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FPVI: An Efficient Method for Discovering Privacy
Vulnerabilities in Datasets

Abstract—Analyzing datasets to discover privacy vulnerabili-
ties is an important step in the privacy-preserving data publishing
process and an area of increased interest for commercial data
masking products. In this paper we propose FPVI, a fast
algorithm for discovering privacy vulnerabilities in datasets in
the form of combinations of attributes’ values leading to few
records. FPVI operates in a multi-threaded fashion to efficiently
index the data and scan different attributes’ combinations in
parallel, while pruning the search space to limit the (exponential)
number of attributes’ combinations that need to be searched for
uniques. Our algorithm fully utilizes the execution environment,
supporting hardware configurations spanning from commodity
machines to multi-CPU multi-core nodes in cluster environments.
Through experimental evaluation, using a large number of real-
world datasets, FPVI is shown to significantly outperform the
state-of-the-art to the extent that we had to design multi-threaded
versions of the state-of-the-art method to form the baseline for
our experiments. Performance measurements on the scalability of
FPVI indicate that our method can analyze microdata consisting
of 11 millions of records and 20 attributes in less than 9 minutes.

I. INTRODUCTION

The automatic analysis of datasets to uncover privacy vul-
nerabilities is an area that has gained increased attention.
Depending on the type of the dataset that needs to be protected
and the information that it records about individuals, different
types of privacy risks need to be considered and different
types of vulnerabilities are sought [1], [2]. The identification
of privacy vulnerabilities is an important first step for privacy-
preserving data publishing, as it provides the necessary input to
syntactic anonymization algorithms [3], to allow for sufficient
protection of the individuals’ privacy. It is also a very useful
tool to validate the conformance of a dataset to a given privacy
policy and/or to data protection legislation.

In this paper, we consider relational tables that contain
information at the level of individual respondents (Table I).
Such microdata sets are vulnerable to re-identification attacks,
in which adversaries associate records to individuals’ identities
by linking (through triangulation) the data with external, po-
tentially publicly available, datasets. Such triangulation attacks
exploit the uniqueness (or rarity) of certain records in the
dataset based on a selected, usually small, number of attributes
(called quasi-identifiers [3]), and have been proven to be very
successful even when all direct identifiers (e.g., social security
numbers, national-IDs, etc.), have been removed from the data
prior to a data release [3], [4], [5].

One way to protect microdata would be to use differential
privacy [6], thereby releasing noisy summary statistics of the
data or histograms [7]. This, however, is problematic in cases

when data recipients want to explicitly study the anonymized
datasets at a record-level and place emphasis on the truth-
fulness of the reported data values. In such cases, syntactic
approaches, operating under the k–anonymity principle [3],
are much preferred. These approaches, however, require the
specification of quasi-identifiers by the data publisher, a task
that is difficult to be performed by non-experts.

In this paper we propose FPVI, a multi-threaded algorithm
which aims to automate the privacy-preserving data publishing
process by automatically discovering the quasi-identifiers in
datasets. To do so, the algorithm computes the minimal com-
binations of attributes that leading to unique individuals in mi-
crodata sets. FPVI supports hardware configurations spanning
from commodity machines to multi-CPU multi-core nodes in
cluster environments. This makes it ideal for commercial use
in data masking products, to meet the data anonymization
needs of customers with access to diverse hardware infrastruc-
tures. Through extensive experimental evaluation on several
real-world datasets, we show that our algorithm significantly
outperforms the state-of-the-art, as it can analyze datasets
consisting of several millions of records and tens of attributes
in a matter of only a few minutes.

The remainder of this paper is organized as follows. Section
II presents the related work. In Section III, we provide the
background that is necessary for explaining our method and
derive the problem statement. Section IV introduces our algo-
rithm for the discovery of privacy vulnerabilities in datasets.
Section V contains the experimental evaluation of the proposed
algorithm, and Section VI concludes this work.

II. RELATED WORK

The identification of privacy vulnerabilities in the form
of sample uniques in microdata (also known as the uniques
problem [8], [9]) has received significant attention from the
statistics and the computer science communities. The statistics
community tackled the problem by proposing mathematical
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Birth Gender ZIP Marital status
09/64 Female 94139 Divorced
09/64 Female 94138 Divorced
04/64 Male 94138 Widow
04/64 Male 94139 Married
03/63 Male 94138 Married
03/63 Male 94138 Married
09/64 Female 94141 Married
09/64 Female 94141 Married
05/61 Male 94138 Single
05/61 Male 94138 Single

TABLE I: An example dataset



models, such as models borrowed from the theory of popula-
tion genetics [10], to assess disclosure risk. The goal of this
research was to capture the proportion of sample uniques in
the data which are also population uniques, hence they can
lead to the re-identification of individuals.

More recently, a few computer science approaches were
developed to automate the discovery of such vulnerabilities.
Unlike statistical approaches to the uniques problem, the
computer science methods aim to identify all unique (or rare)
records in a dataset, and use this information as an indicator
of disclosure risk. Their model of attack is more powerful,
as they assume attackers who may know that an individual is
participating to a dataset and wish to identify their record.

Takemura in 2002 published the first approach [11] in
computer science for identifying uniques. The author proposed
a method for identifying the minimum sets of variables in a
microdata set, with which a record becomes a sample unique.
In addition to uniqueness, the author examined the case of
rare records, where a record is identical to few other records
with respect to a set of variables. Accordingly, he proposed
an algorithm for discovering such unsafe records in microdata
sets. The proposed algorithm is memory-demanding and can
analyze only small datasets, as it suffers from poor scalability.

