
RC25547 (IRE1505-014) May 25, 2015
Computer Science

Research Division
Almaden – Austin – Beijing – Cambridge – Dublin - Haifa – India – Melbourne - T.J. Watson – Tokyo - Zurich

IBM Research Report

Docit: An Integrated System for Risk-Averse
Multi-Modal Journey Advising

Adi Botea, Michele Berlingerio, Stefano Braghin, Eric Bouillet,
Francesco Calabrese, Bei Chen, Yiannis Gkoufas, Rahul Nair

IBM Research
Smarter Cities Technology Centre

Mulhuddart
Dublin 15, Ireland

Tim Nonner, Marco Laummans
IBM Research – Zurich

8803 Rüschlikon
Switzerland

Docit: An Integrated System for Risk-Averse Multi-Modal Journey Advising

Adi Botea, Michele Berlingerio, Stefano Braghin
Eric Bouillet, Francesco Calabrese, Bei Chen

Yiannis Gkoufas, Rahul Nair
IBM Research, Dublin

Tim Nonner, Marco Laummans
IBM Research, Zurich

Abstract

Current systems for multi-modal journey planning assume a
deterministic environment. However, in reality, transporta-
tion networks feature many types of uncertainty, such as vari-
ations in the arrival times of public transport vehicles. Slight
errors in the deterministic assumptions can result in lost con-
nections, with a corresponding delay at the arrival.
We present Docit, the first multi-modal journey advising sys-
tem that reasons about uncertainty in the network knowledge,
creating journey plans optimized on the likelihood of arriv-
ing on time. We describe its main functions, created both for
travellers and network operators. We discuss our solutions
to integration challenges, including the integration, as part of
the same system, of two different uncertainty-aware planning
engines. Our system has been integrated with two commer-
cial products, to gain access to dynamically updated network
data, and to provide network operators with network aware-
ness information computed by our system.

1 Introduction
In many cities, the increasing traffic of private and commer-
cial vehicles is straining the transportation infrastructure,
and traffic congestion causes significant losses to the econ-
omy. Public transport has a significant potential to reduce
traffic and congestion, but only if a substantial modal shift
can be achieved. Reasons for the still relatively low adoption
of public transport include its perceived unreliability and in-
convenience for spontaneous travel.

Unreliability is due to the inherent uncertainty in a pub-
lic transport system, where vehicles might deviate from their
planned schedule due to all kinds of disturbances. Small ini-
tial disturbances are amplified by the connections between
services, which are crucial for a network’s connectivity but
can lead to significant passenger delay due to missed con-
nections. Inconvenience is related to passengers needing a
considerable lead time to pre-plan their journey as the level
of service and connectivity is not uniform over time. In this
context, suitable journey advice, for planning the trip as well
as guiding the passenger during the trip, is an important en-
abling factor for better public transportation service.

Journey planning is the process of advising travelers on
how to best use a given transportation system to their jour-
ney requests. It is standard practice for transport operators
to offer journey planning applications either on their web-

sites or via mobile apps. For a given journey request, these
applications typically return one or several itineraries as lin-
ear sequences of activities from start to destination, based
on efficient shortest path computation engines working on a
time-expanded graph model of the service network.

Current journey planning technology assumes a deter-
ministic environment and hence uses a deterministic model.
However, due to changing traffic conditions or other distur-
bances, public transport vehicles are not always on sched-
ule. Any planned itinerary may become suboptimal or even
infeasible, for example due to missed connections. To com-
pensate this shortcoming of pre-planned itineraries, mod-
ern transport operators have started to offer push-services
to travelers, informing them of missed connections together
with a new, updated itinerary based on the current situation.
Although this offers some degree of adaptability, it is obvi-
ously only a reactive approach, based on deterministic plan-
ning applied on the basis of the current situation.

