, the extra time is consumed

by the slower virtual memory access. [The matrices used here were sparse with proportion of non-

zeros 10/p, positive definite with the reciprocal of the condition number given by 0.2—we used the

Matlab function sprandsym to generate the matrices.]

4. In fact, in our experiments we observed that Matlab performs dense Cholesky decomposition more
efficiently than sparse Cholesky decomposition, even when the matrix is sparse. This is due in part
to multithreading: the dense Cholesky decomposition is automatically multithreaded in Matlab, but
the sparse Cholesky decomposition is not. Another reason is the difficulty of finding a good re-ordering
algorithm to limit fill-ins when performing sparse Cholesky decomposition.

5

Atchadé, Mazumder and Chen

Stochastic optimization algorithms based on noisy estimates of the gradient have a long
history that goes back to the pioneering works of Robbins and Monro (1951); Kiefer and Wol-
fowitz (1952). As datasets encountered by statisticians in the modern day grow larger and
the optimization problems associated with statistical estimation tasks become increasingly
challenging, the importance of stochastic algorithms to deliver scalable solvers is being pro-
gressively recognized in recent years. See for instance, the recent works in the optimization
and machine learning communities (Bertsekas (2011); Duchi et al. (2012); Shalev-Shwartz
and Zhang (2013); Konečný and Richtárik (2013); Xiao and Zhang (2014); Atchade et al.
(2014), and the references therein). We note however, that our stochastic optimization for-
mulation of Problem (3) differs from the usual stochastic optimization problem (for instance
as in Bertsekas (2011)) which solves problems of the form

minimize
θ

∫
f(θ;x)π(dx) + g(θ), (4)

for an intractable integral
∫
f(θ;x)π(dx), where, the map θ 7→ f(θ;x) is smooth, and g is

possibly non-smooth. A special instance of (4) is when π is a discrete probability distribution
over a very large set, making the integral

∫
f(θ;x)π(dx) = 1

N

∑N
i=1 f(θ;xi) a large sum and

difficult to work with. We make the following remarks that highlight the differences between
our approach and generic approaches for Problem (4):

• Problem (3) does not admit a straightforward representation of the form (4).

• The gradient ∇f(θ) = S − θ−1 has the integral representation S −
∫
xx′πθ(dx), where

πθ is the density of N(0, θ−1), which depends on θ — a distinctive feature that sets
our stochastic optimization framework apart from Problem (4).

• Last, but not least, the gradient map θ 7→ ∇f(θ) is not Lipschitz continuous on M+,
the feasible set of Problem (3).

A main contribution of our paper is to address the above challenges in the context of the
stochastic optimization framework being proposed herein. In fact, our stochastic optimiza-
tion framework is more in sync with the Robbins-Monro algorithm (Robbins and Monro
(1951)) and can be viewed as a large-scale and non-smooth variant of the Robbins-Monro
algorithm, along the lines of Atchade et al. (2014). Note however, that the theory of Atchade
et al. (2014) cannot be directly applied here, as it requires the classical Lipschitz-continuity
assumption of the smooth component of the objective function, and the ability to compute
the proximal map of the non-smooth component. As explained above, these properties are
not readily available in our case.

The main cost of Algorithm 2 lies with generating multivariate Gaussian random variables
from N(0, θ−1). A given iteration of Algorithm 2 is more cost-effective than an iteration
of the deterministic algorithm, if the Monte Carlo sample size used in that iteration is
smaller than p. This is because the cost of approximating θ−1 using p random samples
from N(0, θ−1) is similar to the cost of computing θ−1 by direct matrix inversion. We show
that with an appropriate choice of the Monte Carlo batch size sequence {Nk} (see Section
4.1 for details), Algorithm 2 reaches a solution with accuracy δ, before the Monte Carlo
sample size becomes larger than p if p ≥ cond(θ̂)2δ−1. This result implies that Algorithm 2
is more cost-effective than Algorithm 1 in finding δ-accurate solutions in cases when p is

6

Precision Matrix Computation via Stochastic Optimization

large, the solution θ̂ is well-conditioned, and we seek a low-accuracy approximation of θ̂.

The total cost of Algorithm 2 is then O
(
p3cond(θ̂)2 log(δ−1)

)
. While on the surface, the

cost looks similar to Algorithm 1 which performs a direct matrix inversion at every iteration,
the constant involved in the big-O notation favors Algorithm 2 —see for example, Figure 1
showing the differences in computation times between a dense Cholesky decomposition and
a direct dense matrix inversion. This is further substantiated in our numerical experiments
(Section 7) where we do systematic comparisons between Algorithms 1 and 2.

A deeper investigation of our stochastic optimization scheme (Algorithm 2) outlined
above, reveals the following. At each iteration k, all the random variables (samples) used
to estimate θ−1

k−1 are discarded, and new random variables are generated to approximate

θ−1
k . We thus ask, is there a modified algorithm that makes clever use of the information

associated with an approximate θ−1
k−1 to approximate θ−1

k ? In this vein, we propose a new
algorithm: Algorithm 3 which recycles previously generated samples. Algorithm 3 has a
per-iteration cost of O(Np3) when a Cholesky factorization is used to generate the Gaussian
random variables, and where N is the Monte Carlo batch-size. The behavior of the algorithm
is more complex, and thus developing a rigorous convergence guarantee with associated
computational guarantees analogous to Algorithm 2 is beyond the scope of the current paper.
We however, present some global convergence results on the algorithm. In particular, we
show that when the sequence produced by Algorithm 3 converges, it necessarily converges
to the solution of Problem (3).

Dense problems

We emphasize that a sizable component of our work relies on the speed and efficiency of
modern dense numerical linear algebra methods for scalability, and thus our approach is
relatively agnostic to the sparsity level of θ̂, a solution to Problem (3). In other words, our
approach adapts to Problem (2) for large n and p, a problem which is perhaps not favorable
for several current specialized implementations for Problem (1).

Exact covariance thresholding

We also extend the exact thresholding rule (Mazumder and Hastie, 2012a) originally proposed
for the Glasso problem, to the more general case of Problem (3). Our result established
herein, implies that the connected components of the graph (1(|sij | > λα)) are exactly

equal to the connected components of the graph induced by the non-zeros of θ̂, a solution
to Problem (3). This can certainly be used as a wrapper around any algorithm to solve
Problem (3); and leads to dramatic performance gains whenever the size of the largest
connected component of (1 (|sij | > λα)) is sufficiently smaller than p.

We note that developing the fastest algorithmic implementation for Problem (3) or its
special case, Glasso, is neither the intent nor focus of this paper. We view our work as one
that proposes a new framework based on stochastic optimization that enables the scalable
computation for the general class of Problems (3), across a wide range of the regularization
parameters. The scalability properties of our proposal seem to be favorable over deterministic
batch methods and in particular, proximal gradient descent methods tailored for Problem (3).

7

Atchadé, Mazumder and Chen

2.1 Notation

Throughout the paper, the regularization parameters λ and α ∈ (0, 1], appearing in Problem
(3) are assumed fixed and given. Let M denote the set of p × p symmetric matrices with

inner product 〈A,B〉 = Tr(A′B) and the Frobenius norm ‖A‖F
def
=
√
〈A,A〉. M+ denotes

the set of positive definite elements of M. Let f be the function M→ (0,∞] defined by

f(θ) =

{
− log det θ + Tr(θS) if θ ∈M+

+∞ if θ ∈M \M+.

We shall write the regularization term in Problem (3) as

gα(θ)
def
=
∑
ij

(
αλ|θij |+

(1− α)

2
λθ2

ij

)
,

and
φα(θ)

def
= f(θ) + gα(θ), θ ∈M. (5)

For a matrix A ∈ M, ‖A‖2 denotes the spectral norm of A, λmin(A) (respectively λmax(A))

denotes the smallest (respectively, the largest) eigenvalue of A, and ‖A‖1
def
=
∑

i,j |Aij |. For
a subset D ⊆M, ιD denotes the indicator function of D, i.e.

ιD(u)
def
=

{
0 if u ∈ D

+∞ otherwise.

For θ ∈M+, and γ > 0, we denote the proximal operator associated with Problem (3) as

T̄γ(θ;α)
def
= Argmin

u∈M+

{
gα(u) +

1

2γ

∥∥u− θ + γ(S − θ−1)
∥∥2

F

}
. (6)

For 0 < ` ≤ ψ, we define

M+(`, ψ)
def
= {θ ∈M+ : λmin(θ) ≥ `, and λmax(θ) ≤ ψ} .

3. A proximal gradient algorithm for Problem (3)

We begin this section with a brief review of proximal gradient algorithms, following Nes-
terov (2013), which concerns the minimization of the following generic convex optimization
problem:

min
ω∈Ω

{
φ̄(ω)

def
= f̄(ω) + ḡ(ω)

}
, (7)

where, Ω is a convex subset of a Euclidean space with norm ‖ · ‖; ḡ(·) is a closed convex
function and f̄(·) is convex, smooth on Ω satisfying:

‖∇f̄(ω)−∇f̄(ω′)‖ ≤ L̄‖ω − ω′‖, (8)

for ω, ω′ ∈ Ω and 0 < L̄ <∞. The main ingredient in proximal gradient descent methods is
the efficient computation of the proximal-operator (“prox-operator” for short), given by:

T̄γ(ω̄)
def
= Argmin

ω∈Ω
‖ω − (ω̄ − γ∇f(ω̄))‖2 + ḡ(ω), (9)

8

Precision Matrix Computation via Stochastic Optimization

for some choice of 0 < γ ≤ 1/L̄. The following simple recursive rule:

ωk+1 = T̄γ(ωk), k ≥ 1,

for some initial choice of ω1 ∈ Ω and γ = 1/L̄, then leads to a solution of Problem (7) (See
for example, Nesterov (2013)).

Problem (3) has striking similarities to an optimization problem of the form (7), with
f̄(·) = f(·), Ω = M+ endowed with the Frobenius norm, ḡ(·) = gα(·), and with T̄γ given
by (6). However, the use of the proximal gradient algorithm for Problem (3) presents some
immediate challenges since:

• The gradient of the smooth component, namely, ∇f(θ) = −θ−1 + S is not Lipschitz
on the entire domain M+ (as required in (8)), due to the unboundedness of the map
θ 7→ θ−1.

• The corresponding proximal map T̄γ(· ;α) defined in (6) need not be simple to compute.

Our first task in this paper, is to show how each of the above problems can be alleviated.
We note that Rolfs et al. (2012) also analyze a proximal gradient descent algorithm for the
case α = 1. We present here a self-contained analysis: our proofs have some differences with
that of Rolfs et al. (2012); and lays the foundation for the stochastic optimization scheme
that we analyze subsequently. Loosely speaking, we will show that even if the function f(θ)
does not have Lipschitz continuous gradient on the entire feasible setM+, it does satisfy (8)
across the iterations of the proximal gradient algorithm. In addition, we demonstrate that
by appropriately choosing the step-size γ, the proximal map T̄γ(· ;α) can be computed by
“dropping” the constraint θ ∈M+. We formalize the above in the following discussion.

For α ∈ [0, 1], γ > 0, and θ ∈M (i.e., the set of p× p symmetric matrices), the proximal
operator associated with the function gα is defined as

Proxγ(θ;α)
def
= Argmin

u∈M

{
gα(u) +

1

2γ
‖u− θ‖2F

}
.

This operator has a very simple form. It is a matrix whose (i, j)th entry is given by:

(Proxγ(θ;α))ij =

0 if |θij | < αλγ
θij−αλγ

1+(1−α)λγ if θij ≥ αλγ
θij+αλγ

1+(1−α)λγ if θij ≤ −αλγ .
(10)

For γ > 0, and θ ∈M+, we consider a seemingly minor modification of the operator (6),
given by:

Tγ(θ;α)
def
= Argmin

u∈M

{
gα(u) + 1

2γ

∥∥u− θ + γ(S − θ−1)
∥∥2

F

}
= Proxγ

(
θ − γ(S − θ−1);α

)
.

(11)

Compared to (6), one can notice that in (11) the positive definiteness constraint is relaxed.
It follows from (10) that Tγ(θ;α) is straightforward to compute. Notice that if Tγ(θ;α) is
positive definite, then Tγ(θ;α) = T̄γ(θ;α). We will show that if γ is not too large then indeed
Tγ(θ;α) = T̄γ(θ;α) for all θ in certain subsets of M+.

9

Atchadé, Mazumder and Chen

At the very onset, we present a result which provides bounds on the spectrum of θ̂,
a solution to Problem (3). The following lemma can be considered as a generalization of
the result of Lu (2009) obtained for the Glasso problem (with α = 1). Let us define the

following quantities: λ1
def
= αλ, λ2

def
= (1− α)λ/2, µ

def
= ‖S‖2 + λ1p,

`?
def
=

{
−µ+
√
µ2+8λ2

4λ2
if α ∈ [0, 1)

1
µ if α = 1,

U1
def
=

1

λ1

(
p− `?Tr(S)− 2pλ2`

2
?

)
c(t)

def
=

1

λ1(1− t)

(
λ1‖θ(t)‖1 − tλ1Tr(θ(t)) + λ2 ‖θ(t)‖2F

)
− λ2`

2
?p

λ1(1− t)

U2
def
= inf

t∈(0,1)
c(t),

(12)

where, we take t ∈ (0, 1) and θ(t)
def
= (S + tλ1I)−1.

Lemma 1 If θ̂ is a solution to Problem (3) with λ > 0, then θ̂ is unique, and θ̂ ∈M+(`?, ψUB),
with ψUB = min{U1, U2}, where, U1, U2 are as defined in (12). In other words, we have the
following bounds on the spectrum of θ̂

λmin(θ̂) ≥ `?, λmax(θ̂) ≤ ψUB.

Proof The proof is presented in Section 8.1.

We make a few remarks about the bounds in (12).

• Computing U2 requires performing a one dimensional minimization which can be car-
ried out quite easily. Conservative but valid bounds can be obtained by replacing U2 by
evaluations of c(·) at some values of t ∈ (0, 1) for example: t = 1

2 and t = 0+ (provided S is
invertible).