In 2005, Elliot et. al [12] proposed SUDA, an algorithm
for detecting minimal sample uniques in datasets. SUDA
considers all combinations of attribute-value pairs in a dataset,
starting from a single attribute and moving level-wise to larger
sets of attributes, to identify unique records. When a record
is found to be unique for a set of attributes, the record is not
considered in any superset of the same attributes.

Similarly to [11], SUDA was shown to suffer from poor
scalability [13]. This led Manning et al. to propose SUDA2
[13], which improved SUDA by applying an effective pruning
strategy. As experimentally verified by the authors, SUDA2
is orders of magnitude faster than SUDA. The algorithm em-
ploys a recursive depth-first search (DFS) strategy to generate
combinations of attributes to search for uniques.

The nature of the SUDA2 algorithm allows work to be
divided into non-overlapping tasks that can execute in parallel.
Accordingly, a few parallel implementations of SUDA2 have
been proposed. PSUDA2 [14] operates in a cluster environ-
ment and requires the dataset to be replicated to all processing
nodes, as each node operates in its local memory in a message-
passing paradigm. The load balancing strategy of PSUDA2
is poor, leading to the generation of tasks of unpredictable
size and complexity that are assigned to cluster nodes. Var-
PSUDA2 [14] improves load-balancing by reducing the vari-
ability of the generated task sizes, but the computational
cost remains high due to the need of replicating the dataset,
the costly message-passing interface for distributing the work
among the different processors, and the DFS nature of the
algorithm. In [15], Haglin et al. evaluate different parallel
implementations of SUDA2 that are designed specifically for
an SMP cluster, a Cray MTA2 machine, and a heterogeneous
group of workstations connected by LAN. Through experi-
ments they demonstrate that their algorithms outperform Var-

PSUDA2, but the work generation strategy remains the major
bottleneck. An additional shortcoming of these methods is
their requirement for specialized, non-commodity, hardware.
This is in contrast to the method that we propose in this paper,
which supports a wide range of hardware configurations.

A set of approximation algorithms for finding quasi-
identifiers are proposed in [16]. The definition of quasi-
identifiers in this work differs from the original definition [3],
as the methods aim to find α–distinct and α–separating quasi-
identifiers, with low space and time complexity. The developed
methods use sampling to reduce complexity, and may fail to
discover all the quasi-identifiers of the dataset.

Last, we note that the problem of identifying uniques can
be considered as a special case of mining infrequent itemsets
[17], [18]. The algorithms that have been proposed in this area
assume a set-valued data representation and apply frequency-
based pruning criteria (similar to [19]) to effectively discover
rare itemsets. The problem, however, of finding minimal
sample uniques is more specific than that of finding infrequent
itemsets, hence the former methods are more effective on this
task, leading to a better performance.

III. BACKGROUND

Let D denote a microdata set in the form of a table
consisting of R rows and A columns (see Table I). Each row
(or record) r ∈ R of dataset D corresponds to an individual,
for whom information is recorded along each column (or
attribute) a ∈ A. From now on, we will use notation ‖R‖
and ‖A‖ to refer to the number of records and the number
of attributes, respectively, in dataset D. We will further use
notation ℘(A) to refer to the powerset of set A.

Given an attribute a ∈ A, we define by dom(a) the domain
of values for a, which contains all distinct values of the records
R for this attribute. For each value u ∈ dom(a), we define the
frequency of u as the number of times that value u appears in
attribute a for the records R of dataset D.

The definition of frequency can be extended to the case of
attribute-value combinations, as follows: Given a nonempty
subset (or combination) of attributes A = {a1, a2, . . . , an} ∈
A and a record r with respective values {u1, u2, . . . , un}
for these attributes, we define the frequency of the attribute-
value combination for record r and attributes in A (i.e.,
a1 = u1, a2 = u2, . . . , an = un), as the number of records in
R for which this attribute-value assignment holds.
Definition (j–isolation [11]) Given a record r ∈ R and a
nonempty set of attributes A ∈ A, r is j-isolated in A if the
frequency of the attribute-value combination for record r and
attributes in A is exactly j.
Observation The re-identification risk of an individual in a
dataset D is directly related to the uniqueness of the individual
in D. Accordingly, individuals who are 1-isolated for a set of
attributes in A are at maximum risk of being re-identified,
while j-isolated individuals have a 1/j probability of being
re-identified. An additional consideration regards the amount
of knowledge that attackers need to have to re-identify an
individual. On this end, the minimal sets of attributes that



Input: (i) An ordered set of attributes A, and (ii) reference to a set of sets of
attributes containing uniques B

Output: The next combination of generated attributes A, or False if there are no
more attribute sets to generate

1 begin
2 Initialize S (static) as an empty list; // Performed only once
3 while ‖S‖ < ‖A‖ do

// Increment state S
4 idx = 0;
5 while ‖S‖ > idx do
6 m = ‖A‖−idx−1; // Maximum value for

S[idx]
7 if m > S[idx] then
8 S[idx]++;
9 for i = idx; i > 0; —i do

10 S[i – 1] = S[i] + 1;

11 break;
12 else
13 ++idx;

14 if ‖S‖ = idx then
15 S[‖S‖] = 0;
16 for i = ‖S‖ – 1; i > 0; —i do
17 S[i – 1] = S[i] + 1;

18 A = ∅;
19 foreach s ∈ S do
20 A = A ∪ {A[s]}; // a is the representation

of S as a set of elements
of A

// verify that the state is not banned
21 i = 0;
22 while i < ‖B‖ do
23 if B[i] = (B[i] ∩ A) then
24 break;

25 if i 6= ‖B‖ then
26 return A; // return the set of elements of A

27 return False;

Algorithm 1: GenerateAttributeSet

lead to 1-isolated records are of particular interest. Such sets
of attributes are largely known as quasi-identifiers and are
important for syntactic anonymization approaches [4].