Stochastic planning can take contingencies into account
during plan computation. A typical public transport net-
work offers multiple alternative services for a traveler to
choose at a given location which provide the necessary flex-
ibility to react to disturbances and are the natural basis for
a policy-based, uncertainty-aware journey planning (Botea
et al. 2013; Nonner 2012; Nonner and Laumanns 2014). A
policy is a time-, state-, or history-dependent routing advise
at each location. Different classes of policies can be distin-
guished based on the considered information or the set of
actions considered, i.e., whether they specify a single ser-
vice or a set of services in each state. Algorithms to find
optimal policies include AO* (Nilsson 1968) based search
methods, combinatorial approaches or dynamic program-
ming, which work well on instances of realistic size, even
though the problem is NP-hard for most policy classes. Re-
solving the algorithmic challenges for finding policy-based
journey plans is a relatively new and active research area.

Building and deploying a system for uncertainty-aware
journey planning involves a whole set of new questions re-
garding data collection and preparation, building appropri-
ate stochastic models, formalization of the notion of journey
plans as policies, integration of sophisticated methods for
planning under uncertainty, real-time tracking of the state of
the system and the travelers, user interaction and interface
design.

Figure 1: Overview of the system architecture.

In this paper we discuss these design questions and out-
line the main considerations and choices we have made to
implement the first uncertainty-aware multi-modal journey
planning system in practice. We have faced multiple integra-
tion aspects, such as the integration of our system with com-
mercial products, such as the IBM Intelligent Transportation
(IIT)1 and the IBM Intelligent Operations Center (IOC),2
the aggregation of heterogeneous transportation data into
a unitary knowledge base, and the ability to plug in mul-
tiple uncertainty-aware journey planning systems such as
DIJA (Botea et al. 2013) and the Frequency Planner (Non-
ner 2012; Nonner and Laumanns 2014), facilitated by the
design of a policy format generic enough to capture the dif-
ferent semantics and syntax of different types of policies.

2 System Overview
Figure 1 illustrates the architecture of our system, which we
call Docit. This section overviews the main components,
their main functions, and their interactions with each other,
with external apps and with commercial products.

In Figure 1, the Snapshot Aggregator creates a knowledge
base with all the information available about a multi-modal
transportation network. The resulting knowledge base is
called the network snapshot, or simply the snapshot. As dis-
cussed later, the snapshot is key input data to important sys-
tem functions, such as journey planning and journey moni-
toring. Challenges associated with the data aggregation and
the way we address them are discussed in Section 3.

The main functions of the Active Session Manager (ASM)
include keeping a record of all travellers currently using
the system (the active sessions), communicating with trav-
ellers, communicating with the planning engine, and pro-
viding both current and historical data for the computation
of key performance indicators (KPIs). For example, one
KPI based on historical data can identify hotspots on the
map where travellers miss connections relatively frequently.
Hotspots can be presented to the network operators. Experts
can take this into account when performing network opti-

1http://www.ibm.com/software/products/en/
intelligent-transportation/

2http://www.ibm.com/software/products/en/
intelligent-operations-center/

misation functions, to better synchronise the two transport
lines involved in the missed-connection pattern.

When dynamic network updates are available, the ASM
regularly receives a new network snapshot from the Snap-
shot Aggregator. The IBM IIT product can provide real-time
updates on the estimated times of arrival for public transport
vehicles, which is a main reason why we have worked on in-
tegrating Docit with IBM IIT. In addition, dynamic updates
on bike station and car parking data, available in a separate
database, are used to estimate waiting times until a bike, a
bike parking spot or a car parking spot become available.

Travellers use client apps to interact with the system.
Client apps communicate with the ASM through an API.
The main functions include submitting journey plan re-
quests, receiving plans, submitting updates on the progress
of a trip, submitting requests on the validity status of a plan
given the most recent network information available, and re-
ceiving notifications on the plan validity status.

Consider that a traveller submits a new journey plan re-
quest through a client app, such as a mobile app or a web-
based app. The ASM starts an active session for that user.
It forwards the request, together with a pointer to the most
recent network snapshot available, to the planning engine,
and it receives one or several journey plans in response.

After accepting one journey plan, the user can opt for a
journey monitoring function, which allows to receive notifi-
cations about plan invalidations caused by dynamic events in
the transportation network, and to perform replanning. See
a detailed example in Section 6.