• Since the condition number of θ̂ is cond(θ̂) = λmax(θ̂)/λmin(θ̂), the result above implies
that cond(θ̂) ≤ ψUB/`?. We note, however, that this upper bound ψUB/`? may not be an
accurate estimate of cond(θ̂).

We now present an important property (Lemma 2) of the proximal gradient update step,

for our problem. Towards this end, we define ν
def
= λmin(S)− λ1p and

ψ1
?

def
=

−ν+
√
ν2+8λ2

4λ2
if α ∈ [0, 1),

1
ν if α = 1 and ν > 0
+∞ if α = 1 and ν ≤ 0.

It is obvious that 0 < `? ≤ ψ1
? ≤ ∞. We also define

ψ?
def
= min

(
ψ1
?, ψUB +

√
p (ψUB − `?)

)
.

10

Precision Matrix Computation via Stochastic Optimization

Lemma 2 Take γ ∈ (0, `2?] and let {θj , j ≥ 0} be a sequence such that θj = Tγ(θj−1;α), for
j ≥ 1. If θ0 ∈M+(`?,min{ψUB, ψ1

?}), then θj ∈M+(`?, ψ?) for all j ≥ 0.

Proof See Section 8.2.

In the special case of Glasso (α = 1), the results of Lemma 2 correspond to those
obtained by Rolfs et al. (2012). Our proof, however, has differences since we rely more
heavily on basic properties of proximal maps.

Lemma 2 shows that for appropriate choices of γ > 0, the two proximal maps Tγ and T̄γ
produce the identical sequences that remain in the set M+(`?, ψ?). This suggests that one
can solve Problem (3) using the proximal operator Tγ , as the next result shows.

Theorem 3 Fix arbitrary 0 < ` < ψ < ∞. For k ≥ 1, let {θj , 0 ≤ j ≤ k} be a sequence

obtained via the map Tγ: θj+1 = Tγ(θj ;α), for some γ ∈ (0, `2]. Suppose that θ̂, θj ∈
M+(`, ψ), 0 ≤ j ≤ k. Then

∥∥∥θk − θ̂∥∥∥2

F
≤ ρk

∥∥∥θ0 − θ̂
∥∥∥2

F
, and

{
φα(θk)− φα(θ̂)

}
≤

∥∥∥θ0 − θ̂
∥∥∥2

F

2γ
min

{
1

k
, ρk
}
, (13)

where ρ = 1− γ
ψ2 .

Proof See Section 8.3.

Remark 4 If ` = `? and ψ = ψ?, and θ0 ∈ M+(`?,min{ψUB, ψ1
?}), then the assumption

that θ̂, θj ∈M+(`, ψ), 0 ≤ j ≤ k is redundant, as shown in Lemma 1-2, and (13) holds. �

An appealing feature of the iteration θk+1 = Tγ(θk;α) is that its convergence rate is
adaptive, i.e., the algorithm automatically adapts itself to the fastest possible convergence
rate dictated by the condition number of θ̂. This is formalized in the following corollary:

Corollary 5 Let 0 < `?? < ψ?? < ∞ be such that λmin(θ̂) > `??, and λmax(θ̂) < ψ??. Let
{θk, k ≥ 0} be a sequence obtained via the map Tγ: θj+1 = Tγ(θj ;α), for some γ ∈ (0, `2??].

If limk θk = θ̂, then there exists k0 ≥ 0, such that for all k ≥ k0,∥∥∥θk − θ̂∥∥∥2

F
≤
(

1− γ

ψ2
??

)k−k0 ∥∥∥θk0 − θ̂∥∥∥2

F
.

Proof By assumption, θ̂ belongs to the interior ofM+(`??, ψ??). Since θk → θ̂, there exists
k0 ≥ 0, such that θk ∈ M+(`??, ψ??) for k ≥ k0. Then we apply the bound (13), and the
lemma follows.

The analysis above suggests the following practical algorithm for Problem (3). Let {γk}
denote a sequence of positive step-sizes with limk γk = 0. An example of such a sequence is
γk = γ0/2

k, for some γ0 > 0. For convenience, we summarize in Algorithm 1, the determin-
istic proximal gradient algorithm for Problem (3).

11

Atchadé, Mazumder and Chen

Algorithm 1 (Deterministic Proximal Gradient)
Set r = 0.

1. Choose θ0 ∈M+.

2. Given θk, compute: θk+1 = Tγr (θk;α) .

3. If λmin(θk+1) ≤ 0, then restart: set k ← 0, r ← r + 1, and go back to (1). Otherwise,
set k ← k + 1 and go back to (2).

We present a series of remarks about Algorithm 1:

• Positive Definiteness. In Step 3, positive definiteness is tested and the algorithm
is restarted with a smaller step-size, if θk+1 is no longer positive definite. The smallest
eigenvalue of θk+1, i.e., λmin(θk+1) can be efficiently computed by several means: (a) it can
be computed via the Lanczos process (see e.g. Golub and Van Loan (2013) Theorem 10.1.2);
(b) it may also be computed as a part of the step that approximates the spectral interval
of θk+1 using the procedure of Chen et al. (2011) (c) a Cholesky decomposition of θk+1 also
returns information about whether θk+1 is positive definite or not.

An efficient implementation of the algorithm is possible by making Step 3 implicit. For
instance the positive definiteness of θk+1 can be checked as part of the computation of the
gradient ∇f(θk+1) = S − θ−1

k+1 in Step 2.

• Step Size. If the initial step-size satisfies γ0 ≤ `2? and θ0 ∈M+(`?, ψ?), the algorithm is
never re-initialized according to Lemma 2, and Theorem 3 holds. However, it is important to
notice that Lemma 2 and Theorem 3 present a worst case analysis scenario and in practice
the choice γ0 = `2? can be overly conservative. In fact, Corollary 5 dictates that a better
choice of step-size is γ0 = λmin(θ̂)2. Obviously λmin(θ̂) is rarely known, but what this implies
is that, in practice, one should initialize the algorithm with a large step-size and rely on the
re-start trick (Step 3) to reduce the step-size, when θk+1 is not positive definite.

• Adaptive Convergence Rate. We have seen in Corollary 5 that the convergence rate
of the sequence {θk} improves with the iterations. This adaptive convergence rate behavior
makes the cost-complexity analysis of Algorithm 1 more complicated. However, to settle
ideas, if we set θ0 close to θ̂, and the step-size obeys γ ≈ λmin(θ̂)2, Theorem 3 and Corollary
5 imply that the number of iterations of Algorithm 1 needed to reach the precision δ (that

is
∥∥∥θk − θ̂∥∥∥2

F
≤ δ) is

O

(
−ψ

2
??

`2??
log δ

)
≈ O

(
−cond(θ̂)2 log δ

)
.

• Computational Cost. The bottleneck of Algorithm 1 is the computation of the inverse
θ−1
k , which in general entails a computational cost of O(p3)—See Figure 1 showing the

computation times of matrix inversions for real symmetric p × p matrices, in practice. It
follows that in the setting considered above, the computational cost of Algorithm 1 to achieve

a δ-accurate solution is O
(
p3cond(θ̂)2 log(1/δ)

)
.

12

Precision Matrix Computation via Stochastic Optimization

4. Stochastic Optimization Based Algorithms

When p is large (for example, p = 5, 000 or larger), the computational cost of Algorithm 1
becomes prohibitively expensive due to the associated matrix inversions—this is a primary
motivation behind the stochastic optimization methods that we develop in this section. For
θ ∈ M+, let πθ denote the density of N(0, θ−1), the mean-zero normal distribution on Rp
with covariance matrix θ−1. We begin with the elementary observation that

θ−1 =

∫
zz′πθ(dz).

This suggests that on M+, we can approximate the gradient ∇f(θ) = S − θ−1 by S −
N−1

∑N
j=1 zjz

′
j , where z1:N

i.i.d.∼ πθ; here, the notation z1:N denotes a collection of random
vectors zi, i ≤ N .

To motivate the stochastic algorithm we will first establish an analog of Lemma 2, showing
that iterating the stochastic maps obtained by replacing θ−1

j−1 in computing Tγ(θj−1;α) in (11)
by the Monte Carlo estimate described above, produces sequences that remain positive defi-
nite with high probability. Towards this end, fix γ > 0; a sequence of (positive) Monte Carlo
batch-sizes: {Nk, k ≥ 1}; and consider the stochastic process {θk, k ≥ 0} defined as follows.

First, we fix θ0 ∈M+. For k ≥ 1, and given the sigma-algebra Fk−1
def
= σ(θ0, . . . , θk−1):

generate z1:Nk
i.i.d.∼ N(0, θ−1

k−1), compute Σk =
1

Nk

Nk∑
j=1

zjz
′
j , (14)

and set:
θk = Proxγ (θk−1 − γ (S − Σk)) . (15)

For any 0 < ` ≤ ψ ≤ ∞, we set

τ(`, ψ)
def
= inf {k ≥ 0 : θk /∈M+(`, ψ)} ,

with the convention that inf ∅ =∞. For a random variable Ψ ≥ `, we define τ(`,Ψ) as equal
to τ(`, ψ) on {Ψ = ψ}.

Given ε > 0, we define µε
def
= ‖S‖2 + (λ1 + ε)p,

`?(ε)
def
=

{
−µε+

√
µ2ε+8λ2

4λ2
if α ∈ [0, 1)

1
µε

if α = 1.

Similarly, define νε
def
= λmin(S)− (λ1 + ε)p,

ψ1
?(ε)

def
=

−νε+
√
ν2ε+8λ2

4λ2
if α ∈ [0, 1),

1
νε

if α = 1 and νε > 0

+∞ if α = 1 and νε ≤ 0.

It is easy to check that 0 < `?(ε) ≤ `? ≤ ψ1
? ≤ ψ1

?(ε) ≤ ∞.
The following theorem establishes the convergence of the stochastic process θk, produced

via the stochastic optimization scheme (15).

13

Atchadé, Mazumder and Chen

Theorem 6 Let {θk, k ≥ 0} be the stochastic process defined by the rules (14-15). Fix
ε > 0. Suppose that θ0 ∈ M+(`?(ε),min(ψUB, ψ

1
?(ε))). Then there exists a random variable

Ψ?(ε) ≥ `?(ε) such that

P [τ (`?(ε),Ψ?(ε)) =∞] ≥ 1− 4p2
∑
j≥1

exp

(
−min

(
1,
ε2`2?(ε)

16

)
Nj−1

)
.

If
∑

j N
−1
j <∞, then E(Ψ?(ε)

2) <∞ (hence Ψ?(ε) is finite almost surely), and on {τ (`?(ε),Ψ?(ε)) =

∞}, limk→∞ θk = θ̂.

Proof See Section 8.4.

Growth Condition on the Monte Carlo batch size

If we let the Monte Carlo sample size Nk increase as

Nk ≥
3 log p

min (1, `2?(ε)ε
2/16)

+ αkq,

for some q > 1, then
∑

j N
−1
j <∞, and the bound in Theorem 3 above, becomes

P [τ (`?(ε),Ψ?(ε)) =∞] ≥ 1− 4µ

p
,

where µ =
∑

j≥0 exp
(
−αmin(1, `2?(ε)ε

2/16)jq
)
<∞. Hence for high-dimensional problems,

and for moderately large Monte Carlo sample sizes, P [τ (`?(ε),Ψ?(ε)) =∞] can be made
very close to one—this guarantees that positive definiteness of the process {θk, k ≥ 0} is
maintained and the sequence converges to θ̂, with high probability. The convergence rate of
the process is quantified by the following theorem:

Theorem 7 Let {θk, k ≥ 0} be the stochastic process defined by (14-15). For some 0 < ` ≤
ψ ≤ +∞, suppose that θ0, θ̂ ∈M+(`, ψ), and γ ≤ `2. Then

E
[
1{τ(`,ψ)>k}

∥∥∥θk − θ̂∥∥∥2

F

]
≤
(

1− γ

ψ2

)k ∥∥∥θ0 − θ̂
∥∥∥2

F

+ 2γ2`−2(p+ p2)
k∑
j=1

N−1
j

(
1− γ

ψ2

)k−j
. (16)

Proof See Section 8.5.

As with the deterministic sequence, the convergence rate of the stochastic sequence {θk}
is determined by the condition number of θ̂. To see this, take 0 < `?? < ψ?? <∞, such that
`?? < λmin(θ̂), and λmax(θ̂) < ψ??. It is easy to show that a conditional version of (16) holds

14

Precision Matrix Computation via Stochastic Optimization

almost surely: for 0 ≤ k0 ≤ k, and for τk0(`, ψ)
def
= inf{k ≥ k0 : θk /∈M+(`, ψ)},

1{θk0∈M+(ε??,ψ??)}E
[
1{τk0 (`??,ψ??)>k}

∥∥∥θk − θ̂∥∥∥2

F
|Fk0

]
≤
(

1− γ

ψ2
??

)k−k0 ∥∥∥θk0 − θ̂∥∥∥2

F

+ 2γ2`−2
?? (p+ p2)

k∑
j=k0+1

N−1
j

(
1− γ

ψ2
??

)k−k0−j
. (17)

Therefore, as θk → θ̂ almost surely, and since θ̂ ∈ M+(ε??, ψ??), one can find k0 such that
with high probability, and for all k ≥ k0, the following holds:

1{θk0∈M+(ε??,ψ??)}1{τk0 (`??,ψ??)>k} = 1. (18)

If we make the (strong) assumption that (18) holds with probability one, then one can deduce
from (17) that for k ≥ k0,

E
[∥∥∥θk − θ̂∥∥∥2

F

]
≤
(

1− γ

ψ2
??

)k−k0
E
[∥∥∥θk0 − θ̂∥∥∥2

F

]
+ 2γ2`−2

?? (p+ p2)

k∑
j=k0+1

N−1
j

(
1− γ

ψ2
??

)k−k0−j
, (19)

which is an analogue of Corollary 5. As in the deterministic case, this adaptive behavior
complicates the complexity analysis of the algorithm. In the discussion below, we consider
the idealized case where `?? = λmin(θ̂), ψ?? = λmax(θ̂), and θ0 ∈M+(`??, ψ??).