In the remainder of this work, we propose a method for
solving the following problem:
Problem statement Given a microdata set D consisting of R
records and A attributes, where each row corresponds to a
distinct individual, identify all minimal sets of attributes in A
that lead to at least one 1-isolated record.

IV. THE FPVI ALGORITHM

In this section, we introduce a Fast Algorithm for Privacy
Vulnerabilities’ Identification (FPVI). FPVI is a multithreaded
algorithm for the discovery of quasi-identifiers in large
datasets. It employs an approach for generating attribute sets,
in an incremental fashion, to search for uniques (presented in
Section IV-A) and applies an indexing mechanism to create
an index-based representation of the input dataset on which
the algorithm operates (discussed in Section IV-B). The main
operation of the FPVI algorithm is presented in Section IV-C.

A. Generation of attributes’ combinations

Algorithm 1 iteratively generates elements of the lattice
representing the power set ℘(A) of the attribute set A. The
elements of ℘(A) are generated following a pre-defined (e.g.,
lexicographic) order and in monotonically increasing order

of length, starting with single attributes and ending with the
element corresponding to the entire set of attributes. Figure 1
shows the generation process for the dataset of Table I.

An important observation about the operation of the al-
gorithm is that the generation process should not generate
all the elements of ℘(A) upfront, because the number of
elements is exponential to the cardinality of A and certain
attribute combinations may not be necessary to examine. To
achieve that, the algorithm maintains a static state S that is
incremented every time that it is invoked.

More specifically, the algorithm operates as follows. It takes
as input two arguments: (i) a (lexicographically) ordered set
of attributes A, and (ii) a set of sets of attributes B. The latter
set contains the banned attribute combinations, i.e., the set of
attributes that have been found to contain uniques. This input
is needed to avoid generating supersets of these combinations,
as they will also contain uniques.

In line 2, the algorithm initializes the static state S as an
empty list, an operation that is performed only once. In line
3, the size of the list representing the state is tested against
the size of the set of attributes. If the state list is as large as
the set of attributes, the algorithm returns False, notifying the
caller of the function that there are no more sets of attributes
to generate (line 27). Otherwise, the algorithm increments the
state S as follows: It initializes a pointer to elements of S to
0, which is the first element of the state. As long as the size
of S, which is the number of elements in the list, is greater
than idx (line 5), it computes m, that is the maximum value
admissible in position idx (line 6). Subsequently, the algorithm
tests that the current value in position idx is not greater than
m (line 7). If this is the case, the algorithm increments the
value in position idx (line 8), sets each element of the list
with index less than idx to one plus the value of the element
preceding it (lines 9–10), and breaks out of the loop of line
5. Otherwise, it increases idx (line 13). The purpose of this
operation is to try to increment always the leftmost entry of S
and to maintain the property that each element is smaller than
the one immediately on its right. This guarantees that the sets
of attributes are generated based on the selected order.

Line 14 checks the reason for which the flow of execution
exited the while loop of line 5. If the flow of execution
reached line 11, then the body of the if of line 5 is
skipped. Otherwise, it means that the algorithm generated all
the elements of ℘(A) of size ‖S‖. Therefore, we need to

∅

{G}{B} {Z} {M}

{B,M}{B,Z}{B,G} {G,Z} {G,M} {Z,M}

{B,G,M}{B,G,Z} {B,Z,M} {G,Z,M}

{B,G,Z,M}

Fig. 1: A lattice and the order of subsets generation



increment the size of S, initializing S[‖S‖] to 0, which is the
smaller index in A. Subsequently, the algorithm sets the value
of all the positions smaller than idx to 1 plus the value to their
right. Note that this iteration is done in reverse order, i.e., from
(idx – 1) to 0, in order to preserve the updated values. After
that (lines 18–20) the algorithm converts the state represented
in S to an actual subset of the attributes of A.

In lines 21–24 the algorithm verifies that the generated
subset is not a superset of a set of attributes identified as
containing uniques, which are stored in B. If A is not a
superset of (and element of) B, then A is returned to the
caller. Otherwise, the algorithm discards A and proceeds with
incrementing the state S again (line 3).
Complexity analysis Assuming that the attribute set to be
generated has not been banned, the worst-case complexity is
when the algorithm computes the combination containing all
attributes of A. In this case, the algorithm iterates (‖A‖ − 1)
times (lines 5–13), with a cost of O(‖A‖) plus O(‖S‖) (lines
14–17), which in the worst case is O(‖A‖). Note that if
the execution flow enters in the then branch of the if of
line 7, it means that the algorithm iterated at most O(‖A‖)
times and then iterated again O(‖A‖) times, because of the
loop of line 9. Again, this leads to a complexity of O(‖A‖).
On the other hand, if B 6= ∅ the algorithm also executes
the loop of line 22, which has a complexity of O(‖B‖).
Theoretically, ‖B‖ can be as large as 2‖A‖, but because of how
B is populated ‖B‖ << 2‖A‖. More precisely, ‖B‖ ≈ ‖A‖ in
the average case. Therefore, the complexity of Algorithm 1 is
O(max{‖A‖, ‖B‖}) ≈ O(‖A‖).

D Reader t3

t2

t1

. . .

t‖A‖

Collector I

Fig. 2: Create index: process architecture

B. Index creation

In this section, we explain the parallel indexing mechanism
that is used by FPVI in order to convert the dataset to a
more efficient representation for the discovery of uniques. The
indexing process is also illustrated in Figure 2.