Brute-force replanning (i.e., computing a new plan for ev-
ery active user every time a new snapshot is available) is un-
desirable for two reasons. First off, suggesting a change of
plans too frequently, even when the old plan remains per-
fectly acceptable, can reduce the level of user satisfaction.
Secondly, replanning for all users every time might cause a
scalability bottleneck.

In addressing these limitations, our approach to replan-
ning works as follows. Every time the ASM receives a new
snapshot, it checks whether the current active plans (one
plan for each active user) remain valid, given the refreshed
knowledge. The check involves simulating ahead the rest of
the plan, with the new network snapshot, obtained from the
Snapshot Aggregator, and the current position of the trav-
eller along the plan, obtained regularly from the mobile app.

The simulation procedure returns a yes/no answer about
whether the destination will still be reached in time, given
the refreshed data. In a policy (plan) with one or more path-
ways from a current state to the destination, each individ-
ual pathway is simulated ahead. At each connection point,
the simulation will take the next available trip on the route
stated in the pathway. If no such trip is available (e.g., a de-
lay caused missing the previous trip, and no other trips are
scheduled), then the simulation of the pathway fails. Oth-
erwise, if the simulated arrival time at the destination ex-
ceeds the initially provided arrival time by more than a user-
specified threshold, the simulation fails as well. In all other
cases, the simulation of the pathway at hand succeeds.

In a multi-pathway policy, it is acceptable that one or
more pathways fail, as long as the traveller is guaranteed

to reach the destination in time along one of the remaining
pathways. If no such a guarantee is provided, the simulation
of the entire policy fails, and the policy is considered invalid.

Simulating the steps of a plan is much cheaper than com-
puting a plan. The simulation time is linear in the plan size,
whereas searching for a plan often is exponential in the plan
size. Our system replans only for the invalidated plans, with
a corresponding reduction in the computational effort.

Docit is focused on risk-averse journey planning, consid-
ering the uncertainty present in the network data, and com-
puting plans with a better chance of arriving in time, in case
of mishaps such as missed connections. We have integrated
two risk-averse journey planning engines, DIJA (Botea et
al. 2013) and the Frequency Planner (Nonner 2012), whose
sources were provided by their respective authors. A de-
tailed discussion of the planning algorithms is beyond the
focus of this short paper, where we discuss integration as-
pects of the architecture.

As detailed in Section 4, the two planning engines work
with significantly different types of policies. From a sys-
tem integration perspective, the challenge is to design a pol-
icy format that is sufficiently general to cover the specific
types of policies implemented in various planning systems,
such as the two planners integrated into our architecture. A
generic policy format offers the freedom to plug in any plan-
ning engine that complies with the format. Policy integra-
tion aspects are discussed in Section 4.

The ASM provides data to the Network Awareness mod-
ule, such as the trajectories of active travellers, and statis-
tics about completed sessions. The latter includes, for each
session, the journey request, the actual trajectory followed,
the arrival time, as well as plan invalidations and replanning
rounds experienced in the session at hand. The data is visu-
alized onto the network operator console. We have imple-
mented two ways of visualizing such data: a standalone ap-
plication, called the Dashboard, and visualisation functions
in the user interface of the IBM IOC product. See more de-
tails in Section 5.

For the use of travellers, we have developped both a mo-
bile app and a web-based app. Both apps allow the user
to enter a journey plan request, after which the request is
submitted to the Docit system. Policies (journey plans) are
visualized both on a map and separately, as a graph of lo-
cations and journey legs, with details about the timing, the
transport modes to follow and the routes to follow on each
public transport link. The mobile app implements additional
functions, needed for journey monitoring, such as notifying
the server on the actual branch followed by the traveller on
a multiple-branch policy, receiving updates of the valid/in-
valid status of the plan, requesting replanning and receiving
new plans. A detailed discussion of the client apps is beyond
the focus of this short paper.

3 Aggregating Network Data
The network snapshot combines data about the public trans-
port, the road map, car parking lots and bike stations in a
shared-bike network.

When aggregating multi-modal transportation data, the
diversity of the data refers not only to the different types

of uni-modal subsets, but also to the fact that the same kind
of data can originate from different sources.