Implications of Theorem 7 and choice of Nj

We now look at some of the implications of Theorem 7 and (19) in the ideal setting where k0 =

0. If Nj is allowed to increase as Nj = dN+jqe for some q > 0, then
∑k

j=1

(
1− γ

ψ2

)k−j
1
Nj
∼

ψ2

γ
1
Nk

, as k →∞; then the implication of Theorem 7 and (19) is that, as k →∞,

E
[∥∥∥θk − θ̂∥∥∥2

F

]
= O

((
1− γ

ψ2
??

)k
+
ψ2
??

γNk

)
= O

(
ρk +

ψ2
??

γkq

)
, (20)

with ρ = 1− γ
ψ2
??

. Notice that the best choice of the step-size is γ = `2??. Setting γ = `2??, it

follows that the number of iterations to guarantee that the left-hand side of (20) is smaller
than δ ∈ (0, 1) is

k? =

(
ψ2
??

`2??

1

δ

) 1
q

∨ log(δ−1)

log(ρ−1)
, (21)

where ρ = 1− `2??
ψ2
??

, and a∨ b = max(a, b). This implies that in choosing Nj = dN + jqe, one

should choose q > 0 such that(
ψ2
??

`2??

1

δ

) 1
q

=
log(δ−1)

log(ρ−1)
= O

(
ψ2
??

`2??
log(δ−1)

)
= O

(
cond(θ̂)2 log(δ−1)

)
, (22)

15

Atchadé, Mazumder and Chen

where cond(θ̂) = λmax(θ̂)/λmin(θ̂) is the condition number of θ̂. Incidentally, (22) shows that
one should choose q > 1, as also needed in Theorem 6.

The results developed above suggest the following stochastic version of Algorithm 1.
As above, let {γk, k ≥ 0} be a sequence of positive step-sizes decreasing to zero, and let
{Nk, k ≥ 0} be a sequence of Monte Carlo sample sizes. That is, Nk is the number of Monte
Carlo sample draws from πθk at iteration k. Algorithm 2 is summarized below:

Algorithm 2
Set r = 0.

1. Choose θ0 ∈M+.

2. Given θk, generate z1:Nk
i.i.d.∼ πθk , i.e., the density of N(0, θ−1

k), and set

Σk+1 =
1

Nk

Nk∑
j=1

zjz
′
j .

3. Compute
θk+1 = Proxγr (θk − γr(S − Σk+1);α) .

4. If λmin(θk+1) ≤ 0, then restart: set k ← 0, r ← r + 1, and go back to (1). Otherwise,
set k ← k + 1 and go to (2).

Remark 8 As in Algorithm 1, the actual implementation of Step 4 can be avoided. For
instance if the simulation of the Gaussian random variables in Step 2 uses the Cholesky
decomposition, it returns the information whether λmin(θk+1) ≤ 0. In this case, we restart
the algorithm from θ0 (or from θk), and with a smaller step-size, and a larger Monte Carlo
batch size. �

4.1 Sampling via dense Cholesky decomposition

The main computational cost of Algorithm 2 lies in generating multivariate Gaussian random
variables. The standard scheme for simulating such random variables is to decompose the
precision matrix θ as

θ = R′R, (23)

for some nonsingular matrix R ∈ Rp×p. Then a random sample from N(0, θ−1) is obtained
by simulating u ∼ N(0, Ip) and returning R−1u. The most common but remarkably effective
approach to achieve the above decomposition (23) is via the Cholesky decomposition, which
leads to R being triangular. This approach entails a total cost of O(p2m+ p3/3) to generate
a set of m independent Gaussian random variables and computing the outer-product matrix,
which forms an approximation to θ−1. The term p3/3 accounts for the cost of the Cholesky
decomposition; and p2m accounts for doing m back-solves R−1ui for m many standard Gaus-
sian random vectors ui, i = 1, . . . ,m; and subsequently computing 1

m

∑m
i=1(R−1ui)(R

−1ui)
′

— note that each back-solve R−1ui can be performed with O(p2) cost since R is triangu-
lar. This shows that an iteration of Algorithm 2, implemented via Cholesky decomposition,
is more cost-effective than an iteration of Algorithm 1, if the number of Gaussian random

16

Precision Matrix Computation via Stochastic Optimization

samples generated in that iteration is less than p. Since k? iterations (as defined in (21))
are needed to reach the precision δ, and Nk = N + kq (we assume that q is chosen as in
(22)), we see that the number of samples per iteration of Algorithm 2 remains below p, if
p ≥ cond(θ̂)2δ−1. In this case the overall computational cost of Algorithm 2, to obtain a
δ-accurate solution is

O

(
p3 log(δ−1)

log(ρ−1)

)
= O

(
p3cond(θ̂)2 log(δ−1)

)
.

We caution the reader that, on the surface, the above cost seems to be of the same order
as that of the deterministic algorithm (Algorithm 1), as seen from Theorem 3. However, the
constants in the big-O notation differ, and are much better for the Cholesky decomposition
than for inverting a matrix—see Figure 1 for a compelling illustration of this observation.
In addition, as the problem sizes become much larger (i.e., larger than p ≈ 35, 000) matrix
inversions become much more memory intensive than Cholesky decompositions; leading to
prohibitely increased computation times—see Figure 1.

4.2 Sampling via specialized sparse numerical linear algebra methods

As an alternative to the above approach, note that equation (23) is also solved by R = θ1/2.
If θ is sparse and very large, specialized numerical linear algebra methods can be used to
compute θ−1/2b for a vector or matrix b, with matching dimensions. These methods include
Krylov space methods (Hale et al. (2008); Eiermann and Ernst (2006)), or matrix function
approximation methods (Chen et al. (2011)). These methods heavily exploit sparsity and
typically scale better than the Cholesky decomposition when dealing with very large sparse
problems. For instance, the matrix function approximation method of Chen et al. (2011) has
a computational cost of O(m(p+Cp)) to generate a set of m samples from N(0, θ−1), where
Cp is the cost of performing a matrix-vector product θb for some b ∈ Rp. As comparison,
Figure 2 shows the time for generating 1, 000 random samples from N(0, θ−1), using dense
Cholesky factorization, and using the matrix function approximation approach of (Chen
et al. (2011)), for varying values of p. The value of p around which the matrix approximation
method becomes better than the Cholesky decomposition depends on the sparsity of θ, and
the implementations of the methods. These specialized sparse methods, however, need to
be used with caution. For one thing, these methods are quite sensitive to the sparsity
level of the iterates θk, and ultimately to the sparsity level θ̂, the solution to Problem (3)
— the methods are useful only when the solutions are sufficiently sparse. This behavior
should be contrasted to that of dense Cholesky decomposition based methods, which are
less sensitive to the sparsity level of θ̂. Based on our experiments (not reported here), we
recommend the use of dense Cholesky decomposition methods in the initial stages of the
algorithm, when the iterates θk are relatively dense. As the number of iterations progresses
and the estimates become more sparse, we recommend the use of specialized sparse numerical
linear algebra methods for sampling from the Gaussian distributions. Since the use of dense
Cholesky decomposition methods amply substantiates the main message of our paper—the
effectiveness of stochastic gradient methods as a computationally scalable alternative to
their deterministic counterparts, our experimental results reported in Section 7 focus on
dense numerical linear algebra methods.

17

Atchadé, Mazumder and Chen

(Zoomed)
T
im

e
(i
n
se
co
nd

s)

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●
●

●
●

●●
●

●

●●

●
●

●
●

●●

●
●

●
●

●●

●

●

●●

●
●

●

●

●

●

0 5000 10000 15000 20000 25000 30000

0
10

20
30

40
50

p

Ti
m

e
(in

 s
ec

on
ds

)

●●●●●●●●●●●●●●●●●●●●●●
●●●●●

●●●●
●●●●

●●●
●●●

●●●

●

●●●●●●●●
●●

●●
●

●
●

●

●

●

●

Matrix Approximation Method
Cholesky Decomposition

● ● ● ● ● ● ●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

0 2000 4000 6000 8000 10000

0
1

2
3

4
5

(Zoomed)

p

Ti
m

e
(in

 s
ec

on
ds

)

●
● ● ●

●
●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

Matrix Approximation Method
Cholesky Decomposition

p p

Figure 2: Figure showing the times in seconds to generate 1, 000 Gaussian random samples from

N(0, θ−1), where θ ∈ Rp×p is constructed as explained in Section 7.1.1 with the proportion of non-

zeros entries approximately set at 5/p.

4.3 Borrowing information across iterations

A main limitation of Algorithm 2 is that at each iteration k, all the Monte Carlo samples used
to estimate θ−1

k are discarded, and new samples are generated to approximate θ−1
k+1. We thus

ask, is there a modified algorithm that makes clever use of the information associated with
an approximate θ−1

k to approximate θ−1
k+1? In this vein, we propose herein a new stochastic

algorithm: Algorithm 3 which recycles previously generated Monte Carlo samples in a novel
fashion, to update its approximation for Σk+1 := θ−1

k+1 from Σk := θ−1
k .

This new algorithm relies on the following algorithm parameters (a) N , where N ≥ 1 is
a given integer, and (b) {ζk, k ≥ 1} which is a sequence of positive numbers such that∑

k≥1

ζk =∞, and
∑
k≥1

ζ2
k <∞. (24)

The algorithm is summarized below:

Algorithm 3 Set r = 0.

1. Choose θ0 ∈M+, and Σ0 ∈M+.

2. Given θk, and Σk, generate z1:N
i.i.d.∼ πθk = N(0, θ−1

k), and compute

Σk+1 = Σk + ζk+1

(
1

N

N∑
k=1

zkz
′
k − Σk

)
. (25)

3. Compute
θk+1 = Proxγr (θk − γr(S − Σk+1);α) . (26)

4. If λmin(θk+1) ≤ 0, then restart: set k ← 0, r ← r + 1, and go back to (1). Otherwise,
set k ← k + 1 and go to (2).

18

Precision Matrix Computation via Stochastic Optimization

Notice that in Algorithm 3, the number of Monte Carlo samples is held fixed at N . Hence
its cost per iteration is constant.

Algorithm 3 is more difficult to analyze because the two recursive equations (25) and
(26) are intimately coupled. However, the next result gives some theoretical guarantees
by showing that when the sequence {θk, k ≥ 0} converges, it necessarily converges to the
minimizer of Problem (3), i.e., θ̂.

Theorem 9 Let {θk, k ≥ 0} be the stochastic process generated by Algorithm 3 where, the
sequence {ζk} satisfies (24). Fix 0 < ` ≤ ψ < ∞. Suppose that θ̂, θ0 ∈ M+(`, ψ), and
γ ≤ `2. Then, on the event

{τ(`, ψ) = +∞, and {θk} converges} ,

we have that limk→∞ θk = θ̂.

Proof See Section 8.6.

5. Exact Thresholding into connected components

As mentioned in Section 1, the exact covariance thresholding rule (Mazumder and Hastie,
2012a), originally developed for the Glasso problem plays a crucial role in the scalability
of Glasso to large values of p, for large values of λ. One simply requires that the largest
connected component of the graph ((1(|sij | > λ))), is of a size that can be handled by an
algorithm for solving Glasso of that size. In this section, we extend this result to the more
general case of Problem (3).

Consider the symmetric binary matrix E := ((Eij)) with Eij = 1(|sij | > αλ), which defines
a graph on the nodes V = {1, . . . , p}. Let (Vj , Ej), j = 1, . . . , J denote the J connected

components of the graph (V, E). Let θ̂ be a minimizer of Problem (3) and consider the
graph Ê induced by the sparsity pattern of θ̂, namely, Êij = 1(|θ̂ij | 6= 0). Let the connected

components of (V, Ê) be denoted by (V̂j , Êj), j = 1, . . . , Ĵ . The following theorem states that
these connected components are essentially the same.

Theorem 10 Let (Vj , Ej), j = 1, . . . , J and (V̂j , Êj), j = 1, . . . , Ĵ denote the connected com-
ponents, as defined above.

Then, J = Ĵ and there exists a permutation Π on {1, . . . , J} such that V̂Π(j) = Vj and

ÊΠ(j) = Ej for all j = 1, . . . , J .
Proof See Appendix, Section 8.7 for the proof.

Note that the permutation Π arises since the labelings of two connected component decom-
positions may be different.

Theorem 10 is appealing because the connected components of the graph Eij = 1(|sij | >
αλ) are fairly easy to compute even for massive sized graphs—see also Mazumder and Hastie
(2012a) for additional discussions pertaining to similar observations for the Glasso problem.
A simple but powerful consequence of Theorem 10 is that, once the connected components

19

Atchadé, Mazumder and Chen

(Vj , Ej), j = 1, . . . , J are obtained, Problem (3) can be solved independently for each of the
J different connected component blocks. In concluding, we note that Theorem 10 is useful
if the maximum size of the connected components is small compared to p, which of course
depends upon S and λ, α.

6. Special Case: Ridge regularization

In this section, we focus our attention to a special instance of Problem (3), namely, the ridge
regularized version, i.e., Problem (2) for some value of λ > 0. Interestingly, the solution to
this problem can be computed analytically as presented in the following lemma:

Lemma 11 Let S = UDU ′ denote the full eigendecomposition of S where, D = diag(d1, . . . , dp).

For any λ > 0 and α = 0 the solution to Problem (3) is given by: θ̂ = Udiag(σ̂)U ′, where,
diag(σ̂) is a diagonal matrix with the ith diagonal entry given by

σ̂i =
−di +

√
d2
i + 4λ

2λ
, for i = 1, . . . , p.

Proof For the proof see Section 8.8

We make the following remarks:

• Performing the eigen-decomposition of S is clearly the most expensive part in comput-
ing a solution to Problem (2); for a general real p× p symmetric matrix this has cost
O(p3) and can be significantly more expensive than computing a direct matrix inverse
or a Cholesky decomposition, as reflected in Figure 1.

• When p� n and n is small, a minimizer for Problem (2) can be computed for large p,
by observing that S = 1

n

∑n
i=1 xix

′
i = 1

nX
′X; thus the eigendecomposition of S can be

done efficiently via a SVD of the n× p rectangular matrix X with O(n2p) cost, which
reduces to O(p) for values of p� n with n small.