Input: Dataset D consisting of R records and A attributes
Output: The reverse index I constructed from D

1 begin
2 I = [ ] ; // Initialise an empty list
3 foreach a ∈ A do
4 Spawn the worker thread wa;

5 foreach r ∈ R do
6 ir = [ ]; // Pointers to buckets for record r
7 foreach a ∈ A do
8 Submit(ra, wa);

9 foreach a ∈ A do
10 ira = Read(wa);
11 Insert(ira, a, ir); // Append ira to ir in pos a

12 Append(ir, I);

13 return I;

Algorithm 2: Create index, main thread

Input: ra: value for attribute a on record r
Output: rid: reference to the bucket in which ra has been indexed
Data: IDXa: the static index structure for attribute a

1 begin
2 if ra 6∈ IDXa then
3 b = Create(); // create a new bucket (set)
4 Index(ra, b, IDXa);

5 rab = Get(IDXa, ra); // retrieve the bucket for ra
6 Insert(r, rab)
7 return &rab; // return a reference to rab

Algorithm 3: Create index, worker thread

Algorithm 2 shows the main thread of the indexing ap-
proach. The duty of the main thread is to read the input dataset,
split its records in such a way that each worker thread operates
only on the part of data it is in charge of, and build a reverse
index that links the attributes’ values of each record with those
of other records in which the same values appear.

Specifically, the algorithm begins by initializing the index
(line 2) and then spawns a number of worker threads that is
equal to the number of attributes of the input dataset (lines
3–4). The algorithm subsequently reads the dataset line-by-
line (lines 5–12), submits each attribute-value to a different
worker thread (line 8), and retrieves from the corresponding
worker the id of the bucket in which the value for the attribute
has been indexed (line 10). Each worker thread (Algorithm 3)
is in charge of creating and managing a separate index for
an attribute. This way, the costs associated with the indexing
process for the attributes of a record, are split among the
different worker threads. Note that the main thread retrieves
the result of the worker thread for each record in the order of
termination, i.e., the main thread does not wait for a specific
thread to return a result but it waits for a thread to complete.
This way, the population of the list ir is performed efficiently.

Complexity analysis The indexing algorithm executes in
parallel a number of operations that are linear to the number
of records and to the number of attributes of the dataset. Given
that the number of threads t is equal to the number of attributes
of the dataset, the operations that need to be performed are
O(‖R‖ × ‖A‖/t) = O(‖R‖). The cost of each operation
depends on the data structure that is used for the indexing.
In our implementation we use a tree-based data structure and,
thus, the cost of indexing an attribute value is O(log‖R‖),
leading to an overall complexity of O(‖R‖ × log ‖R‖).
Running example Consider the dataset shown in Table I.
The algorithm spawns four worker threads. The main thread
reads the first record, which has the values 09/64, Female,
94139, and Divorced. Each value is sent to the correspond-
ing worker thread and the index structures are updated as
shown in Figure 3a. Specifically, one index per attribute is
constructed, currently containing only one value, and the set
of records in which that value appears, i.e. {0}.

Next, the main thread reads the subsequent records and
continues to send the various values to the appropriate worker
threads. Then, the index evolves as shown in Figure 3b. In
this figure, we see the status of the indexing after reading
the first four lines of the dataset. One may notice that there
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B G Z M
{0, 1, 6, 7} {0, 1, 6, 7} {0, 3} {0, 1}
{0, 1, 6, 7} {0, 1, 6, 7} {1, 2, 4, 5, 8, 9} {0, 1}
{2, 3} {2, 3, 4, 5, 8, 9} {1, 2, 4, 5, 8, 9} {2}
{2, 3} {2, 3, 4, 5, 8, 9} {0, 3} {3, 4, 5, 6, 7}
{4, 5} {2, 3, 4, 5, 8, 9} {1, 2, 4, 5, 8, 9} {3, 4, 5, 6, 7}
{4, 5} {2, 3, 4, 5, 8, 9} {1, 2, 4, 5, 8, 9} {3, 4, 5, 6, 7}
{0, 1, 6, 7} {0, 1, 6, 7} {7, 8} {3, 4, 5, 6, 7}
{0, 1, 6, 7} {0, 1, 6, 7} {7, 8} {3, 4, 5, 6, 7}
{8, 9} {2, 3, 4, 5, 8, 9} {1, 2, 4, 5, 8, 9} {8, 9}
{8, 9} {2, 3, 4, 5, 8, 9} {1, 2, 4, 5, 8, 9} {8, 9}

TABLE II: Record index computed for the dataset of Table I

are three buckets for the attribute M , while only two appear
for the other attributes. This because there were, so far, only
two distinct values for the first three attributes (B, G and
Z), while three appeared in M . Figures 3c and 3d present
subsequent evolutions of the indexes. Upon completing the
read of the dataset, the main thread returns the reverse index,
which contains references to the various buckets. At this point,
the original index structures can be deleted to gain memory.

Algorithm 2 does not return the indexes generated for each
attribute but the references to the buckets of the indexes, as
shown in Table II. Note that Table II is just a simplified
representation that we use to explain the algorithm and not
the way this information is stored in the index. Namely, each
distinct value appearing in a column of Table II corresponds to
one memory instance. Thus, there are no duplicates, allowing
for an efficient use of the main memory.

C. Main algorithm

In this section, we describe the FPVI algorithm that iden-
tifies the set of minimal attributes’ combinations that contain
uniques in a dataset. FPVI is presented in Algorithm 4 (main
thread) and Algorithm 5 (worker thread). It takes advantage of
(i) a pruning technique to reduce the search space that the al-
gorithm has to explore, (ii) an approach for generating attribute
sets in an incremental fashion (presented in Section IV-A), and
(iii) an indexing mechanism to further speed up the analysis
of the dataset (presented in Section IV-B).