Take, for example, predictive data, which is data that cov-
ers a time window in the future, such as the remaining part
of a day. In multi-modal transportation, examples include:
1) The estimated times of arrival (ETAs) and departure of
public-transport scheduled vehicles (e.g., buses), at various
times of the day. 2) The availability of free spots in a car
parking lot, at different times of the day. When the predicted
availability is zero, also predict the waiting time until a spot
will become available. 3) The availability of bikes and free
parking spots, at a bike station, at various times of the day.
When the predicted availability is zero, include a prediction
of the waiting time until the desired resource (bike or park-
ing spot) becomes available. 4) The predicted travel speed
along the segments of a road map.

Predictive data can be obtained from various sources, each
one having its own benefits and drawbacks. For example,
published schedules (timetables) are one source of public
transport ETAs. These have the advantage that they are in-
creasingly available to download, being provided by trans-
portation agencies and city authorities. They cover large
time windows, being able to offer long-term predictive data.
On the other hand, published schedules are static. They lack
stochastic information to model the uncertainty in the ETAs.
They also lack accurracy, in those cases when an actual bus
trip does not closely respect the published timetable.

Stochastic noise information can be compiled from the
second data source we discuss, namely historical data about
actual arrival times. This is potentially more accurate than
static timetables, but it is less frequently available as well.
The availability depends on the existence of a GPS-reporting
infrastructure, as well as the willingness of transport agen-
cies to make the data with the actual journeys available.

Finally, ETAs can also be computed in real time, from
GSP data collected from public transport vehicles moving
around the city. The advantage is an increased accurracy
of the results. The disadvantage is that such a functionality
is still relatively uncommon. Furthermore, by their nature,
real-time predictions are available only for a short time win-
dow into the future. IBM IIT can provide real-time updates
on the estimated times of arrival and departure, as well as
historical statistics of these. This functionality works only
for vehicles that have already started their journey, which in
turn limits the prediction time window.

Given the strengths and the drawbacks of each data
source, combining multiple sources, when they are avail-
able, is a natural idea. The resulting snapshot is agnostic to
where the data comes from. The structure is the same, and
there is no separation line between say, ETAs computed in
real time and static, timetable ETAs. When only one subset
of the sources are available (e.g., just timetable data, with-
out real-time predictions), the system is still able to build a
complete snapshot.

For car parking and bike data we have implemented the
prediction algorithm reported by Chen et al. (2013). The
planning engines we use in our system make use of the wait-
ing time until a bike or parking spot becomes available, not
of the predicted number of bikes or parking spots. Thus, the

ability of providing waiting time predictions was a key re-
quirement to be able to integrate the prediction method and
the planning engine as part of the same system.

In the prediction method our assumption is that the inter-
arrival times follow an exponential distribution with time-
varying intensity λ (t) at time t, t ∈ Z+. Equivalently, we
assume that the parking/bike arrivals follow an inhomoge-
neous Poisson process. This is because empirical evidence
shows that the arrival intensity is a function of time, i.e., it
is particularly high during busy periods, such as morning
or evening rush hours; while it is relatively low in off-peak
hours, such as late at night or early morning. We use the
following procedure to estimate the λ (t) for a given time t,
illustrated here for the case of bike prediction.

Days in the historical data are split into two categories,
one for working days and one for weekends and public hol-
idays. If desired, a finer separation, including weather data,
for instance, can be performed. The following steps are ap-
plied separately for each category.

• For each day in the historical data, calculate the duration
of all inter-arrival periods and denote them by d1,d2,. . . ,
dk. Also count the bikes arrived minus the bikes departed
in every period, and denote these by n1, n2, . . . , nk.

• Compute the estimated arrival intensity as the number of
increments per unit of time, λ̂ (t) = ni(t)/di(t), where i(t)
is the index of the inter-arrival period into which t falls.
If no such period exists (i.e., t lies before the first or after
the last arrival on that particular day), then set λ̂ (t) = 0.

• Compute the average of all estimates λ̂ (t) obtained for
each day in the training set.