• However, computing the solution to Problem (2) becomes quite difficult when both p
and n are large. In this case, both our stochastic algorithms: Algorithms 2 and 3 are
seen to be very useful to get an approximate solution within a fraction of the total
computation time. Section 7.2 presents some numerical experiments.

7. Numerical experiments

We performed some experiments to demonstrate the practical merit of our algorithm on
some synthetic and real datasets.

Software Specifications

All our computations were performed in Matlab (R2014a (8.3.0.532) 64-bit (maci64)) on a
OS X 10.8.5 (12F45) operating system with a 3.4 GHz Intel Core i5 processor with 32 GB
Ram, processor speed 1600 MHz and DDR3 SDRAM.

20

Precision Matrix Computation via Stochastic Optimization

7.1 Studying sparse problems

7.1.1 Simulated data

We test Algorithms 1, 2 and 3 with p = 103, 5 × 103, and p = 104 for some synthetic
examples. The data matrix S ∈ Rp×p is generated as S = n−1

∑n
j=1 xjx

′
j , where n = p/2,

and X1:n
i.i.d.∼ Np(0, θ

−1
?), for a “true” precision matrix θ? generated as follows. First we

generate a symmetric sparse matrix B such that the proportion of non-zeros entries is 10/p.
We magnified the signal by adding 4 to all the non-zeros entries of B (subtracting 4 for
negative non-zero entries). Then we set θ? = B + (` − λmin(B))Ip, where λmin(B) is the
smallest eigenvalue of B, with ` = 1.

Given S, we solve Problem (3) with α ≈ 0.9 and λ ∝
√

log(p)/n such that the sparsity
(i.e., the number of non-zeros) of the solution is roughly 10/p. In all the examples, we ran the
deterministic algorithm (Algorithm 1) for a large number of iterations (one thousand) with a
step-size γ = 3.5 to obtain a high-accuracy approximation of θ̂, the solution to Problem (3)
(we take this estimate as θ̂ in what follows). Algorithms 1, 2 and 3 were then evaluated
as how they progress towards the optimal solution θ̂ (recall that the optimization problem
has a unique minimizer), as a function of time. All the algorithms were ran for a maximum
of 300 iterations. Further details in setting up the solvers and parameter specifications are
gathered in Section B (appendix). To measure the quality of the solution, we used the
following metric:

Relative Error = ‖θk − θ̂‖F /‖θ̂‖F ,

as a function of the number of iterations of the algorithms. Since the work done per iteration
by the different algorithms are different, we monitored the progress of the algorithms as a
function of time. The results are shown in Figure 3.

We also compared the performance of our algorithms with the exact thresholding scheme
(Section 5) switched “on” — this offered marginal improvements since the size of the largest
component was comparable to the size of the original matrix — see Section B for additional
details on the sizes of the connected components produced. We also compared our method
with a state-of-the algorithm: Quic (Hsieh et al., 2014), the only method that seemed to
scale to all the problem sizes that have been considered in our computational experiments.
We used the R package QUIC, downloaded from CRAN for our experiments. The results are
shown in Table 1.

We note that it is not fair to compare our methods versus Quic due to several reasons.
Firstly the available implementation of Quic works for the Glasso problem and the exper-
iments we consider are for the generalized elastic net problem (3). Furthermore, Quic is a
fairly advanced implementation written in C++, whereas our method is implemented entirely
in Matlab. In addition, the default convergence criterion used by Quic is different than
what we use. However, we do report the computational times of Quic simply to give an idea
of where we are in terms of the state-of-the art algorithms for Glasso. Towards this end, we
ran Quic for the Glasso problem with λ = αλ for a large tolerance parameter (we took the
native tolerance parameter, based on relative errors used in the algorithm Quic by setting
its convergence threshold (tol) as 10−10), the solution thus obtained was denoted by θ̂. We
ran Quic for a sequence of twenty tolerance values of the form 0.5× 0.9r for r = 1, . . . , 20;
and then obtained the solution for which the relative error ‖θr − θ̂‖F /‖θ̂‖F ≤ Tol with

21

Atchadé, Mazumder and Chen

Evolution of Relative Error of Algorithms 1—3 versus time

p = 1000 p = 5000 p = 10, 000
R
el
at
iv
e
er
ro
r
=
‖θ
k
−
θ̂‖
F
/‖
θ̂‖
F

0 5 10 15

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

Time (secs)

R
e

la
ti
ve

 E
rr

o
r

Algorithm 1
Algorithm 2
Algorithm 3

0 100 200 300 400 500

0
.0

0
.1

0
.2

0
.3

0
.4

Time (secs)
R

e
la

ti
ve

 E
rr

o
r

Algorithm 1
Algorithm 2
Algorithm 3

0 500 1000 1500 2000

0
.0

0
.1

0
.2

0
.3

0
.4

Time (secs)

R
e

la
ti
ve

 E
rr

o
r

Algorithm 1
Algorithm 2
Algorithm 3

Evolution of Sparsity of Algorithms 1—3 versus time

p = 1000 p = 5000 p = 10, 000

S
pa

rs
it
y
=

1 p
(#

no
n-
ze
ro
s
in
θ k

)

●

●●●

0 5 10 15

2
0

4
0

6
0

8
0

Time (secs)

S
p

a
rs

it
y

●

●

●

●

●

●
●
●●

●

●

●

●
●
●●●●●

●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●●
●
●
●
●
●●●

●
●●

●●●

●

●

●

Algorithm 1
Algorithm 2
Algorithm 3

●

●●

0 100 200 300 400 500

0
5

0
1

0
0

1
5

0

Time (secs)

S
p

a
rs

it
y

●

●

●

●

●
●●●

●

●

●
●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●
●
●
●
●
●●●

●

●

●

Algorithm 1
Algorithm 2
Algorithm 3

●

●●

0 500 1000 1500 2000

0
1

0
2

0
3

0
4

0
5

0
6

0
7

0

Time (secs)

S
p

a
rs

it
y

●

●

●

●●●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●
●●●

●

●

●

Algorithm 1
Algorithm 2
Algorithm 3

Figure 3: Evolution of relative error [top panel] and sparsity [bottom panel] of Algorithms 1-3 versus

time (in secs); for three different problem sizes: p ∈ {103, 5 × 103, 104} for the examples described

in Section 7.1.1. We observe that for larger values of p ≥ 5 × 103, the new stochastic algorithms

proposed in this paper: Algorithms 2 and 3 reach moderate accuracy solutions in times significantly

smaller than the deterministic counterpart: Algorithm 1. Algorithm 3 reaches a low accuracy solution

quicker, but is dominated by Algorithm 2 in obtaining a solution with higher accuracy. For small

values of p (p = 1000) the different algorithms are comparable because direct matrix inversions are

computationally less expensive, the situation changes quickly however, with larger values of p (See

also Figure 1).

Tol ∈ {0.1, 0.02}. For reference, the times taken by Quic to converge to its “default” con-
vergence threshold (given by its relative error convergence threshold: tol= 10−4) were 501
seconds for for p = 5, 000 and 3020 seconds for p = 10, 000.

7.1.2 Real dataset

The Patrick Brown dataset is an early example of an expression array, obtained from the
Patrick Brown Laboratory at Stanford University and was studied in Mazumder and Hastie

22

Precision Matrix Computation via Stochastic Optimization

(2012a). There are n = 385 patient samples of tissues from various regions of the body
(some from tumors, some not), with gene-expression measurements for p = 4718 genes. For
this example, the values of the regularization parameters were taken as (α, λ) = (0.99, 0.16).
Here, splitting led to minor improvements since the size of the largest component was 4709,
with all others having size one. We report the performance of our methods without using the
splitting method. We computed θ̂ by running the deterministic algorithm for 1000 iterations,
using a step-size γ = 5× 10−5. Unlike the synthetic experiments, in this case, we considered
relative changes in objective values to determine the progress of the algorithm, namely,
(φα(θk)− φ̂α)/|φ̂α|, where, we define φ̂α = φα(θ̂); and recall that φα(·) is defined in (5).

In this case, we also compared our method with Quic but the latter took a very long time
in converging to even a moderate accuracy solution, so we took the solution delivered by its
default mode as the reference solution θ̂. Quic took 5.9 hours to produce its default solution.
Taking the objective value of this problem as the reference, we found that Quic took 6080.207
and 10799.769 secs to reach solutions with relative error 0.74 and 0.50 respectively. We
summarize the results in Table 2.

Our empirical findings confirm the theoretical results that for large p, the stochastic
algorithms reach low-accuracy solutions much faster than the deterministic algorithms. We
also see that the splitting rule helps, as it should — major improvements are expected if the
sizes of the connected components are significantly smaller than the original problem. The
sparsity plot (Figure 3) shows that the solution provided by Algorithm 2 tends to be noisy.
The averaging step in estimating θ−1

k in Algorithm 3 makes these estimates much smoother,
which results in solutions with good sparsity properties.

7.2 Studying dense problems

We performed some experiments to demonstrate the performance of our method on dense
inverse covariance estimation problems. Here, we took a sample of size n = p with p ∈
{104, 1.5 × 104}, from a Gaussian density with independent covariates and mean zero. As
described in Section 6, it is indeed possible to obtain a closed form solution to this problem,
but it requires performing a large scale eigen-decomposition on S, which can be quite ex-
pensive. In this application, proximal gradient algorithms and in particular the stochastic
algorithms presented in this paper, become particularly useful. They deliver approximate
solutions to Problem 2 in times that are orders of magnitude smaller than that taken to
obtain an exact solution.

In the experiments considered herein, we found the following scheme to be quite useful.
We took a subsample of size m � n from the original n samples and solved Problem (2)
with a covariance matrix obtained from that subsample. This is indeed quite efficient since
it requires computing the SVD of an m × p matrix, with m � p. We took the precision
matrix and the covariance matrix associated with this subsample as a warm-start to the
deterministic proximal gradient method, i.e., Algorithm 1 and Algorithm 2. This was seen
to improve the overall run-time of the solution versus an initialization with a diagonal matrix.

We summarize our results in Table 3. For the case p = 10, 000 our Monte Carlo batch size
was of Nk = 1, 000+dk1.4e and we took γ = 0.1/λ2

max(S). The algorithms were warm-started
with the solution of Problem (2) for a subsample of size m = 100, which took 0.1 seconds
to compute. For the case, p = 15, 000 we took Nk = 2, 000 + dk1.4e and γ as before. As a

23

Atchadé, Mazumder and Chen

Time (in secs) taken by algorithms
Accuracy Algorithm 1 Algorithm 2 Algorithm 3 Quic

Tol No Splitting With Splitting No Splitting With Splitting No Splitting With Splitting

p = 5000

10−1 125.78 122.16 62.73 60.84 56.78 53.31 300.94
2× 10−2 251.92 241.49 161.18 142.83 292.34 271.67 350.29

p = 10, 000

10−1 921.52 612.11 317.35 155.33 289.58 192.28 2046.73
2× 10−2 1914.65 1305.65 766.69 463.66 647.27 563.42 2373.03

Table 1: Table showing the times (in secs) to reach an Accuracy of “Tol” for different algorithms,

where, Accuracy refers to ‖θk − θ̂‖F /‖θ̂‖F . Algorithms 2 and 3 clearly shine over the deterministic
method (Algorithm 1) for delivering moderate accuracy solutions. Algorithm 3 reaches a solution of
moderate accuracy faster than Algorithm 2 and Algorithm 1; for smaller values of “Tol” Algorithm 2
wins. Here, splitting, which refers to the notion of covariance thresholding described in Section 5
is found to help, though not substantially — the regularization parameters in this problem lead to
connected components of sizes comparable to the original problem. The timings of Quic are shown
for reference purposes only, to get an idea of the times taken by state-of-the art algorithms. For
reference, the times taken by Quic to converge to its default convergence criteria were 501 seconds
for p = 5, 000 and 3020 seconds for p = 10, 000.

warm-start we took the solution of Problem (2) with a subsample of size m = 500 which was
obtained in 1 second.

Accuracy Time (in secs) taken by algorithms
Tol Algorithm 1 Algorithm 2 Algorithm 3

0.1 881.995 366.864 451.337
0.02 2030.405 942.924 > 654

Table 2: Results on the Patrick Brown microarray dataset (here, n = 385 and p = 4718). Algorithm 3
reached a solution of relative accuracy 0.06 within the first 500 iterations which took a total time of
654 seconds. Here, we use “Accuracy” to denote the relative error: (φα(θk)− φ̂α)/|φ̂α|, where, φ̂α is
the optimal objective value for the problem. For comparison, Quic for the same dataset when set to
optimize the corresponding graphical lasso problem with the same tuning parameter, took 5.9 hours
to converge to a solution with the native (default) tolerance criterion. Taking the objective value
of this problem as the reference, we found that Quic took approximately, 6080 secs (∼ 1.7 hours)
and 10800 secs (∼ 3 hours) to reach solutions with relative errors 0.74 and 0.50 respectively. The
algorithms presented in this paper show impressive performance for the particular tasks at hand.

8. Proofs

This section gathers the proofs and technical details appearing in the paper.

24

Precision Matrix Computation via Stochastic Optimization

Accuracy Time (in secs) taken by algorithms
Tol p Algorithm 1 Algorithm 2

0.1 104 15.42 4.67
0.05 104 93.46 48.490

0.1 1.5× 104 50.78 15.70
0.05 1.5× 104 408.87 176.11

Table 3: Results for ridge regression. Here, we use “Accuracy” to denote the measure:
(φα(θk)− φ̂α)/|φ̂α|, where, φ̂α is the optimal objective value for the problem. For p = 10, 000
computing the exact solution (using a full eigen-decomposition) took 140 secs, for p = 15, 000
the exact solution was computed in 500 secs. Both Algorithms 1 and 2 obtained approximate
solutions in times significantly smaller than computing the exact solution to the problem.
For details see Section 7.2.

