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ABSTRACT
We consider a cloud environment, consisting of physical en-
tities, subjected to user application requests, consisting of
logical entities with relationship constraints among them,
such as location constraints. We are concerned with the ap-
plication placement problem, which is a mapping of logical
to physical entities that satisfies the constraints and opti-
mizes an objective function, which combines system and user
performance. The typical problem size, nature of relation-
ship constraints, complexity and adaptability requirement
of the objective function, as well as solution timing budget
make traditional techniques for solving this combinatorial
optimization problem infeasible.

In this paper we describe an efficient technique that is based
on random search methods and uses biased statistical sam-
pling methods. In particular, the proposed technique utilizes
(1) importance sampling as a mechanism for characteriz-
ing the optimal solution through marginal distributions, (2)
independent sampling via a modified Gibbs sampler with
intra-sample dependency, and (3) a jumping distribution
that uses conditionals derived from the relationship con-
straints given in the user request and cloud system topol-
ogy, and the importance sampling marginal distributions
as posterior distributions. We demonstrate the feasibility
of our methodology using several large-size simulation ex-
periments. We note that the magnitude of biasing has an
important impact on the quality of placement. Thus, we
investigate the tradeoff between biasing and optimality of
placement solutions.

1. INTRODUCTION
Cloud services have progressed in recent years from provi-
sioning single Virtual Machines (VM) in the physical cloud
infrastructure to virtual platforms and virtual applications,
which have become the new cloud workload. Open source
programmable interfaces have been developed to interact
with the cloud management system and define a software en-
vironment describing the cloud infrastructure which consists
of compute, storage and network nodes. The user specifies
a workload consisting of logical entities, such as VMs, data
volumes, communication links, and services, and their needs
of the underlying physical resources. Moreover, the user
specifies requirements on the provisioned topology of such
logical entities. Examples of such requirements include phys-

ical proximity of the logical entities, availability/reliability
concerns, preferred hosting requirements, licensing and cost
issues, and migration requirements. The degree with which
such requirements are satisfied during provisioning is a user
measure of Quality-of Service. On the other hand, the cloud
service provider attempts to maximize the use of the phys-
ical resources in a way that provides best performance to
users, e.g. load balanced resources. When a user request ar-
rives to the cloud management system, the placement engine
decides on a mapping of the logical entities in the request to
the physical entities in the cloud system, given its current
state, in a way to optimize a given objective function which
combines user and provider objectives [3]. This placement
optimization problem is quite challenging for several reasons.
The size of the problem is quite large, having thousands of
physical entities, hundreds of logical entities and hundreds
of constraints in a request. Allowing the remapping of ex-
isting allocations makes the problem even larger. Typically,
the objective function is constructed from policies that users
and providers specify. Such policies are not necessarily well-
behaved, in the mathematical sense, and subject to change
and evolution. Hence, the optimization approach cannot
assume and/or exploit properties of the objective function.
Needless to say that the placement decision is expected to
be fast, i.e. sub-second and not seconds or minutes, in order
to cope with the cloud workload traffic and the potential
need to redistribute resources through migration of logical
entities in the cloud.

We briefly summarize prior work in this area as follows. The
original cloud placement problem involved only the place-
ment of one VM in the cloud infrastructure. This gives rise
to a bin packing problem with multiple dimensions, where a
dimension represents a resource type. Then, multiple VMs
were considered along with their communication needs, re-
sulting in the so-called traffic-aware VM placement problem
which is naturally quadratic [11, 4]. The inclusion of other
objectives resulted in a multi-objective VM placement prob-
lem [15]. Extending the modeling of the physical entities in
the cloud from resources with given capacities, models were
developed to capture performance as a function of load [10].
Special hierarchical structures of clouds were exploited to
devise heuristic placement algorithms [1]. Various aspects
of cloud resource management were considered [5]. As for
the optimization technique itself that is used to solve the
cloud placement problem posed as a combinatorial optimiza-
tion problem, we find a variety of techniques, ranging from
heuristic-based, simulation, to evolutionary algorithms [8].
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Recently, a technique for attempting to decrease the size of
the problem has been proposed [7]. Further, a more promis-
ing technique which uses biased sampling along with cross-
entropy [12] was introduced [14]. In this paper, we provide a
probabilistic framework and statistical sampling method for
the technique outlined in [14]. The problem is stated as a
search problem [13] and a general random search method [9,
2] is sought. An independent Metropolis-Hastings sampling
is performed. In particular, the Gibbs sampling [6] technique
is modified and restricted to intra-sample dependency. The
constraints specified in the user request are used to construct
the conditional probabilities and the importance sampling
marginal distributions are employed as posterior distribu-
tions.