Consequently, the estimated distribution of the waiting time
is exponential with mean equal to the average λ̂ (t).

Data format
We have adopted a csv-like data format for the network
snapshot. Our system queries the data sources available,
such as relational databases or files on the disk, and builds a
unitary, source-agnostic snapshot as a series of csv files. The
snapshot is used in the computation of journey plans, and in
the validity checks of existing plans.

Public transport data is based on GTFS,3 a csv-based for-
mat including data such as stops, routes, and trips. Stops
are characterized by an id, a name, and lat/lon coordinates.
Each route is served by multiple trips, where trips are actual
vehicle journeys along that route. Each trip is an ordered
sequence of stops, with arrival and departure times associ-
ated with each stop. Standard GTFS supports deterministic
arrival and departure times. We have extended the format
so that arrival and departure times can optionally include a
stochastic noise, modelling uncertainty in the arrival or de-
parture times. The noise is an extra column, of type string, in
the csv file of trip timing data. For instance, a value such as
“N(0,6400)” represents a Normal distribution with a mean
value µ = 0 and the variance σ2 = 6400.

3https://developers.google.com/transit/
gtfs/

As GTFS is restricted to public transport, we have ex-
tended the format to model road maps, bike station data, and
car parking data.

Car parking data and bike station data have a similar struc-
ture with each other. A list of car parking lots stores, for
each record, as mandatory fields, a name, an id, lat/lon co-
ordinates, and one or several links between the parking lot
and nearby nodes from the road map. The format allows to
use optional fields, such as the total capacity. We represent
predicted waiting times for a parking spot as records in a
csv file, each record containing the id of a car parking lot, a
discrete, determistic time of arrival at that parking lot, and a
stochastic waiting time until a parking spot becomes avail-
able. Bike station data is similar, except that for bikes we
have two prediction files, one for predicting parking avail-
ability, and one for predicting bike availability.

4 The Policies
Traditional journey plans are a totally ordered sequence of
actions, e.g., first take bus 12 and then bus 5A. In contrast,
when dealing with stochasticity it is intrinsic to allow con-
sidering multiple options.

The two journey planning engines in use generate differ-
ent types of policies. In the Frequency Planner’s policies,
the notion of a “state” boils down to location information.
When multiple options are present in a state, the assumption
is that the traveler will follow the first one available (e.g.,
take the first bus on either route 12 or route 14A). In that re-
spect, all options have the same priority. On the other hand,
in DIJA policies, a state depends on more factors, including
the time and the history. For example, reaching the same
location, at the same time, in two different ways can impact
factors such as the amount of walking performed so far. This
further impacts how much walking is acceptable in the rest
of the journey, to respect a user-specified max amount. Op-
tions available in a state are prioritized and they can specify
a time information (e.g., attempt to take bus 10 expected to
arrive at 14:45; if missed it, walk to stop 7073).

Both types of policies have their own advantages and dis-
advantages. Rather than comparing them, our goal is to de-
fine a generic policy format that is sufficiently versatile to
represent both types of policies. For practical reasons, we
want our policies to be easy to read and understand, and to
follow an established data format such as json.

A policy is an unordered list of statements. A statement is
a collection of fields that describe a user action (specifically,
following a journey leg), a specific context (“state”) when
the action can be considered, group information (optional)
and a priority (optional).

Fields describing the user action include the transport
mode, the target state of the action and, depending on the
mode, other relevant information. For instance, for a bus
trip, this includes the route id, the trip id (optional), the ex-
pected departure time (optional), the expected arrival time
(optional), and the headsign (optional). As mentioned ear-
lier, we allow a flexible notion of a state, which is why part
of the statement fields describing a state are optional. State
fields include the location, a time interval (optional) and a

state id that can uniquely identify a state in the policy graph
(optional).

For instance, the following statement, written in json,
specifies that at stop 89 we should take bus 12 to stop 32,
and from there we should take bus 5A to stop 64.