8.1 Proof of Lemma 1

Proof

Uniqueness of θ̂:

If λ2 > 0 then Problem (3) is strongly convex due to the presence of the quadratic
regularizer, hence θ̂ is unique. If λ2 = 0 and λ1 > 0 then Problem (3) becomes equivalent
to Glasso for which uniqueness of θ̂ was established in Banerjee et al. (2008); Lu (2009).

Spectral bounds on θ̂:

Consider the stationary conditions of Problem (3):

− θ̂−1 + S + λ1Z + 2λ2θ̂ = 0, (27)

where, we use the notation: Z = sgn(θ̂), λ1 = αλ and λ2 = (1− α)λ/2. It follows from (27)
that

θ̂−1 − 2λ2θ̂ =S + λ1Z

≤‖S + λ1Z‖2I
≤ (‖S‖2 + λ1‖Z‖2) I

≤ (‖S‖2 + λ1p) I (since, zij ∈ [−1, 1] implies ‖Z‖2 ≤ p)

(28)

If σi’s denote the eigen-values of θ̂ then it follows from (28):

1/σi − 2λ2σi ≤ ‖S‖2 + λ1p = µ.

Using elementary algebra, the above provides us a lower bound on all the eigen-values of
the optimal solution θ̂: σi ≥ (−µ +

√
µ2 + 8λ2)/(4λ2) for λ2 6= 0, for all i = 1, . . . , p. Note

that for the case, λ2 = 0 we have σi ≥ 1/µ for all i. Combining these results we have the
following:

λmin(θ̂) ≥ `? :=

{
−µ+
√
µ2+8λ2

4λ2
if λ2 6= 0

1
µ otherwise,

25

Atchadé, Mazumder and Chen

which completes the proof of the lower bound on the spectrum of θ̂.

We now proceed towards deriving upper bound on the eigen-values of θ̂.

From (27) we have:

0 = 〈θ̂,−θ̂−1 + S + λ1Z + 2λ2θ̂〉 =⇒ λ1‖θ̂‖1 = p− 〈θ̂, S〉 − 2λ2

∥∥∥θ̂∥∥∥2

F
(29)

Now observe that:

〈θ̂, S〉 ≥ λmin(θ̂)Tr(S) and
∥∥∥θ̂∥∥∥2

F
≥ pλ2

min(θ̂). (30)

We use `? as a lower bound for λmin(θ̂) and use (30) in (29) to arrive at:

‖θ̂‖1 ≤
1

λ1

(
p− `?Tr(S)− 2pλ2`

2
?

)
:= U1 (31)

The above bound can be tightened by adapting the techniques appearing in Lu (2009) for
the special case λ2 = 0; as we discuss below. Let θ̂(t) := (S+ tλ1I)−1 be a family of matrices
defined on t ∈ (0, 1). It is easy to see that

θ̂(t) ∈ Argmin
θ
{− log det(θ) + 〈S + tλ1I, θ〉} ,

which leads to

− log det(θ̂(t)) + 〈S + tλ1I, θ̂(t)〉 ≤ − log det(θ̂) + 〈S + tλ1I, θ̂〉

− log det(θ̂) + 〈S, θ̂〉+ λ1‖θ̂‖1 + λ2

∥∥∥θ̂∥∥∥2

F
≤ − log det(θ̂(t)) + 〈S, θ̂(t)〉

+λ1‖θ̂(t)‖1 + λ2

∥∥∥θ̂(t)∥∥∥2

F
,

(32)

where, the second inequality in (32) follows from the definition of θ̂. Adding the two in-
equalities in (32) and doing some simplification, we have:

λ1‖θ̂(t)‖1 − tλ1Tr(θ̂(t)) + λ2

∥∥∥θ̂(t)∥∥∥2

F
− λ2

∥∥∥θ̂∥∥∥2

F
≥ λ1‖θ̂‖1 − tλ1Tr(θ̂) ≥ (λ1 − tλ1)‖θ̂‖1,

where, the rhs of the above inequality was obtained by using the simple observation Tr(θ̂) ≤
‖θ̂‖1. Dividing both sides of the above inequality by λ1 − tλ1 we have:

‖θ̂‖1 ≤
1

λ1(1− t)

(
λ1‖θ̂(t)‖1 − tλ1Tr(θ̂(t)) + λ2

∥∥∥θ̂(t)∥∥∥2

F

)
︸ ︷︷ ︸

:=a(t)

−
λ2

∥∥∥θ̂∥∥∥2

F

λ1(1− t)︸ ︷︷ ︸
:=b(t)

. (33)

Observing that
∥∥∥θ̂∥∥∥2

F
≥ `2?p and applying it to (33) we obtain:

‖θ̂‖1 ≤
(
a(t)− b̃(t)

)
, (34)

26

Precision Matrix Computation via Stochastic Optimization

where, a(t) = 1
λ1(1−t)

(
λ1‖θ̂(t)‖1 − tλ1Tr(θ̂(t)) + λ2

∥∥∥θ̂(t)∥∥∥2

F

)
and b̃(t) := λ2`2?p

λ1(1−t) .

Inequality (34) in particular implies:

‖θ̂‖1 ≤ inf
t∈(0,1)

(
a(t)− b̃(t)

)
:= U2 (35)

where, the minimization problem appearing above is a one dimensional optimization and
can be approximated quite easily. While a closed form solution to the minimization problem
in (35) may not be available, ‖θ̂‖1 can be (upper) bounded by specific evaluations of a(t)−b̃(t)
at different values of t ∈ (0, 1). In particular, note that if S is invertible then, taking t ≈ 0+
we get:

‖θ̂‖1 ≤
(
‖S−1‖1 +

λ2

λ1

∥∥S−1
∥∥2

F

)
−
λ2`

2
LB

λ1
,

otherwise, taking t = 1
2 leads to: ‖θ̂‖1 ≤ a(1

2)− b̃(1
2).

Combining (31) and (35), we arrive at the following bound:

‖θ̂‖1 ≤ min {U1, U2} (36)

Now observe that:

λmax(θ̂) := ‖θ̂‖2 ≤
∥∥∥θ̂∥∥∥

F
≤ ‖θ̂‖1 ≤ min {U1, U2} := ψUB.

8.2 Proof of Lemma 2

Proof
First Part: Lower bound on λmin(θj)

Set θ̄ = θ − γ(S − θ−1). By definition, Tγ(θ;α) = Argminu∈M

[
gα(u) + 1

2γ

∥∥u− θ̄∥∥2

F

]
.

By the optimality condition of this optimization problem, there exists Z ∈ M in the sub-
differential of the function θ 7→ ‖θ‖1 at Tγ(θ;α) such that Zij ∈ [−1, 1], 〈Z, Tγ(θ;α)〉 =
‖Tγ(θ;α)‖1, and

1

γ
(Tγ(θ;α)− θ̄) + αλZ + (1− α)λTγ(θ;α) = 0. (37)

The fact that Zij ∈ [−1, 1] implies that ‖Z‖2 ≤ ‖Z‖F ≤ p. Hence,

λmin(Z) ≥ −p, and λmax(Z) ≤ p. (38)

Using θ̄ = θ − γ(S − θ−1), we expand (37) to

Tγ(θ;α) = (1 + (1− α)λγ)−1 (θ − γ(S − θ−1 + αλZ)
)
.

We write θ− γ(S − θ−1 +αλZ) = θ+ γθ−1− γ(S +αλZ). We will use the fact that for any
symmetric matrices A,B, λmin(A+B) ≥ λmin(A)+λmin(B), λmax(A+B) ≤ λmax(A)+λmax(B)
(see e.g. Golub and Van Loan (2013) Theorem 8.1.5). In view of (38) we have:

λmin

(
θ − γ(S − θ−1 + αλZ)

)
≥ λmin(θ + γθ−1)− γ (λmax(S) + αλp) . (39)

27

Atchadé, Mazumder and Chen

Notice that the function x 7→ x+ γ
x is increasing on [

√
γ,∞), and by assumption `? ≥

√
γ.

Therefore, if λmin(θ) ≥ `?, we use the eigen-decomposition of θ to conclude that

λmin

(
θ + γθ−1

)
= λmin(θ) +

λ

λmin(θ)
≥ `? +

γ

`?
. (40)

Hence

λmin (Tγ(θ;α)) ≥ (1 + (1− α)λγ)−1

[
`? +

γ

`?
− γ(λmax(S) + αλp)

]
= `?, (41)

where the last equality uses the fact that `? satisfies the equation

(1− α)λ`2? + (λmax(S) + αλp)`? − 1 = 0.

Second Part: Upper bound on λmax(θj)

We will first show that if ψ1
? ≤ ψUB, then λmax(θj) ≤ ψ1

? for all j ≥ 1. Following
arguments similar to that used to arrive at (39), we have:

λmax

(
θ − γ(S − θ−1 + αλZ)

)
≤ λmax(θ + γθ−1)− γ (λmin(S)− αλp) . (42)

Using λmax(θ) ≤ ψ1
?; and following arguments used to arrive at (40), (41) we have:

λmax

(
θ + γθ−1

)
= λmax(θ) +

λ

λmax(θ)
≤ ψ1

? +
γ

ψ1
?

.

Hence

λmax (Tγ(θ;α)) ≤ (1 + (1− α)λγ)−1

[
ψ1
? +

γ

ψ1
?

− γ(λmin(S)− αλp)
]

= ψ1
?,

where the last equality uses the fact that when ψ1
? <∞, it satisfies the equation

(1− α)λψ2
? + (λmin(S)− αλp)ψ? − 1 = 0.

We now consider the case where, ψ1
? > ψUB, and θ0 ∈ M+(`?, ψUB). The first part of

the proof guarantees that θj ∈ M+(`?,+∞) for all j ≥ 0. For j ≥ 1, by Lemma 14 applied
with ` = `?, ψ = +∞, θ = θj−1, and H = θ−1

j−1, we get∥∥∥θj − θ̂∥∥∥
F
≤
∥∥∥θj−1 − θ̂

∥∥∥
F
.

This implies that for any j ≥ 1,

‖θj‖2 ≤ ‖θ̂‖2 + ‖θj − θ̂‖2
≤ ‖θ̂‖2 +

∥∥∥θ0 − θ̂
∥∥∥
F

≤ ψUB +
√
p(ψUB − `?).

where the last inequality uses Weyl’s inequality since θ0, θ̂ ∈M+(`?, ψUB).

28

Precision Matrix Computation via Stochastic Optimization

8.3 Proof of Theorem 3

Proof We follow closely the proof of Theorem 3.1. of Beck and Teboulle (2009). Suppose
that the sequence {θi, 0 ≤ i ≤ k} belongs to M+(`, ψ). For any i ≥ 0, since θi+1 =
Proxγ(θi − γ(S − θ−1

i);α), we apply Lemma 14 with H = θ−1
i to obtain∥∥∥θi+1 − θ̂

∥∥∥2

F
≤ 2γ

(
φα(θi+1)− φα(θ̂)

)
+
∥∥∥θi+1 − θ̂

∥∥∥2

F
≤
(

1− γ

ψ2

)∥∥∥θi − θ̂∥∥∥2

F
,

which implies that

2γ
(
φα(θk)− φα(θ̂)

)
+
∥∥∥θk − θ̂∥∥∥2

F
≤
(

1− γ

ψ2

)k ∥∥∥θ0 − θ̂
∥∥∥2

F
. (43)

Again, from (59), we have

φα(θi+1)− φα(θ̂) ≤ 1

2γ

[∥∥∥θi − θ̂∥∥∥2

F
−
∥∥∥θi+1 − θ̂

∥∥∥2

F

]
.

We then sum for i = 0 to k − 1 to obtain

2γ

k∑
i=1

{
φα(θi)− φα(θ̂)

}
+
∥∥∥θk − θ̂0

∥∥∥2

F
≤
∥∥∥θ0 − θ̂

∥∥∥2

F
. (44)

We now use Lemma 13 to write

gα(θi+1)− gα(θi) ≤
1

γ

〈
θi − θi+1, θi+1 −

(
θi − γ(S − θ−1

i)
)〉
,

= −1

γ
‖θi+1 − θi‖2F +

〈
θi − θi+1, S − θ−1

i

〉
.

This last inequality together with (55) applied with θ̄ = θi+1 and θ = θi, yields{
φα(θi+1)− φα(θ̂)

}
≤
{
φα(θi)− φα(θ̂)

}
− 1

2γ
‖θi − θi+1‖2F . (45)

By multiplying both sides of the last inequality by i and summing from 0 to k−1, we obtain

k
{
φα(θk)− φα(θ̂)

}
≤

k∑
i=1

{
φα(θi)− φα(θ̂)

}
− 1

2

k−1∑
i=0

i

γ
‖θi − θi+1‖2F

≤
k∑
i=1

{
φα(θi)− φα(θ̂)

}
.

Hence, given (44), we have {
φα(θk)− φα(θ̂)

}
≤ 1

2γk

∥∥∥θ0 − θ̂
∥∥∥2

F
,

which together with (43) yields the stated bound.

29

Atchadé, Mazumder and Chen

8.4 Proof of Theorem 6

Proof Write τε = τ(`?(ε), ψ
1
?(ε)).

P [τε =∞] = 1−
∞∑
j=1

P [τε = j] ,

and

P [τε = j] = P
[(
λmin(θj) < `?(ε) or λmax(θj) > ψ1

?(ε)
)
, τε > j − 1

]
.

Now we proceed as in the proof of Lemma 2. Given θj−1, the optimality condition (37)
becomes: there exists a matrix ∆j , all entries of which belong to [−1, 1] (that can be taken
as sign(θj)), such that

θj = (1 + (1− α)λγ)−1
(
θj−1 + γθ−1

j−1 − γ(S + (θ−1
j−1 −Gj) + αλ∆j)

)
.