The paper is organized as follows. The cloud placement
problem and the motivation for biasing the solution are dis-
cussed in Section 2. The problem statement and related
definitions are provided in Section 3. The solution approach
and algorithm are described in Section 4. A particular choice
of biasing functions is given in Section 5. In Section 6 we
present simulation results demonstrating the efficiency of
our algorithm. Further, we investigate the sensitivity of the
placement solution to the values of bias factors. Section 7
concludes the paper and suggests further work.

2. CLOUD PLACEMENT
2.1 Placement Engine
Basically, a cloud provider possesses the cloud infrastructure
which consists of physical entities (PE) such as Physical Ma-
chines (PM), storage devices, and communication networks.
Such an infrastructure is subjected to a stream of requests
from cloud users, where each request represents an appli-
cation (also referred to as pattern and/or workload) that
the cloud user wants deployed in the cloud. The request
specifies the logical entities (LE) of the application, such
as Virtual Machines (VM), data volumes, and virtual net-
works. Further, the request includes constraints related to
the deployment of the applications. Some constraints re-
late to individual LE, such as specific properties and/or re-
source demands. Other constraints relate to pairs of LEs,
such as communication needs between them. Further, other
constraints relate to a group of homogeneous LEs, such as
collocation (or anti-collocation) of member LEs of the group
at some level in the physical topology of the cloud. (Also
known as affinity and anti-affinity constraints, respectively.)

Given such an environment, the result of each request is a
placement, i.e. a mapping of LEs in the request to PEs in
the cloud. Typically, there are objectives for such a place-
ment dictated by policies addressing both the cloud provider
and the cloud user. Hence, with each request, we are faced
with an assignment optimization problem. As depicted in
Figure 1, the placement algorithm is embedded in a place-
ment engine. The placement engine receives requests for
pattern deployment. The observer component monitors the
cloud system and provides periodic updates to the state of
the cloud model utilized by the placement engine. The var-
ious policies are provided through a management layer to
the placement engine, yielding the objective function of the
optimization problem. And, once the placement problem is
solved, the resulting optimal assignment is conveyed as the

Cloud system

PlacementPatterns

Goal driven placement … Make optimal
decision to

satisfy goals

request decision

Goals

state

ExecutorObserver

Figure 1: Cloud placement engine.

decision of the placement engine to the Executor component,
which in turn realizes the change in the cloud infrastructure.

It is worth noting that a straightforward extension of this
application addresses the dynamic version of the placement
problem, namely, the periodic migration of LEs as the per-
formance of the cloud and/or applications deteriorate. In
such a case, we are faced, again, with an assignment prob-
lem, albeit the size of the request is much larger, since it
involves all migrating LEs, and the objective function in-
cludes an additional cost function related to migration.

2.2 Motivation for Biasing
Given the large size of the placement problem, the optimiza-
tion algorithm searches for good solutions in a combinatori-
ally explosive state space. A promising approach is to bias
the search towards a subset of good solutions. In this sec-
tion, we describe the mechanics and intuition behind the use
of biasing through examples.

Consider the simple example illustrated in Figure 2. The
cloud infrastructure consists of six homogeneous PMs, PM1
through PM6, having a single resource type, CPU cores.
The current CPU utilization of the PMs is shown, where
PM6 is highly utilized (0.9) and PM5 is least utilized (0.1).
The cloud topology is a tree of height 2, where the leaves
at level 0 represent the PMs, the nodes at level 1 represent
the racks, and the root at level 2 represents the entire cloud
system. As shown, there are 3 racks in the system, each
housing 2 PMs. Assume that this tree containment hier-
archy describes the communication network connectivity as
well. In other words, the PMs communicate through a tree
network which matches the cloud hierarchy.