” p o l i c y ” : [{” l o c t y p e ” : ” s t o p ” ,
” l o c i d ” : ”89” ,
” t o l o c t y p e ” : ” s t o p ” ,
” t o l o c i d ” : ”32” ,
” t r a n s p o r t m o d e ” : ” bus ” ,
” r o u t e i d ” : ”12”} ,

{” l o c t y p e ” : ” s t o p ” ,
” l o c i d ” : ”32” ,
” t o l o c t y p e ” : ” s t o p ” ,
” t o l o c i d ” : ”64”
” t r a n s p o r t m o d e ” : ” bus ” ,
” r o u t e i d ” : ”5A”}]

Having different location types simplifies the merging of
different geographic data sources without merging the id
spaces. For example, a location of type stop would refer
to a public transport stop in the corresponding GTFS files.

Now consider the case that this policy additionally con-
tains the following statement, which is a copy of the second
statement, but with a different route id:

” l o c t y p e ” : ” s t o p ” ,
” l o c i d ” : ”32” ,
” t o l o c t y p e ” : ” s t o p ” ,
” t o l o c i d ” : ”64”
” t r a n s p o r t m o d e ” : ” bus ” ,
” r o u t e i d ” : ”3”

As no priorities are assigned to the two statements appli-
cable to stop 32, the semantics are that the user will take
the first bus on any of these routes. This is particularly use-
ful when GTFS data provide the frequency of a service, but
not specific arrival and departure times. Providing different
options via statements can decrease the waiting time.

Such simple tree-like structures are powerful, but some-
times not expressive enough. This is why we allow op-
tional fields to specify timing information, priorities, history
(through unique state ids) and groups of statements.

DIJA (Botea et al. 2013) uses a more rigurous timing
regime and priorities. Consider a bus route, say route 10,
where buses arrive every 30 minutes. An optimal plan might
be as follows: try to take the bus on route 10 arriving at
14:45; if missed, walk to stop 7073, and take another bus
from there. In other words, waiting for the bus 10 arriving
at 15:15 would be suboptimal. Making use of time intervals
and priorities, this plan can be encoded as follows: have a
statement B for the bus arriving at 14:45, with a high prior-
ity assigned, and with a time interval that, in our example,
accounts for the uncertainty in the actual arrival time (e.g.,
14:40 to 14:50). Have another statement W for the walking
leg, with a lower priority.

Statements can be grouped together using an optional
group id field. This allows to treat a bunch of nearby stops as
one single location, being visited by the union of all buses
passing through these stops. Consequently, all statements

with the same group id are executed as if they belong to the
same location.

5 Integration with IBM IIT and IBM IOC
This section focuses on integrating our system with two
commercial products, IIT and IOC.

IBM Intelligent Transportation
IIT is a product for the management and prediction of traffic
in cities. It can collect and process data coming from differ-
ent sources, such as public transport agencies and vehicles,
traffic lights and several types of sensors deployed in a city.

Based on raw data such as GPS data, IIT can dynamically
update ETAs for already started trips. Furthermore, actual
arrival/departure times can be stored in a database as his-
torical data. These are two of the most relevant features to
Docit.

In Docit, better estimates of ETAs can be used to com-
pute plans from scratch, to check the validity of an existing
plan, and to replan. As the time window of dynamically
computed ETAs is limited, covering vehicle trips started but
not completed, this time window overlaps particularly well
with the second (plan validity checking) and the third (re-
planning) tasks. The availability of acurrate ETAs, updated
in real time, could be key to the effectiveness of such tasks.

Dynamic data are stored in several “third-party” databases
with a proprietary schema, that differ from the format re-
quired by Docit, presented in Section 3. The Snapshot Ag-
gregator contains a few modules to fetch updates on dy-
namic data. The Public Transport Updater (PTU) queries IIT
databases for public transport ETAs. The Bike Station Up-
dater (BSU) and the Car Park Updater (CPU) obtain updates
on bike stations and car parking lots, respectively. Even
though the bike and parking databases are technically not
part of the IIT product, we discuss the BSU and the CPU
together with the PTU, for a simpler paper structuring. In
the network snapshot, dynamic updates are combined with
more static parts of the network, such as the list of all stops,
which are stored as files on the disk.