Algorithm 4 takes as an input a dataset D, the number of
threads t and the size BS of each task in number of rows to
be searched for uniques. As a first step, the algorithm creates
an index I of the dataset, which stores the unique values
appearing in each attribute A (see Algorithm 2).

Next, in lines 3 and 4, the algorithm creates t worker threads
that have access to two queues, a task queue TQ and a result
queue RQ, as well as index I, offering a compressed version
of the dataset. Each created thread will immediately start
executing the code described in Algorithm 5.

In line 5, we instantiate AT : a list of pairs (as, rb),
where as is a combination of attributes and rb is the last
analysed block size for as. In the loop shown in lines 6–9,
we generate t ∗ multiplier combinations of attributes and,
for each combination of columns as, we submit to TQ the
tasks (as, 0). Each of these tasks informs the worker thread
to analyse the combination of columns specified by as and
to work on the rows in [0, BS). After that (line 9), the main
thread stores in AT the pair (as,BS) to keep track of the next

Input: (i) Dataset D consisting of ‖R‖ records of attributes from A, (ii) number
of worker threads t, and (iii) size of each task in number of rows BS

Output: The minimal attributes’ combinations containing uniques U
Data: Task queue TQ and result queue RQ

1 begin
2 I = CreateIndex(D) ; // Index creation for D
3 for i=0; i < t; ++i do
4 SpawnWorkerThread(TQ, RQ, I, BS);

// Initialize the task queue TQ (steps 5-9)
5 AT = ∅ ; // Set of analyzed combinations of

attributes and row blocks
6 for s = 0; s < (multiplier * t); ++s do
7 as = GenerateAttributeSet() ; // Generate a new

set of attributes
8 Push(TQ, (as, 0)) ; // Push the task (as, 0) in TQ
9 Insert(AT , (as,BS)) ;

10 terminated = 0 ; // Counter of worker threads that
completed their execution

11 U = ∅;
12 while terminated 6= t do
13 result = Pop(RQ); // Pop the result queue; this is

a blocking call
14 if result.terminated then
15 ++terminated;
16 continue;

17 if result.unique found then
18 U = U ∪ result.as;
19 Ban(result.as); // Notify the attribute set

generator that as contains
uniques

20 removed = 0 ; // Counter of elements removed
from AT

21 foreach (as, offset) ∈ AT do
22 if IsSubsetOf(result.as, as) then
23 remove (as, offset) from AT ;
24 removed++;

25 for i = 0; i < removed; ++i do
26 as = GenerateAttributeSet();
27 Insert(AT , (as, 0));

// Push new tasks to the task queue
28 if AT 6= ∅ then
29 (as, offset) ← AT ; // Extract the next set

of attributes
30 Push(TQ, (as, offset)) ; // Send the next batch of

work for attributes as
31 if offset + BS < ‖R‖ then
32 Insert(AT , (as, offset + BS));
33 else

// Generate a new set of attributes
34 if as′ = GenerateAttributeSet() then
35 Insert(AT , (as′, 0));

36 else
37 message = (Terminate);
38 message.terminate = True;
39 for i = 0; i < t; ++i do
40 Push(TQ, message) ; // Send the thread the

command to terminate

41 return U ;

Algorithm 4: FPVI, main thread

task, which will involve columns as and begin from row BS.
Note that we generate more tasks than threads because once
a thread returns the result of its analysis to the main thread,
there will be a new task waiting to be retrieved from the task
queue. This way, the worker threads will not be slowed down
by the main thread processing a response.

In line 10, we initialise a counter of terminated threads,
which is a variable counting the number of threads that
reported to have finished their execution. In line 11, we
instantiate a set that will contain the combinations of attributes
detected as containing uniques. Then, in lines 12–40 we iterate



Birth Gender ZIP M. status

09/64
{0}

Female
{0}

94139
{0}

Divorced
{0}

(a) Index after row 0

Birth Gender ZIP M. status

09/64
{0, 1}

04/64
{2, 3}

Female
{0, 1}

Male
{2, 3}

94139
{0, 3}

94138
{1, 2}

Married
{3}

Divorced
{0, 1}

Widow
{2}

(b) Index after records 1, 2 and 3

Birth Gender ZIP M. status

04/64
{2, 3}

09/64
{0, 1, 6}

03/63
{4, 5}

Female
{0, 1, 6}

Male
{2, 3, 4, 5}

94139
{0, 3}

94138
{1, 2, 4, 5}

94141
{6}

Married
{3, 4, 5, 6}

Divorced
{0, 1}

Widow
{2}

(c) Index after row 6

Birth Gender

04/64
{2, 3}

09/64
{0, 1, 6, 7}

03/63
{4, 5}

05/61
{8, 9}

Female
{0, 1, 6, 7}

Male
{2, 3, 5, 8, 9}

ZIP

94139
{0, 3}

94138
{1, 2, 4, 5, 8, 9}

94141
{6, 7}

M. status

Married
{3, 4, 5, 6, 7}

Divorced
{0, 1}

Widow
{2}

Single

{8, 9}

(d) Index of entire dataset

Fig. 3: Evolution of the index structure for the dataset of Table I

until all threads have completed executing all the tasks in TQ
and have reported to the main thread via the result queue
RQ. Specifically, in line 13, the main thread dequeues a
message from RQ. Note that the Pop function is blocking,
in the sense that it blocks the execution of the main thread
until a worker thread has pushed a message to RQ. Also
note that result is a data structure that contains the following
fields: (i) terminated: a boolean value to notify that the
worker thread terminates its execution, (ii) unique_found:
a boolean value that is set if the worker thread has found
a unique in the assigned task, (iii) as, the combination of
columns analyzed, and (iv) r: the row of as where the first
unique was found.