As in the proof of Lemma 2 we have,

λmax(S + (θ−1
j−1 −Gj) + λ∆j) ≤ λmax(S) + p‖θ−1

j−1 −Gj‖∞ + pλ,

and λmin(S + (θ−1
j−1 −Gj) + λ∆j) ≥ λmin(S)− p‖θ−1

j−1 −Gj‖∞ − pλ.

where for A ∈ M, ‖A‖∞
def
= maxi,j |Aij |. Therefore, with the same steps as in the proof of

Lemma 2, we see that on the event {τ > j − 1, ‖Gj − θ−1
j−1‖∞ ≤ ε}, λmin(θj) ≥ `?(ε), and

λmax(θj) ≤ ψ1
?(ε). We conclude that,

P [τε = j] ≤ P [τε = j|τε > j − 1] ≤ P
[
‖Gj − θ−1

j−1‖∞ > ε|τε > j − 1
]
.

We prove in Lemma 15 the exponential bound

P
[
‖Gj − θ−1

j−1‖∞ > ε|λmin(θj−1) ≥ `?(ε)
]
≤ 8p2 exp

(
−min(1, `2?(ε)ε

2/16)Nj−1

)
.

Hence

P [τε =∞] ≥ 1− 8p2
∑
j≥1

exp
(
−min(1, `2?(ε)ε

2/16)Nj−1

)
. (46)

We will now show that there exists a random variable Ψ?(ε) such that on {τε = +∞},
λmax(θj) ≤ Ψ?(ε) for all j ≥ 0.

We first note that on {τε > k}, θ0, . . . , θk ∈M+(`, ψ), and θj = Proxγ (θj−1 − γ(S − Σj ;α))
for j = 1, . . . , k. We then apply Lemma 14 with θ = θj−1, θ̄ = θj and H = Σj , to write

∥∥∥θj − θ̂∥∥∥2

F
≤
∥∥∥θj − θ̂∥∥∥2

F
+ 2γ

{
φα(θj)− φα(θ̂)

}
≤
(

1− γ

ψ2

)∥∥∥θj−1 − θ̂
∥∥∥2

F
− 2γ

〈
θ̂ − θj ,Σj − θ−1

j−1

〉
.

30

Precision Matrix Computation via Stochastic Optimization

We multiply both sides by 1{τε>j−1} and uses the fact that 1{τε>j−1} = 1{τε=j} + 1{τε>j} to
write

1{τε>j}

∥∥∥θj − θ̂∥∥∥2

F
≤
(

1− γ

ψ2

)
1{τε>j−1}

∥∥∥θj−1 − θ̂
∥∥∥2

F

− 2γ1{τε>j−1}

〈
θ̂ − θj ,Σj − θ−1

j−1

〉
. (47)

Recall that θj = Proxγ (θj−1 − γ(S − Σj);α), and split θ̂ − θj as

θ̂ − θj = θ̂ − Tγ(θj−1;α) + Tγ(θj−1;α)− θj , (48)

where Tγ(θj−1;α) = Proxγ

(
θj−1 − γ(S − θ−1

j−1);α
)

. It is well known that the proximal oper-

ator is non-expansive—see (Bauschke and Combettes, 2011, Propositions 12.26 and 12.27).
Hence∣∣∣〈Tγ(θj−1;α)− θj ,Σj − θ−1

j−1

〉∣∣∣ ≤ ‖Tγ(θj−1;α)− θj‖F
∥∥∥Σj − θ−1

j−1

∥∥∥
F

≤ γ
∥∥∥Σj − θ−1

j−1

∥∥∥2

F
.

We then set Vj
def
= 1{τε>j−1}

〈
θ̂ − Tγ(θj−1;α),Σj − θ−1

j−1

〉
, and use the last inequality, (48),

and (47) to deduce that

1{τε>j}

∥∥∥θj − θ̂∥∥∥2

F
≤
(

1− γ

ψ2

)
1{τε>j−1}

∥∥∥θj−1 − θ̂
∥∥∥2

F

− 2γVj + 2γ21{τε>j−1}

∥∥∥Σj − θ−1
j−1

∥∥∥2

F
. (49)

Summing (49) for j = 1 to k yields

sup
k≥0

1{τε>k}

∥∥∥θk − θ̂∥∥∥2

F
≤

∥∥∥θ0 − θ̂
∥∥∥2

F
+ 2γ sup

k≥1

∣∣∣∣∣∣
k∑
j=1

Vj

∣∣∣∣∣∣
+2γ2

∞∑
j=1

1{τε>j−1}

∥∥∥Σj − θ−1
j−1

∥∥∥2

F
,

=
∥∥∥θ0 − θ̂

∥∥∥2

F
+ ζ, (50)

where ζ
def
= 2γ supk≥1

∣∣∣∑k
j=1 Vj

∣∣∣+ 2γ2
∑∞

j=1 1{τε>j−1}

∥∥∥Σj − θ−1
j−1

∥∥∥2

F
. The bound (50) in turn

means that on the event {τε =∞}, for all j ≥ 0,

‖θj‖2 ≤ ‖θ̂‖2 +
∥∥∥θj − θ̂∥∥∥

F
≤ ψUB +

√
p(ψUB − `?(ε))2 + ζ.

Hence, with Ψ?(ε)
def
= min

(
ψ1
?(ε), ψUB +

√
p(ψUB − `?(ε))2 + ζ

)
, we have shown that {τε =

∞} ⊂ {τ(`?(ε),Ψ?(ε)) =∞}, and the first part of the lemma follows from the bound (46).

31

Atchadé, Mazumder and Chen

Bound on E(Ψ?(ε)
2) Clearly it suffices to bound E(ζ). Recall that Σj = 1

Nj

∑Nj
k=1 zkz

′
k,

where z1:Nj
i.i.d.∼ N(0, θ−1

j−1). We easily calculate (See Lemma 15 for details) that on the
event {τε > j − 1},

E
(∥∥∥Σj − θ−1

j−1

∥∥∥2

F
|Fj−1

)
=

1

Nj

(
Tr(θ−1

j−1)2 +
∥∥∥θ−1

j−1

∥∥∥2

F

)
,

and for θj ∈M+(`?(ε), ψ
1
?(ε)), Tr(θ

−1
j)2 +

∥∥∥θ−1
j

∥∥∥2

F
≤ `?(ε)−2(p+ p2). Hence

E

 ∞∑
j=1

1{τ>j−1}

∥∥∥Σj − θ−1
j−1

∥∥∥2

F

 =
∞∑
j=1

E
[
1{τ>j−1}E

(∥∥∥Σj − θ−1
j−1

∥∥∥2

F
|Fj−2

)]

≤ `?(ε)
−2(p+ p2)

∞∑
j=1

1

Nj
<∞,

by assumption. By Doob’s inequality (Hall and Heyde (1980) Theorem 2.2) applied to the
martingale {

∑k
j=1 Vk},

E

sup
k≥1

∣∣∣∣∣∣
k∑
j=1

Vj

∣∣∣∣∣∣
 = lim

N→∞
E

 sup
1≤k≤N

∣∣∣∣∣∣
k∑
j=1

Vj

∣∣∣∣∣∣
 ≤ 2 lim

N→∞
E1/2

∣∣∣∣∣∣
N∑
j=1

Vj

∣∣∣∣∣∣
2

= 2

∞∑
j=1

E(V 2
j)

1/2

.

Using again the facts that the proximal operator is non-expansive and θ̂ = Tγ(θ̂;α), we have

|Vj | ≤ 1{τε>j−1}

∥∥∥θj−1 − θ̂
∥∥∥
F

∥∥∥Σj − θ−1
j−1

∥∥∥
F
. Therefore, with similar calculations as above, we

have

E(V 2
j) = E

[
E(V 2

j |Fj−1)
]
≤ `?(ε)−2(p+ p2)N−1

j E
(

1{τε>j−1}

∥∥∥θj−1 − θ̂
∥∥∥2

F

)
.

On {τε > j − 1},
∥∥∥θj−1 − θ̂

∥∥∥
F
≤ √p‖θj−1 − θ̂‖2 ≤

√
p(ψUB − `?(ε)). Hence

E(V 2
j) ≤ p(p+ p2)(ψUB − `?(ε))2

`?(ε)2

1

Nj
,

which together with the assumption
∑

j N
−1
j < ∞, and the above calculation show that

E
[
supk≥1

∣∣∣∑k
j=1 Vj

∣∣∣] <∞.

Convergence of θn We sum (49) from j = 1 to k, which gives, for all k ≥ 1:

1{τε>k}

∥∥∥θk − θ̂∥∥∥2

F
+

γ

ψ2

k∑
j=1

1{τε>j−1}

∥∥∥θj−1 − θ̂
∥∥∥2

F

≤ 2γ sup
k≥1

∣∣∣∣∣∣
k∑
j=1

Vj

∣∣∣∣∣∣+ 2γ2
∞∑
j=1

1{τε>j−1}

∥∥∥Σj − θ−1
j−1

∥∥∥2

F
.

32

Precision Matrix Computation via Stochastic Optimization

We have seen above that the term on the right-hand side of this inequality has a finite

expectation. This implies the series
∑∞

j=1 1{τε>j−1}

∥∥∥θj−1 − θ̂
∥∥∥2

F
is finite almost surely, which

in turn implies that on {τε =∞}, we necessarily have limk θk = θ̂, as claimed.

8.5 Proof of Theorem 7

Proof Taking the expectation on both sides on (49) yields

E
[
1{τ>j}

∥∥∥θj − θ̂∥∥∥2

F

]
≤
(

1− γ

ψ2

)
E
[
1{τ>j−1}

∥∥∥θj−1 − θ̂
∥∥∥2

F

]
+ 2γ2E

[
1{τ>j−1}E

(∥∥∥Σj − θ−1
j−1

∥∥∥2

F
|Fj−1

)]
.

Iterating this inequality yields

E
[
1{τ>k}

∥∥∥θk − θ̂∥∥∥2

F

]
≤
(

1− γ

ψ2

)k ∥∥∥θ0 − θ̂
∥∥∥2

F

+ 2γ2
k∑
j=1

(
1− γ

ψ2

)k−j
E
[
1{τ>j−1}E

(∥∥∥Σj − θ−1
j−1

∥∥∥2

F

)]
.

Recall that Σj = 1
Nj

∑Nj
k=1 zkz

′
k, where z1:Nj

i.i.d.∼ N(0, θ−1
j−1). We easily calculate (See Lemma

15 for details) that on the event {τ > j − 1},

E
(∥∥∥Σj − θ−1

j−1

∥∥∥2

F
|Fj−1

)
=

1

Nj

(
Tr(θ−1

j−1)2 +
∥∥∥θ−1

j−1

∥∥∥2

F

)
,

and for θj ∈ M+(`, ψ), Tr(θ−1
j)2 +

∥∥∥θ−1
j

∥∥∥2

F
≤ `−2(p + p2). The stated bound on the term

E
[
1{τ>k}

∥∥∥θk − θ̂∥∥∥2

F

]
then follows.

8.6 Proof of Theorem 9

Proof We write τ = τ(`, ψ). On {τ > k}, θ0, . . . , θk ∈ M+(`, ψ), and θi+1 = Proxγ(θi −
γ(S − Σi+1;α) for i ≥ 0. We apply Lemma 14 with H = Σi+1 to write∥∥∥θi+1 − θ̂

∥∥∥2

F
≤
(

1− γ

ψ2

)∥∥∥θi − θ̂∥∥∥2

F
+ 2γ

〈
θi+1 − θ̂,Σi+1 − θ−1

i

〉
.

By iterating this bound, we obtain∥∥∥θk − θ̂∥∥∥2

F
≤

(
1− γ

ψ2

)k ∥∥∥θ0 − θ̂
∥∥∥2

F

+2γ sup
k≥0

∥∥∥θk − θ̂∥∥∥2

F

k∑
j=1

(
1− γ

ψ2

)k−j ∥∥∥Σj+1 − θ−1
j

∥∥∥
F
. (51)

33

Atchadé, Mazumder and Chen

On {τ(`, ψ) =∞}, supi≥0

∥∥∥θi − θ̂∥∥∥2

F
is finite and if limj

∥∥∥Σj+1 − θ−1
j

∥∥∥
F

= 0, the bound (51)

would easily imply that limk

∥∥∥θk − θ̂∥∥∥2

F
= 0. Hence the theorem is proved by showing that

on {τ =∞}, limk

∥∥Σk+1 − θ−1
k

∥∥
F

= 0. From (25), we write

Σk+1 − θ−1
k = (1− ζk+1)

(
Σk − θ−1

k−1

)
+ (1− ζk+1)(θ−1

k−1 − θ
−1
k) + ζk+1ηk+1,

where

ηk+1
def
=

1

N

N∑
k=1

zkz
′
k − θ−1

k , z1:N
i.i.d.∼ N(0, θ−1

k).

We expand this into

1{τ>k}
(
Σk+1 − θ−1

k

)
= (1 − ζk+1)1{τ>k−1}

(
Σk − θ−1

k−1

)
+ R

(1)
k+1 + R

(2)
k+1 + R

(3)
k+1 + R

(4)
k+1,

where the remainders are given by

R
(1)
k+1

def
= −1{τ=k}(1− ζk+1)Σk,

R
(2)
k+1

def
= (1− ζk)1{τ>k−1}θ

−1
k−1 − (1− ζk+1)1{τ>k}θ

−1
k ,

R
(3)
k+1

def
= (ζk − ζk+1)1{τ>k−1}θ

−1
k−1,

and
R

(4)
k+1

def
= ζk+11{τ>k}ηk+1.

Since 1{τ>k,τ=∞} = 1{τ=∞}, and 1{τ=k,τ=∞} = 0, it follows that for all n ≥ 0,

1{τ=∞}
(
Σk+1 − θ−1

k

)
= 1{τ=∞}

k∏
k=1

(1− ζk+1)(Σ1 − θ−1
0)

+ 1{τ=∞}

k∑
j=1

(
R

(2)
j +R

(3)
j +R

(4)
j

) k∏
i=j+1

(1− ζi+1).

Clearly, we have
∏k
k=1(1 − ζk+1) ≤ exp

(
−
∑k

k=1 ζk+1

)
→ 0 as k → ∞ by (24), and if the

series
∑

j≥1

(
R

(2)
j +R

(3)
j +R

(4)
j

)
is finite on {τ = ∞}, then by Kronecker lemma, it would

follow that
∑k

j=1

(
R

(2)
j +R

(3)
j +R

(4)
j

)∏k
i=j+1(1−ζi+1)→ 0, as k →∞ on {τ =∞}. Hence,

it suffices to prove that the series
∑

j≥1

(
R

(2)
j +R

(3)
j +R

(4)
j

)
is finite on {τ =∞}.