The PTU includes a collection of 5 SQL queries. Each
query involves between 4 and 7 tables in a relational
database, to a total of 13 tables. It starts by retrieving all
routes and stops available in the data, which are needed to
eventually retrieve all public transport trips currently run-
ning. These running trips are integrated into the snapshot,
combined with static data, such as trips planned to run in
the future. Creating the running trip data in our format is a
multi-thread process, as the data are independent from one
trip to another, and that there can be potentially many trips
and stops per trip.

The Bike Station Updater (BSU) queries the bike database
periodically – every 10 minutes in the current implementa-
tion – to retrieve the number of bikes and free parking slots
available at each station. Given this information, the BSU
uses the prediction algorithm presented in Section 3 to gen-
erate the prediction of availability and the expected waiting
times, for the subsequent 24 hours, with a granularity of 5
minutes. The Car Park Updater works similarly.

IBM Intelligent Operations Center
The IOC provides an executive dashboard to city operators.
Its functionality spans across multiple aspects of city man-
agement, including public safety, transportation, water, so-
cial services and emergency management.

While broad on their own, these functions lack awareness
information extracted from the direct experiences of trav-
ellers. At the same time, IOC allows to integrate additional
functionality into its dashboard relatively easitly. Our ob-
jective is to integrate such new awareness data. First, we
developped a visualisation of active journeys registered in
the system, updated in real time. Secondly, we provide a
visualisation of key performance indicators based on histor-
ical data, such as hotspots of frequently missed connections.
Finally, the console can be used to tune system parameters.

Active journey visualization requires the creation and the
configuration of two data sources via the administrative con-
sole of IBM IOC. The first one stores, in near real-time,4
the status of the active user sessions, including information
such as the current location of the user. The second data
source stores the trajectory of the executed part of the jour-
ney plan policy. Their contents is updated regularly, with
data from the Active Session Manager, taking advantage of
the REST (Fielding et al. 1999) API provided in IOC (IBM
2013). Each update is performed with a POST (Fielding et
al. 1999) request to the Data Injection Service, which is a
service utilized for adding, updating and cancelling records
for a data source. The frequency of the updates is a parame-
ter specified in the configuration of Docit. Once the datasets
are regularly updated, IOC automatically displays their con-
tents in a map view created for this purpose.

Other functions we created include a system configuration
view and the ability to visualise statistics about current and
past trips. We extended the actual web interface of IBM IOC
with an additional web application providing an interface to
internal Docit data. Each different function was wrapped in
an independent web-clip (Abdel-Hafez et al. 2014). In turn,
each web-clip was integrated in the layout of the web portal
which provides IBM IOC.

6 Use Case
In this section we present a use case that illustrates the way
our system functions. For the reviewing, the use case is also
provided as a video, uploaded as supplementary material.

We tested our system on data from a European city. The
public transport network includes buses and trams, to a total
of 36 routes, 1,297 stops, and 5,985 trips per day. There are
81 bike stations and 12 car parking lots. The road network
data that we use has about 150,000 nodes and 160,000 links.

An instance of IIT has recently been installed, but its pop-
ulation with data is still in progress. This is a task beyond
the control of the authors of this paper. For this reason, we
have tested the system with static data and simulated dy-
namic data. For each arrival time of public transport trips,
we have added an uncertainty represented as a Normal dis-
tribution, of mean µ = 0 and variance σ2 = 6400, cut to a

4Depending on the frequency of the updates received from mo-
bile apps. See an example in the next section.

99.7% confidence interval. This corresponds roughly to a
±4 minute variation in the arrival times.

In the use case at hand, a user uses his mobile app to sub-
mit a journey plan request from JEAN GALVIN to STADE.
The request goes to the server, which returns a journey plan.

During the journey, the mobile app informs the server
about the location of the traveller along the plan. In our
implementation of the mobile app, everytime a new leg is
started, the user explicitly pushes a button that indicates the
step taken (among one or several steps possible in a given
state) and the time. In principle, this could be performed au-
tomatically, with transport mode detection and vehicle de-
tection algorithms (Stenneth et al. 2011). Nevertheless, this
is a feature of a mobile app, not a feature of the server.