Consider a request for a pattern (application) which consists
of 3 homogeneous VMs, VM1 through VM3. As illustrated
in Figure 2(a), VM1 and VM2 have communication need
with bandwidth net2, and VM1 and VM3 have communica-
tion need with bandwidth net3. Further, VM2 and VM3 are
to be placed on different racks. The later location constraint
is specified as soft, as opposed to a hard constraint. Thus,
closeness to achieving such a constraint is a component of
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Figure 2: Example of biasing (part I)

the overall objective function. Let P be the placement prob-
ability matrix, where the rows (columns) represent the VMs

(PMs), respectively, as depicted pictorially in Figure 2(a).
Assume that the initial values of P are proportional to PM
availability, i.e. all rows are equal and each element is pro-
portional to (1-utilization), s.t. each row sums up to one.

Assume that the provider objective is to balance load and
the user objective is, in addition to satisfying the resource
and networking requirement, to minimize communication
paths length and satisfy the soft location constraint as best
as possible.

The VMs in the pattern are initially ordered according to
their placement complexity. In other words, a VM with
higher resource demands comes first. Further, a VM with
more constraints comes first. We use a heuristic function of
resource needs and constraints to order the VMs. Assume
that the resulting order is [VM1, VM2, VM3].

In this example we employ three biasers: resource usage,
networking, and location. In step 0, as illustrated in Fig-
ure 2(b), VM1 is placed by sampling from the probability
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Figure 3: Example of biasing (part II)
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distribution given by the first row, P1, which favors PMs
with higher resource availability. Let’s assume the outcome
of the draw was that PM2 hosts VM1.

In step 1, as illustrated in Figure 2(c), VM2 is to be placed
given the fact that VM1 is already placed on PM2. Using the
distribution given by the second row, P2, without any bias-
ing for the conditional knowledge of VM1 placement, would
not likely to result in a placement for VM2 that would yield
a small value for the objective function. Hence, we need
to bias P2 to account for the fact that VM1 is placed on
PM2. More precisely, the resource usage has changed and
the communication need net2 between VM1 and VM2 in-
duce two biasing functions as shown in Figure 2(c). Both
functions are distributions over the PMs, the first reflecting
resource availability and the second favoring PMs that are
closer (in terms of path lengths, or may use other measures
such as path congestion) to PM2. The two biasing distri-
butions are combined through a weighted product with the
original marginal distribution P2 to yield a new distribution,
from which a sample PM is drawn for VM2. Let’s assume
that PM2 was chosen to host VM2.

In step 2, as illustrated in Figure 3(d), VM3 is to be placed
given the fact that both VM1 and VM2 are already placed
on PM2. In a similar fashion to the placement of VM2 we
create usage and networking biasing distributions. However,
due to the additional location constraint between VM2 and
VM3, we create an additional location biasing distribution.
The location constraint favors for VM3 a PM in a differ-
ent rack than where VM2 is placed. Thus, as illustrated in
Figure 3(d), the location biasing function is high for PM3
through PM6, whereas it is low for PM1 and PM2. If the lo-
cation constraint was hard instead, the low value would have
been set to zero. In a similar fashion, we compute a new dis-
tribution from P3 and the three biasing distributions, from
which a sample PM is drawn for VM3. Let’s assume that
PM5 was chosen to host VM3.

In step 3, as illustrated in Figure 3(e), all VMs in the pat-
tern are placed and we have a sample solution described
by the deterministic assignment probability matrix shown
in the figure. The best and final placement was the assign-
ment {VM1 → PM5, V M2 → PM5, V M3 → PM2}. The
objective function is evaluated for such a solution, and the
process is repeated K times. When done the solutions are
ordered according to their corresponding objective values.
Then, a fraction of the best solutions, say ρK where ρ is a
small fraction such as 0.1 or 0.05, is chosen as a set A of
important samples. A corresponding new stochastic matrix
P′ is calculated and is used as generator of samples in the
subsequent iteration as will be described in Section 4.