We have
∑k

k=1R
(2)
k = (1 − ζ1)1{τ>0}θ

−1
0 − (1 − ζk+1)1{τ>k}θ

−1
k . The assumption that

θk has a limit and θk ∈ M+(`, ψ) easily implies that
∑

k R
(2)
k is finite. Similarly, we have∑

k

∥∥∥R(3)
k

∥∥∥
F
≤ `−1ζ0 <∞, and

E

∥∥∥∥∥∑
k

R
(4)
k

∥∥∥∥∥
2

F

 =
∑
k

ζ2
kE

1{τ>k}

∥∥∥∥∥ 1

N

N∑
k=1

zkz
′
k − θ−1

k

∥∥∥∥∥
2

F

 ≤ `−2(p+ p2)
∑
k

ζ2
k <∞.

34

Precision Matrix Computation via Stochastic Optimization

8.7 Proof of Theorem 10

Proof The proof follows (Mazumder and Hastie, 2012a) with appropriate modifications,
and we provide a brief sketch here.

First Part:
We start with the connected component decomposition of the non-zeros of θ̂. Let us assume
that the rows/columns of the matrix θ̂ have been arranged such that it is block diagonal.
We proceed by writing the KKT conditions of Problem (3):

− θ̂−1 + S + τ1 sgn(θ̂) + 2τ2θ̂ = 0, (52)

where, τ1 = αλ1 and τ2 = 1−α
2 λ2 and sgn(θ̂) is a matrix where sgn(·) is applied compo-

nentwise to every entry of θ̂. Since θ̂ is block diagonal so is θ̂−1. If we take the (i, j)th
entry of the matrix appearing in (52) such that i and j belong to two different connected
components then: −(θ̂−1)ij + 2τ θ̂ij = 0 which implies that sij + τ1 sgn(θ̂ij) = 0. Thus we
have: |sij | ≤ τ1 for all pairs i, j such that they belong to two different connected components.
Thus the binary matrix ((1(|sij | > τ1))) will have zeros for all i, j belonging to two different

components V̂r and V̂s for r 6= s. The connected components of ((1(|sij | > τ1))) have a finer

resolution than V̂j , j = 1, . . . , Ĵ and in particular Ĵ ≤ J .

Second Part:
For the other part, let us start by assuming that the symmetric binary matrix ((1(|sij | >
τ1))) breaks down into J many connected components; and let θ̃ = diag(θ̂1, . . . , θ̂J) be a
block diagonal matrix, where, each θ̂r is obtained by solving Problem (3) restricted to the
rth connected component Vr where, r = 1, . . . , J. For any i, j belonging to two different
components Vr and Vs with r 6= s we have that |sij | ≤ τ1 and in addition, θ̃ij = 0 and

(θ̃−1)ij = 0. This implies that θ̃ satisfies the KKT conditions (52) and is hence a solution

to Problem (3). This in particular, implies that Ĵ ≥ J and the connected components of
V̂j , j = 1, . . . , Ĵ are a finer resolution than Vr, r = 1, . . . , J.

Combining the above two parts, we conclude that the connected components of the two
binary matrices ((1(|sij | > τ1))) and ((1(|θ̂ij 6= 0))) are indeed equal.

8.8 Proof of Lemma 11

Proof To see this we take the derivative of the objective function wrt θ and set it to zero:

− θ−1 + S + λθ = 0. (53)

Suppose that the sample covariance matrix S can be written as:

S = UDU ′,

where the above denotes the full eigen-value decomposition of S which is a p× p matrix. Let
di denote the diagonals of D. We will show that the solution to Problem (2) is of the form
θ̂ = Udiag(σ)U ′, where, diag(σ) is a diagonal matrix with the ith diagonal entry being σi.

35

Atchadé, Mazumder and Chen

Let us multiply both sides of (53) by U ′ and U on the left and right respectively. It is
then easy to see that the optimal values of σ can be computed as follows:

−1/σi + di + λσi = 0

for all i = 1, . . . , p. The above can be solved for every i separately leading to:

σ̂i =
−di +

√
d2
i + 4λ

2λ
, ∀i

Thus we have the statement of Lemma 11.

Acknowledgements

Yves F. Atchadé is partly supported by NSF grant DMS 1228164. Rahul Mazumder was
supported by ONR grant ONR - N00014-15-1-2342, Columbia University’s start-up fund and
an interface grant from the Betty-Moore Sloan Foundation. R.M. will like to thank Robert
Freund for helpful comments and encouragement.

References

Y. F. Atchade, G. Fort, and E. Moulines. On stochastic proximal gradient algorithms. ArXiv
e-prints, February 2014.

O. Banerjee, L. El Ghaoui, and A. d’Aspremont. Model selection through sparse maxi-
mum likelihood estimation for multivariate gaussian or binary data. Journal of Machine
Learning Research, 9:485–516, 2008.

Heinz H. Bauschke and Patrick L. Combettes. Convex analysis and monotone operator theory
in Hilbert spaces. CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC.
Springer, New York, 2011.

Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm for linear
inverse problems. SIAM Journal on Imaging Sciences, 2(1):183–202, 2009.

Stephen R Becker, Emmanuel J Candès, and Michael C Grant. Templates for convex cone
problems with applications to sparse signal recovery. Mathematical Programming Compu-
tation, 3(3):165–218, 2011.

Dimitri P. Bertsekas. Incremental proximal methods for large scale convex optimization.
Mathematical Programming, 129(2, Ser. B):163–195, 2011.

Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University Press,
Cambridge, 2004.

Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein. Distributed
Optimization and Statistical Learning via the Alternating Direction Method of Multipliers.
Foundations and Trends in Machine Learning, (3(1)), 2011.

36

Precision Matrix Computation via Stochastic Optimization

Peter Bühlmann and Sara Van De Geer. Statistics for high-dimensional data: methods,
theory and applications. Springer Science & Business Media, 2011.

Jie Chen, Mihai Anitescu, and Yousef Saad. Computing f(A)b via least squares polynomial
approximations. SIAM Journal on Scientific Computing, 33(1):195–222, 2011.

John C. Duchi, Peter L. Bartlett, and Martin J. Wainwright. Randomized smoothing for
stochastic optimization. SIAM Journal on Optimization, 22(2):674–701, 2012. ISSN 1052-
6234.

Michael Eiermann and Oliver G. Ernst. A restarted krylov subspace method for the evalu-
ation of matrix functions. SIAM Journal on Numerical Analysis, 44(6):2481–2504, 2006.

J. Friedman. Regularized discriminant analysis. Journal of the American Statistical Associ-
ation, 84:165–175, 1989.

Jerome Friedman, Trevor Hastie, Holger Hoefling, and Robert Tibshirani. Pathwise coordi-
nate optimization. Annals of Applied Statistics, 2(1):302–332, 2007a.

Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Sparse inverse covariance estima-
tion with the graphical lasso. Biostatistics, 9:432–441, 2007b.

Gene H. Golub and Charles F. Van Loan. Matrix Computations. Johns Hopkins Studies
in the Mathematical Sciences. Johns Hopkins University Press, Baltimore, MD, fourth
edition, 2013.

Nicholas Hale, Nicholas J. Higham, and Lloyd N. Trefethen. Computing Aα, log(A), and
related matrix functions by contour integrals. SIAM Journal of Numerical Analysis, 46
(5):2505–2523, 2008.

P. Hall and C. C. Heyde. Martingale Limit theory and its application. Academic Press, New
York, 1980.

Trevor Hastie, Andreas Buja, and Robert Tibshirani. Penalized discriminant analysis. The
Annals of Statistics, pages 73–102, 1995.

Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical Learn-
ing, Second Edition: Data Mining, Inference, and Prediction (Springer Series in Statis-
tics). Springer New York, 2 edition, 2009.

Cho-Jui Hsieh, Mátyás A. Sustik, Inderjit S. Dhillon, and Pradeep Ravikumar. Quic:
Quadratic approximation for sparse inverse covariance estimation. Journal of Machine
Learning Research, 15:2911–2947, 2014.

J. Kiefer and J. Wolfowitz. Stochastic estimation of the maximum of a regression function.
Annals of Mathematical Statistics, 23:462–466, 1952.

J. Konečný and P. Richtárik. Semi-Stochastic Gradient Descent Methods. ArXiv e-prints,
December 2013.

37

Atchadé, Mazumder and Chen

B. Laurent and P. Massart. Adaptive estimation of a quadratic functional by model selection.
The Annals of Statistics, 28(5):1302–1338, 2000.

Steffen Lauritzen. Graphical Models. Oxford University Press, 1996.

Lu Li and Kim-Chuan Toh. An inexact interior point method for l1-regularized sparse
covariance selection. Mathematical Programming Computation, 31:2000–2016, May 2010.

Zhaosong Lu. Smooth optimization approach for sparse covariance selection. SIAM Journal
on Optimization, 19:1807–1827, 2009.

Rahul Mazumder and Trevor Hastie. Exact covariance thresholding into connected com-
ponents for large-scale graphical lasso. The Journal of Machine Learning Research, 13:
781–794, 2012a.

Rahul Mazumder and Trevor Hastie. The graphical lasso: New insights and alternatives.
Electronic Journal of Statistics, 6:2125–2149, 2012b.

Y. Nesterov. Smooth minimization of non-smooth functions. Mathematical Programming,
Series A, 103:127–152, 2005.

Yu. Nesterov. Gradient methods for minimizing composite functions. Mathematical Pro-
gramming, 140(1):125–161, 2013.

Figen Oztoprak, Jorge Nocedal, Steven Rennie, and Peder A Olsen. Newton-like methods
for sparse inverse covariance estimation. In Advances in Neural Information Processing
Systems, pages 755–763, 2012.

Neal Parikh and Stephen Boyd. Proximal algorithms. Foundations and Trends in Optimiza-
tion, 1(3):123–231, 2013.

Mohsen Pourahmadi. High-Dimensional Covariance Estimation: With High-Dimensional
Data. John Wiley & Sons, 2013.

Herbert Robbins and Sutton Monro. A stochastic approximation method. Annals of Math-
ematical Statistics, 22:400–407, 1951.

Benjamin Rolfs, Bala Rajaratnam, Dominique Guillot, Ian Wong, and Arian Maleki. It-
erative thresholding algorithm for sparse inverse covariance estimation. In Advances in
Neural Information Processing Systems, pages 1574–1582, 2012.

Katya Scheinberg, Shiqian Ma, and Donald Goldfarb. Sparse inverse covariance selection via
alternating linearization methods. In Advances in Neural Information Processing Systems,
pages 2101–2109, 2010.

Shai Shalev-Shwartz and Tong Zhang. Stochastic dual coordinate ascent methods for regu-
larized loss minimization. Journal of Machine Learning Research, 14:567–599, 2013.

Lieven Vandenberghe and Stephen Boyd. Semidefinite programming. SIAM review, 38(1):
49–95, 1996.

38

Precision Matrix Computation via Stochastic Optimization

Lieven Vandenberghe, Stephen Boyd, and Shao-Po Wu. Determinant maximization with
linear matrix inequality constraints. SIAM Journal on Matrix Analysis and Applications,
19(2):499–533, 1998.

David I Warton. Penalized normal likelihood and ridge regularization of correlation and
covariance matrices. Journal of the American Statistical Association, 103(481), 2008.

Daniela M Witten, Jerome H Friedman, and Noah Simon. New insights and faster compu-
tations for the graphical lasso. Journal of Computational and Graphical Statistics, 20(4):
892–900, 2011.

Lin Xiao and Tong Zhang. A proximal stochastic gradient method with progressive variance
reduction. SIAM Journal on Optimization, 24(4):2057–2075, 2014.

M Yuan and Y Lin. Model selection and estimation in the gaussian graphical model.
Biometrika, 94(1):19–35, 2007.

Xiaoming Yuan. Alternating direction method for covariance selection models. Journal of
Scientific Computing, 51(2):261–273, 2012.

H. Zou and T. Hastie. Regularization and variable selection via the elastic net. Journal of
the Royal Statistical Society Series B., 67(2):301–320, 2005.

39

Atchadé, Mazumder and Chen

Appendix

Appendix A. Related Work and Algorithms

In this section we review some of the state-of-the art methods and approaches for the Glasso
problem (Problem (1)). Problem (1) is a nonlinear convex semidefinite optimization prob-
lem (Vandenberghe and Boyd, 1996) and off-the-shelf interior point solvers typically have a
per-iteration complexity of O(p6) that stems from solving a typically dense system with O(p2)
variables (Vandenberghe et al., 1998). This makes generic interior point solvers inapplicable
for solving problems with p of the order of a few hundred.

A popular approach to optimize problem (1) is to focus on its dual optimization problem,
given by:

maximize
w∈M+

log det(w) subject to ‖S − w‖∞ ≤ λ, (54)

with primal dual relationship given by w = θ−1. The dual problem has a smooth func-
tion appearing in its objective. Many efficient solvers for Problem (1) optimize the dual
Problem (54) — see for example Banerjee et al. (2008); Friedman et al. (2007a); Lu (2009);
Mazumder and Hastie (2012b) and references therein.

In one of the earlier works, Banerjee et al. (2008) consider solving the dual Problem (54).
They propose a smooth accelerated gradient based method (Nesterov, 2005) with complex-

ity O(p
4.5

δ) to obtain a δ-accurate solution — the per iteration cost being O(p3). They also
proposed a block coordinate method which requires solving at every iteration, a box con-
strained quadratic program (QP) which they solve using Interior point methods—leading to
an overall complexity of O(p4).