The first plan step in the example is to walk to stop PER-
GOLA. When the user indicates that the first leg of the plan
has begun, he becomes an active user, and his trajectory
is visible on the corresponding view (i.e., the one showing
all active journeys) of the network operator console. Then,
two alternatives are provided: take a trip to LATTES CEN-
TRE, with the expected departure at 13:43, or take a trip to
GARE SAINT-ROCH, with 13:50 being the expected depar-
ture time. The first, preferred connection is missed, and the
traveller indicates that he follows the second alternative.

As travelling along the second leg progresses, we simu-
late an incident on a tram route that will interrupt any tram
service on that route for one hour. The simulation is imple-
mented by removing all the corresponding tram trips from
the next snapshot loaded into the system. This impacts the
plan at hand, which was meant to continue on tram route L4.

The system notifies the traveller as soon as the tram de-
lays caused by the incident are reflected into a freshly com-
puted network snapshot. Without this function, the traveller
would find out about the tram service disruption only when
arriving at the connection point. That could be too late, how-
ever. Clearly, the sooner replanning is performed, the more
options are available, enlarging the space of available plans
and thus improving the quality of the best available plans.

7 Conclusion
Existing systems for multi-modal journey planning work un-
der deterministic assumptions. We have presented Docit, an
uncertainty-aware system for multi-modal journey advising.
We have described the system main functions, directed to
two categories of users, namely travellers and network op-
erators. Integration aspects that we have faced in this work
include data aggregation, integration of diverse uncertainty-
aware planning engines, and integration with commercial
products. Our system has been integrated the IBM IIT and
IOC products, and with databases fed in real time with trans-
portation network data from a European city.

In future work, we plan to extend the functionality of the
system into a combined travel and activity planner (with
tourism being an application domain) capable of reason-
ing about uncertainty in the data. In addition, we will con-
sider improving the user interface in our client apps. For in-
stance, visualise in an intuitive, easy-to-grasp format the risk
(e.g., the distribution of the arrival times) associated with a
stochastic journey plan.

References
Abdel-Hafez, H.; Balakrishnan, S.; Caffrey, J.; Francellino,
E.; Mishra, S.; Nascimento, T.; Ravichandran, J.; Scott, C.;
and Vlasov, N. 2014. IBM Intelligent Operations Center
v1.6 Programming Guide.
Botea, A.; Nikolova, E.; and Berlingerio, M. 2013. Multi-
modal journey planning in the presence of uncertainty. In
Proceedings of the International Conference on Automated
Planning and Scheduling, ICAPS-13.
Chen, B.; Pinelli, F.; Sinn, M.; Botea, A.; and Calabrese,
F. 2013. Uncertainty in urban mobility: Predicting waiting
times for shared bicycles and parking lots. In Intelligent
Transportation Systems - (ITSC), 2013 16th International
IEEE Conference on, 53–58.
Fielding, R. T.; Nielsen, H. F.; and Berners-Lee, T. 1999. In-
ternet draft: Hypertext transfer protocol - http/1.1. Technical
report, W3C.
IBM. 2013. IBM Intelligent Operations Center v1.6 REST
APIs.
Nilsson, N. J. 1968. Searching problem-solving and game-
playing trees for minimal cost solutions. In IFIP Congress
(2), 1556–1562.
Nonner, T., and Laumanns, M. 2014. Shortest path with
alternatives for uniform arrival times: Algorithms and ex-
periments. In Proceedings of ATMOS’14.
Nonner, T. 2012. Polynomial-time approximation schemes
for shortest path with alternatives. In Epstein, L., and Fer-
ragina, P., eds., ESA, volume 7501 of Lecture Notes in Com-
puter Science, 755–765. Springer.
Stenneth, L.; Wolfson, O.; Yu, P. S.; and Xu, B. 2011. Trans-
portation mode detection using mobile phones and gis in-
formation. In Proceedings of the 19th ACM SIGSPATIAL
International Conference on Advances in Geographic Infor-
mation Systems, 54–63. ACM.