In line 14, the main thread checks if the message result is a
notification from a worker thread signalling that it terminated.
If that is the case, the main thread increments the counter
of terminated threads. On the other hand, if the message is
not a notification of termination, it will contain the result of
the analysis of the given task. In this case, the main thread
checks whether the worker thread identified a unique (line 17)
and, if so, it adds the combination of attributes defined in the
field as to set U (line 18). The main thread also notifies the
generator of attribute sets (by calling the Ban function) that
the combination of columns result.as contains uniques, to
prevent the generation of combinations of attributes that are
supersets of result.as. Subsequently, in lines 20–24, the main
thread scans AT searching for combinations of attributes that
are supersets ofresult.as to block them from being analyzed.
Each such element is removed from AT (line 23).

Subsequently, for every element removed from AT ,
a new entry is generated (lines 25–27). Function
GenerateAttributeSet maintains an internal state
that keeps track of the last generated attributes’ combination.
It is also responsible of returning only valid combinations
of attributes, i.e., combinations of attributes that are not
supersets of banned ones. In line 28, the main thread verifies

that there are still combinations of attributes that have to
be analyzed by the worker threads. In lines 29–36, new
tasks are generated and pushed to the task queue. Our
task generation process places preference to analyzing the
dataset in a way that all active combinations of columns are
analysed for a batch of rows, and the same combinations
of columns are subsequently analysed for the next batch of
rows, until all rows for the given combinations have been
processed. Then, the next attributes’ combination is analyzed
for uniques. We opted for this approach because it allows the
early identification of combinations of columns that contain
uniques, thereby reduces the amount of unnecessary work
preformed by the worker threads. Once a next task has been
generated, it is enqueued to the task queue TQ (line 30).

In lines 31–35, the main thread verifies if the combination
of attributes specified by as has still rows to be analyzed. In
this case, it stores in AT value “(as, offset + BS)”, which
represents the state of the next valid task for as. On the
other hand, if the analysis of as has finished, the main thread
retrieves a new valid combination of attributes (line 34). If
GenerateAttributeSet returns a valid combination of
attributes, then the main thread inserts it to AT , as the pair
(as′, 0), signifying that the task will involve attributes as and
start from the first row (line 35). If the test in line 28 does
not hold, which means AT is empty, then the main thread
needs to notify the worker threads that there are no more tasks
to execute. This is done by pushing t termination messages
to the task queue. Specifically, the main thread appends the
termination messages as last messages of the queue, thus the
worker threads will have to read, and execute, all the pending
tasks before reading a termination message and terminating
their operation (lines 37–40). Last, in line 41, the main thread
returns the set U that contains the distinct combinations of
attributes containing uniques.

Algorithm 5 shows the function that is executed by each
worker thread. It takes as arguments the task queue TQ, the



Input: (i) Task queue TQ, (ii) result queue RQ, (iii) index I of dataset D, and
(iv) size of each task in number of rows BS

1 begin
2 while True do
3 response = (terminated, unique found, as, r);
4 task = Pop(TQ); // Retrieve the next task from TQ
5 if task.terminate then
6 response.terminate = True;
7 Push(RQ, response); // Notify that the thread

is stopping
8 return;

9 max row = min{task.offset + BS, ‖I‖};
10 r = task.offset;
11 for r < max row; ++r do
12 if IsUnique(I, as, r) then
13 break;

14 if r 6= max row then
15 response.unique found = true; // Notify the main

thread that row r is
unique, w.r.t. as

16 response.as = task.as;
17 response.r = r;
18 else
19 response.unique found = False; // No unique found;

notify main thread

20 Push(RQ, response)

Algorithm 5: FPVI, worker thread

. . .
TQ

. . .t2t1 tn main thread GenerateAttributeSet

. . .

RQ

Fig. 4: FPVI: process architecture

result queue RQ, the index I, and the batch size BS. The
function immediately tries to retrieve messages from TQ (lines
3–4). Note that the Pop function is blocking, so it blocks the
execution of the caller thread if the queue is empty. In line 5,
the worker thread checks whether the message extracted from
TQ is a notification of termination, in which case it notifies
the main thread of its intention to terminate (line 6), pushing
the response to the result queue (line 7) and exiting (line 8).

Otherwise, in line 9, the worker thread computes the mini-
mum value between the number of rows in the dataset, which
we remind is equivalent to the size of the reverse index I, and
the offset value defined in the task message increased by BS.
Next, the worker thread checks every row in [r, max row) for
uniques with respect to the combination of columns defined in
task.as (lines 11-13). In line 14, the worker thread checks if a
unique was found, in which case it sets the field unique found
to true (line 15), the field as to task.as, and the field r
to r. Otherwise (line 18), the worker thread sets the field
unique found to False (line 19). In either case, it appends
the response to RQ and retrieves a new task from TQ. The
architecture of FPVI is shown in Figure 4.
Remark We note that FPVI can be extended to find all mini-
mal combinations of attributes leading to k or less individuals
(k ≥ 1). To do that, one needs to add parameter k to the
algorithm and change the IsUnique function (Algorithm 5)
so that it returns True only if there are at most k records with
the same combination of attributes’ values.