The graphical lasso algorithm (Friedman et al., 2007b) is widely regarded as one of the
most efficient and practical algorithms for Problem (1). The algorithm uses a row-by-row
block coordinate method that requires to solve a `1 regularized quadratic program for every
row/column—the authors use one-at-a-time cyclical coordinate descent to solve the QPs to
high accuracy. While it is difficult to provide a precise complexity result for this method, the
cost is roughly O(p3) for (reasonably) sparse-problems with p nodes. For dense problems the
cost can be as large as O(p4), or even more. Mazumder and Hastie (2012b) further investigate
the properties of the graphical lasso algorithm, its operational characteristics and propose
another block coordinate method for Problem (1) that often enjoys better numerical behavior
than graphical lasso.

The algorithm proposed in Lu (2009) employs accelerated gradient based algorithms
(Nesterov, 2005, 2013). The algorithm smacs proposed in the paper has a per iteration

complexity of O(p3) and an overall complexity of O(p
4
√
δ
) to reach a δ-accurate optimal solu-

tion.

Li and Toh (2010) propose a specialized interior point algorithm for problem (1). By
rewriting the objective as a smooth convex optimization problem by doubling the number of
variables, the paper proposes a scheme to scale interior point like methods up to p = 2000.

Scheinberg et al. (2010) propose alternating direction based methods for the problem,
the main complexity per iteration being O(p3) associated with a full spectral decomposition
of a p × p symmetric matrix and a matrix inversion. Yuan (2012) propose an alternating
direction method for problem (1), with per iteration complexity of O(p3). Computational

40

Precision Matrix Computation via Stochastic Optimization

scalability of a similar type can also be achieved by using the alternating direction method of
multipliers ADMM Boyd et al. (2011) which perform spectral decompositions and/or matrix
inversions with per iteration complexity O(p3).

Fairly recently, Hsieh et al. (2014) propose a Newton-like method for Problem (1), the
algorithm is known as Quic. The main idea is to reduce the problem to iteratively solving
large scale `1 regularized quadratic programs, which are solved using one-at-a-time coordi-
nate descent update rules. The authors develop asymptotic convergence guarantees of the
algorithm. It appears that several computational tricks and fairly advanced implementations
in C++ are used to make the approach scalable to large problems. At the time of writing
this paper, QUIC seems to be one of the most advanced algorithms for Glasso. Oztoprak
et al. (2012) propose a related approach based on a Newton-like quadratic approximation of
the log-determinant function.

Appendix B. Additional Computational Details

We initialize all the solvers using the diagonal matrix obtained by taking the inverse sample
variances. For all the simulated-data experiments, the step-size and the Monte Carlo batch-
size are taken as follows. The step-size is set to γ = 10, the Monte Carlo batch-size is set
to Nk = d30 + k1.8e at iteration k. Additionally, for Algorithm 3 we use N = 400, and
ζk = k−0.7.

For p = 1000, the values of the regularization parameters were taken as (α, λ) =
(0.89, 0.01). We computed θ̂ (the target solution to the optimization problem) by running
the deterministic algorithm for 1000 iterations.

The size of the largest component is 967, one component had size two with all other
components having size one. In this case, the splitting offered marginal improvements since
the size of the maximal component was quite close to p.

For p = 5000 the values of the regularization parameters were taken as (α, λ) = (0.93, 0.0085)
and we computed θ̂ (the target solution to the optimization problem) by running the deter-
ministic algorithm for 1000 iterations.

For the case, p = 5, 000 splitting leads to 76 connected components, The size of the
largest component is 4924 with all other components having size one.

For p = 10, 000 , the values of the regularization parameters were taken as (α, λ) =
(0.96, 0.01). We computed θ̂ (the target solution to the optimization problem) by running
the deterministic algorithm for 500 iterations.

For the case, p = 10, 000 splitting leads to 1330 connected components, The size of the
largest component is 8670, one component has size two with all other components having
size one.

We present the results for the cases p = 5, 000 and p = 10, 000 in Table 1.

For the real-data example, the stochastic algorithms are set up as follows. The step-size
is set to γ = 5× 10−5, the Monte Carlo batch-size is set to Nk = d100 + k1.8e at iteration k.
Additionally, for Algorithm 3 we use N = 200, and ζk = k−0.52.

41

Atchadé, Mazumder and Chen

Appendix C. Some Technical Lemmas and Proofs

Lemma 12 Consider the function f(θ) = − log det θ+ Tr(θS), θ ∈M+. Take 0 < ` < ψ ≤
∞. If θ ∈M+(`, ψ), and H ∈M are such that θ +H ∈M+(`, ψ), then

f(θ) +
〈
S − θ−1, H

〉
+

1

2ψ2
‖H‖2 ≤ f (θ +H) ≤ f(θ) +

〈
S − θ−1, H

〉
+

1

2`2
‖H‖2.

Proof First notice that M+(`, ψ) is a convex set. Hence for all t ∈ [0, 1], θ + tH =
(1− t)θ + t(θ +H) ∈M+(`, ψ). Then by Taylor expansion we have,

log det(θ +H) = log det θ +
〈
θ−1, H

〉
+

∫ 1

0

〈
(θ + tH)−1 − θ−1, H

〉
dt.

This gives

f(θ +H)− f(θ)−
〈
S − θ−1, H

〉
= −

∫ 1

0

〈
(θ + tH)−1 − θ−1, H

〉
dt.

However (θ+ tH)−1− θ−1 = −tθ−1H(θ+ tH)−1. Therefore, if θ =
∑p

j=1 λjuju
′
j denotes the

eigen-decomposition of θ, we have

−
〈
(θ + tH)−1 − θ−1, H

〉
= tTr

(
θ−1H(θ + tH)−1H

)
= t

p∑
j=1

λ−1
j u′jH(θ + tH)−1Huj

≤ t

`2

p∑
j=1

‖Huj‖2 =
t

`2
‖H‖2.

Similarly calculations gives

−
〈
(θ + tH)−1 − θ−1, H

〉
≥ t

ψ2
‖H‖2.

The lemma is proved.

We also use the following well known property of the proximal map.

Lemma 13 For all θ, ϑ ∈M, and for all α ∈ [0, 1], γ > 0,

gα(Proxγ(θ;α)) ≤ gα(ϑ) +
1

γ
〈ϑ− Proxγ(θ;α),Proxγ(θ;α)− θ〉 .

Proof See (Bauschke and Combettes, 2011, Propositions 12.26 and 12.27).

Lemma 12 amd Lemma 13 together give the following key result.

42

Precision Matrix Computation via Stochastic Optimization

Lemma 14 Fix 0 < ` < ψ ≤ ∞, and γ ∈ (0, `2]. Suppose that θ̂, θ ∈M+(`, ψ), and H ∈M
are such that θ̄

def
= Proxγ(θ − γ(S −H);α) ∈M+(`, ψ). Then∥∥∥θ̄ − θ̂∥∥∥2

F
≤ 2γ

(
φα(θ̄)− φα(θ̂)

)
+
∥∥∥θ̄ − θ̂∥∥∥2

F

≤
(

1− γ

ψ2

)∥∥∥θ − θ̂∥∥∥2

F
+ 2γ

〈
θ̄ − θ̂, H − θ−1

〉
,

where we recall that φα(θ) = f(θ) + gα(θ).

Proof Set f(θ) = − log det θ + Tr(θS), θ ∈M+. By Lemma 12,

f(θ̄) ≤ f(θ) +
〈
S − θ−1, θ̄ − θ

〉
+

1

2γ

∥∥θ̄ − θ∥∥2

F
. (55)

Subtracting f(θ̂) from both sides of the above inequality and re-arranging gives

f(θ̄)− f(θ̂) ≤
[
f(θ) +

〈
S − θ−1, θ̂ − θ

〉
− f(θ̂)

]
+
〈
S − θ−1

i , θ̄ − θ̂
〉

+
1

2γ

∥∥θ̄ − θ∥∥2

F
. (56)

Since θ, θ̂ ∈M+(`, ψ), the strong convexity of θ 7→ − log det θ+Tr(θS) established in Lemma

12 implies that f(θ) +
〈
S − θ−1, θ̂ − θ

〉
− f(θ̂) ≤ − 1

2ψ2

∥∥∥θ − θ̂∥∥∥2

F
. Using this in (56) gives

f(θ̄)− f(θ̂) ≤ − 1

2ψ2

∥∥∥θ − θ̂∥∥∥2

F
+
〈
S − θ−1, θ̄ − θ̂

〉
+

1

2γ

∥∥θ̄ − θ∥∥2

F
. (57)

By Lemma 13,

gα(θ̄)− gα(θ̂) ≤ 1

γ

〈
θ̂ − θ̄, θ̄ − (θ − γ(S −H))

〉
,

=
1

γ

〈
θ̂ − θ̄, θ̄ − θ

〉
+
〈
θ̂ − θ̄, S −H

〉
. (58)

We combine (57) and (58) and re-arrange to deduce that

φα(θ̄)− φα(θ̂) ≤ − 1

2ψ2

∥∥∥θ − θ̂∥∥∥2

F
+

1

2γ

〈
θ̄ − θ, 2θ̂ − θ̄ − θ

〉
+
〈
θ̄ − θ̂, H − θ−1

〉
=

1

2

(
1

γ
− 1

ψ2

)∥∥∥θ − θ̂∥∥∥2

F
− 1

2γ

∥∥∥θ̄ − θ̂∥∥∥2

F
+
〈
θ̄ − θ̂, H − θ−1

〉
. (59)

Since φα(θ̄) ≥ φα(θ̂), we conclude that∥∥∥θ̄ − θ̂∥∥∥2

F
≤ 2γ

(
φα(θ̄)− φα(θ̂)

)
+
∥∥∥θ̄ − θ̂∥∥∥2

F
≤
(

1− γ

ψ2

)∥∥∥θ − θ̂∥∥∥2

F
+ 2γ

〈
θ̄ − θ̂, H − θ−1

〉
,

as claimed.

43

Atchadé, Mazumder and Chen

Lemma 15 Take ` > 0, and θ ∈M+(`). Let z1:N
i.i.d.∼ N(0, θ−1), and set GN

def
= N−1

∑N
i=1 ziz

′
i.

Then

E
[∥∥GN − θ−1

∥∥2

F

]
≤ p+ p2

N`2
,

and for any δ > 0 such that `δ ≤ 4,

P
(
‖GN − θ−1‖∞ > δ

)
≤ 4p2 exp

(
−min(1, `2δ2/16)N

)
.

Proof

E
[∥∥GN − θ−1

∥∥2

F

]
=
∑
j,k

E

(1

N

N∑
i=1

(ziz
′
i)j,k − θ−1

j,k

)2
 =

1

N

∑
j,k

E
[(
z1z
′
1)j,k − θ−1

j,k

)2
]

=
1

N

∑
l,k

(
θ−1
j,j θ

−1
k,k + (θ−1

j,k)2
)

=
1

N

(
Tr(θ−1)2 +

∥∥θ−1
∥∥2

F

)
≤ 1

N

((p
`

)2
+
p

`2

)
.

For the exponential bound, we reduce the problem to an exponential bound for chi-
squared distributions, and apply the following corollary of Lemma 1 of Laurent and Massart

(2000). Let W1:N
i.i.d.∼ χ2

1, the chi-square distribution with one degree of freedom. For any
x ∈ [0, 1],

P

[∣∣∣∣∣
N∑
k=1

(Wk − 1)

∣∣∣∣∣ > 4
√
xN

]
≤ 2e−Nx. (60)

For 1 ≤ i, j ≤ p, arbitrary, set Z
(k)
ij = zk,izk,j , and σij = θ−1

ij . Suppose that i 6= j. It is
easy to check that

N∑
k=1

[
Z

(k)
ij − σij

]
=

1

4

N∑
k=1

[
(zk,i + zk,j)

2 − σii − σjj − 2σij
]

− 1

4

N∑
k=1

[
(zk,i − zk,j)2 − σii − σjj + 2σij

]
.

Notice that zk,i + zk,j ∼ N(0, σii + σjj + 2σij), and zk,i − zk,j ∼ N(0, σii + σjj − 2σij). It
follows that for all x ≥ 0,

P

[∣∣∣∣∣
N∑
k=1

[
Z

(k)
ij − σij

]∣∣∣∣∣ > x

]
≤ P

[∣∣∣∣∣
N∑
k=1

(Wk − 1)

∣∣∣∣∣ > 2x

σii + σjj + 2σij

]

+ 2P

[∣∣∣∣∣
N∑
k=1

(Wk − 1)

∣∣∣∣∣ > 2x

σii + σjj − σij

]
,

≤ 2P

[∣∣∣∣∣
N∑
k=1

(Wk − 1)

∣∣∣∣∣ > `x

]
.

where W1:N
i.i.d.∼ χ2

1, the chi-square distribution with one degree of freedom. The last in-
equality uses the fact that σii+σjj + 2σij = u′θ−1u ≤ 1

`‖u‖
2 ≤ 2

` , where u is the vector with

44

Precision Matrix Computation via Stochastic Optimization

1 on components i and j and zero everywhere else (similarly for σii + σjj − 2σij by putting
−1 on the j-th entry). Then we apply (60) to obtain

P

[∣∣∣∣∣
N∑
k=1

[
Z

(k)
ij − σij

]∣∣∣∣∣ > Nδ

]
≤ 4e−min(1,`2δ2/16)N .

When i = j, the bound P
[∣∣∣∑N

k=1

[
Z

(k)
ij − σij

]∣∣∣ > x
]
≤ P

[∣∣∣∑N
k=1(Wk − 1)

∣∣∣ > `x
]

is straight-

forward. The lemma follows from a standard union-sum argument.

45

	Introduction
	Organization of the paper

	Outline of the paper and our contributions
	Notation

	A proximal gradient algorithm for Problem (3)
	Stochastic Optimization Based Algorithms
	Sampling via dense Cholesky decomposition
	Sampling via specialized sparse numerical linear algebra methods
	Borrowing information across iterations

	Exact Thresholding into connected components
	Special Case: Ridge regularization
	Numerical experiments
	Studying sparse problems
	Simulated data
	Real dataset

	Studying dense problems

	Proofs
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Theorem 3
	Proof of Theorem 6
	Proof of Theorem 7
	Proof of Theorem 9
	Proof of Theorem 10
	Proof of Lemma 11

	Related Work and Algorithms
	Additional Computational Details
	Some Technical Lemmas and Proofs