Complexity analysis The worst-case complexity of the algo-
rithm executed by each worker thread is O(2‖A‖ × (‖R‖ ×
log ‖R‖)). This cost is divided among the t threads, leading to
a complexity of O(2‖A‖×‖R‖ log ‖R‖/t). The overall worst-
case computational complexity of FPVI is O(‖R‖×log ‖R‖×
‖A‖+ 2‖A‖ × ‖R‖‖A‖/BS) = O(2‖A‖ × ‖R‖‖A‖/BS).
Running example Consider the dataset of Table I and assume
that t = 3 and BS = 5. Upon invocation, the main thread calls
Algorithm 2 to build the index and then starts 3 worker threads,
passing to each of them a reference to the task queue TQ and
to the result queue RQ. Then, it generates the initial batch of
tasks. Assuming that the multiplier is set to 1.333 (which is
close to ‖A‖/t), this leads to the generation of 4 tasks. The
tasks that are pushed to TQ are: (i) ({B}, 0); (ii) ({G}, 0);
(iii) ({Z}, 0); and (iv) ({M}, 0). The result queue RQ is
originally empty and AT , the set of analyzed combinations
of attributes and row blocks, contains the following elements:
(i) ({B}, 5); (ii) ({G}, 5); (iii) ({Z}, 5); and (iv) ({M}, 5).

Now assume that t0 retrieves from TQ the task ({B}, 0)
and tries to identify uniques in the indexes of records 0 to 4.
For each record, it checks whether the corresponding entries
of the reverse index contain a single (hence unique) element.
Thus, it invokes the IsUnique function with parameters (I,
{B}, i), where i is the record id. In this case, IsUnique
verifies that the cardinality of the entry (B, 0) of Table II
is not 1. Since there are no uniques in the first 5 rows of
column R of Table II, t0 notifies accordingly the main thread,
by pushing a response to RQ. The same holds for t1 and t2,
when processing ({G}, 0) and ({Z}, 0), respectively.

Immediately after the first thread pushes a response to RQ,
the main thread is able to continue its execution by pushing
new tasks to TQ. Assume that t1 is next assigned the execution
of task ({M}, 0). The thread proceeds to check if there is
a unique between lines 0 and 4 of Table II, by using the
IsUnique function. Indeed, it detects that the cardinality of
the record (M, 2) is 1, which means that the associated value
is unique for the dataset. Accordingly, t1 pushes a response
to RQ. The other threads, continue their execution as normal
without detecting uniques in the tasks assigned to them.

Once the main thread retrieves from RQ the message from
t1, which has the unique found field set to True, it proceeds
to ban {M} and its supersets. This prunes the elements of the
lattice, as shown in Figure 5a. Next, the main thread removes
all the entries of AT that are supersets of {M}. In this case
only the entry ({M}, 5) of AT is identified as superset of
{M}, and is discarded. This leads to the generation of a
new set of attributes, {R,B}, through the invocation of the
GenerateAttributeSet function.

Similarly to what t1 did during the analysis of {M}, when
a worker thread receives the task ({B,Z}, 0) it will find that
record 1 is unique and will notify the main thread. The same
will happen for task ({G,Z}, 0), as record 0 is unique. The
exploration of the search space will continue in a similar way
with worker threads finding uniques and banning attribute sets,
such as {B,Z} and {G,Z}, and their supersets. This causes a
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{G}{B} {Z} {M}
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(c) Pruning {G,Z}

Fig. 5: The pruning operations for the dataset of Table I

further pruning of the search space, leaving only the elements
shown in Figure 5c to be explored.

V. EXPERIMENTAL EVALUATION

In this section we present the experiments that we conducted
to evaluate the performance of our proposed algorithm. All
experiments were executed on a server running RedHat En-
terprise Server 6, with 1TB memory and Intel Xeon E7 4870
2.40GHz CPUs, amounting to a total of 80 CPU cores.

A. Datasets

In our experiments, we considered datasets of varying size
and number of uniques. In the following, we provide more
information about each dataset used in the experiments.
Adult dataset: The Adult dataset1 is commonly used to eval-

uate methods for detecting uniques. It consists of 15
attributes and 48, 842 records.

Household power consumption dataset: This dataset1 con-
tains measurements about the electricity consumption of
households, collected between 2006 and 2010. It consists
of 9 attributes and 2, 075, 259 records.

PUMS dataset: The PUMS datasets are provided by the U.S.
Census Bureau2. We merged the datasets for Califor-
nia (437, 869 records), Idaho (14, 984 records), Texas
(262, 349 records) and Washington (72, 689 records), to
create the PUMS All dataset. Due to the variance in the
number of attributes reported for each state (and also
within the same state), we maintained only those records
with at least 16 attributes, and kept the first 16 attributes.

HIGGS dataset: The HIGGS dataset1 reports on measure-
ments performed during the study of the Higgs’ parti-
cle. Because HIGGS contained too many uniques, we
trimmed the values to 10 decimal digits, which signifi-
cantly reduced the uniques. We then created 22 datasets
from HIGGS, spanning from 1M to 11M records, and
considered 20 and 28 (max) attributes.

MiniBooNE dataset: The MiniBooNE dataset1 contains
130, 065 records and 50 attributes. We created a collec-
tion of smaller datasets, spanning from (the first) 1K to
130K records and from (the first) 30 to 50 attributes.

YearPredictionMSD dataset: YearPredictionMSD1 contains
515, 345 records and 90 attributes. We created a collec-
tion of smaller datasets, keeping the number of records
constant and varying the number of attributes in [10−35].

1https://archive.ics.uci.edu/ml/datasets/
2http://www.census.gov/main/www/pums.html

B. Baseline methods: MTS2 and MTUI

The existing methods for identifying uniques (see Section
II) are either too slow, or assume specific hardware to execute.
To provide a fair comparison of our approach with the state-of-
the-art, we implemented two baseline methods, called Multi-
Threaded SUDA 2 (MTS2) and Multi-Threaded Uniques Iden-
tification (MTUI).

MTS2 is a parallel, iterative version of SUDA2 [13] that
can execute in both commodity machines and cluster environ-
ments, similarly to FPVI. MTS2 does not convert the recursion
to an iteration over a stack, as the different tasks are most
likely assigned to different worker threads and should therefore
be as independent as possible. On the other hand, MTUI is
procedurally similar in spirit to MTS2, but leverages on the
same pruning mechanism that is used by FPVI. It can be
considered as a simpler version of FPVI.

In the following plots (Figures 6 and 7) we refrain from
presenting the values for MTS2, as the execution time of the
algorithm is huge when compared with that of MTUI and
FPVI. We will, however, discuss the runtimes attained by
MTS2 in the description of the experiments.

C. Experimental results

We executed many experiments to compare the performance
of the FPVI, MTUI, and MTS2 algorithms. Each experiment
was executed at least 10 times and the minimum execution
time is reported in the graphs. We also executed FPVI with
different batch sizes, spanning from 500 to 9000 records.

Figure 6 presents the experimental results that we attained
for the Adult dataset. To evaluate the scalability of the
proposed approach, we created several smaller dataset from
the original one, consisting of 10–15 attributes and 10K–40K
rows. Figures 6a-d present the performance of the algorithms
with respect to a varying number of attributes. All algorithms
scale exponentially with respect to this dimension. Note,
however, that FPVI scales much better than MTUI, with the
execution time for FPVI for 15 attributes being still less than
a second, while for MTUI the corresponding time is much
higher. For the same series of experiments, the results for
MTS2 are on average 1044.2 and 1171.81 seconds, values
obtained using 80 and 40 threads, respectively.

Next, Figures 6e-h present the behavior of the algorithms
with respect to the number of records, which is linear as
also confirmed by our theoretical analysis. Nevertheless, FPVI
outperforms MTUI as it scales with a smoother slope. In these
experiments, MTS2 requires significantly more time to process
the dataset. As an example, in Figure 6e, for 40K records the
MTS2 algorithm requires 1099.31 seconds to execute, MTUI
requires 1.52 seconds and FPVI only 0.52 seconds with a batch
size of 500 (and 0.98 seconds with a batch size of 5000).

Figures 6i-l present the scalability of the algorithms with
respect to the number of threads. In these experiments we may
immediately notice the limitation of MTUI. In particular, we
notice that all the configurations of FPVI present very similar
execution times, independently on the number of threads used.
This is caused by the fact that the algorithm has reached the
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Fig. 6: Performance of the algorithms on the Adult dataset

minimum time it can achieve for this dataset when using 40
threads. Thus, increasing the number of threads is not going
to provide additional gain in performance. This is because the
dataset is fairly small from the point of view of FPVI. On the
other hand, the execution time of MTUI is increasing with an
increase in the number of available threads. This is because the
dataset is small and the different threads are interfering with
each other. This is more evident in Figure 6l. Specifically, this
is caused by the naı̈ve parallelization technique used by MTUI.
On the other hand, FPVI uses an advanced parallelization
technique that allows the worker threads to operate almost
independently, with minimal interference.

Figure 7 presents the experiments executed on larger
datasets than Adult, with various characteristics. MTS2
failed to complete in most of the tested cases, when executed
with a 2 hours timeout, and when it did finish its runtime was
very high compared to that of MTUI and FPVI. Figure 7a
shows the execution time for the PUMS_All dataset. For
this dataset both FPVI and MTUI reached their minimum
runtime before 40 threads, with FPVI being faster. Specifi-
cally, FPVI required (on average) 24.51 seconds to execute,
while MTUI took at least 80.13 seconds. Similarly, in the
Household Power Consumption dataset (Figure 7b),
MTUI took 41.74 seconds, while FPVI took 38.93 seconds.
For this series of experiments, MTS2 completed in 795.1
seconds (on average).

Figures 7c and 7d present experiments on MiniBooNE.
In these figures, we see that the execution time of MTUI

and FPVI appears to converge when the number of attributes
increases. This is because the inclusion of new attributes from
MiniBooNE causes the algorithms to find less uniques and,
therefore, reduces the impact of the pruning technique.

A similar behaviour appears in Figures 7e-f, where the
results for the YearPredictionMSD dataset are presented.
These figures show a comparable behaviour with 50 and 60
worker threads. For both MTUI and FPVI (with various batch
sizes), the execution time increases with an increase in the
number of attributes, but FPVI outperforms MTUI.

The last two plots of Figure 7, show the behaviour of the
algorithms on HIGGS. In both figures we see that FPVI is able
to handle large datasets, containing several millions of records,
with a small runtime cost. We remind that increasing the
number of records decreases the probability that an attribute-
value combination is unique in the dataset. MTUI requires
significantly more time than FPVI to process the data, as
shown in Figure 7g. The behavior of FPVI can be observed
better in Figure 7h, where we removed the results for MTUI.

Last, in Figure 8 we present the performance of the parallel
indexing approach, implemented in FPVI, versus its serial
counterpart, when applied on different datasets. One may
immediately observe how faster the parallel implementation
is in indexing the data. In particular, the fact that the number
of worker threads in the parallel implementation is equal to
the number of attributes, reduces the impact of this dimension
to the runtime. This way, the FPVI algorithm is much more
scalable and able to handle larger datasets.
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Fig. 7: Performance of the algorithms on the remaining datasets
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VI. CONCLUSION

In this paper we introduced FPVI, a fast algorithm for
identifying minimal sets of attributes that can act as quasi-
identifiers, leading to privacy attacks in microdata sets. FPVI
operates in a multi-threaded fashion to index the data and
scan different attributes’ combinations for uniques. Through
experiments conducted over several real-world datasets, we
showed that FPVI outperforms the state-of-the-art, being able
to analyze datasets consisting of millions of records and tens
of attributes, in a few minutes.
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