3. PROBLEM STATEMENT
We use the following notation. For vectors and matrices, we
use boldface capital letters, e.g. V and M. A corresponding
small letter denotes an element in the vector or matrix, e.g.
v and m. A subscripted small letter represents a particular
element given by the value of the subscript, e.g. vi and mi,j .
For convenience, a subscripted capital letter representing a
matrix denotes a vector row in the matrix, where the row
number is given by the value of the subscript, e.g. Mi. (We
will not need to denote vector columns in matrices.) The

1-norm of a vector is denoted by ‖V‖, which is the sum
of the absolute values of its elements. For sets, we use a
calligraphic capital letter, e.g. S. A normal capital letter is
an integer, and its corresponding small letter takes values in
the enumeration from one to the value of the capital letter,
e.g. I and i = 1, 2, · · · , I.

Define the sets M = {1, 2, · · · ,M} and N = {1, 2, · · · , N},
where M,N ≥ 1. Let X = [x1 x2 · · · xM ] be a vector repre-
senting variables taking values in N , i.e. xm ∈ N , m ∈M.
We refer to a particular valued vector A = [a1 a2 · · · aM ],
where am ∈ N , m ∈M, as an assignment to X.

Define a scalar objective function f(X) with range R, the set
of real numbers. The unconstrained state space for variable
X is the cartesian power NM . Let S denote a constrained,
nonempty state space, S ⊆ NM . The optimization problem
is stated as,

min
X

f(X), X ∈ S. (1)

We use the notation X<m to denote the variable vector
X excluding the elements {xm, xm+1, · · · , xM}, where m =
2, · · · ,M and M ≥ 2.

In relation to the cloud placement (assignment) problem, we
have N physical entities, M logical entities in the user re-
quest, X is a variable mapping logical to physical entities, A
is a particular mapping (solution to the problem), and S the
set of possible solutions given the requirement constraints
specified in the user request. The objective function f(X)
combines user and provider objectives. We do not make as-
sumptions about f(X) other than it could be numerically
evaluated given X and the current state of the system.

Define A as an arbitrary, nonempty subset of S, i.e. ∅ 6=
A ⊆ S. Let A contains L ≥ 1 unique assignments, i.e. A =
{A1,A2, · · · ,AL}, where Al = [al1 al2 · · · alM ], l ∈ L, is
an assignment vector. If L = 1 then A represents the set
consisting of a unique solution A1.

Define an M × N (row) stochastic matrix P, i.e. element
pm,n ∈ [0, 1], ‖Pm‖ = 1, m ∈ M, and n ∈ N . We refer to
a stochastic matrix P as deterministic if the elements are
such that pm,n ∈ {0, 1}.

Given a set of assignments A, define the generator G(A), as
a generator of assignments using stochastic matrix P, such
that pm,n is the probability that alm = n over l ∈ L. Hence,
Pm represents the marginal probability distribution of the
mth element of the assignments in A.

4. SOLUTION
Since the objective function f(X) in Equation 1 could be
quite general, we develop a solution approach that does not
rely on properties, such as convexity, nor devise heuristics
implied by its shape. Rather, we consider the optimization
problem as a general search problem [13] for an optimal X∗

with minimum f(X∗) in the solution space S.

4.1 Random Search
A generalized random search method [2] consists of the fol-
lowing steps. (A stopping criterion is expected but not spec-
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ified.)

1. Select a starting point X(0) ∈ S and an initial estimate
of the optimal solution X∗(0) ∈ S. Let k = 0.

2. Generate a candidate solution X′(k) ∈ H(k), where
H(k) defines a neighborhood of solutions around X(k)
s.t. H(k) ⊂ S \X(k).

3. Determine the next point X(k + 1) ∈ {X(k),X′(k)},
using f(X(k)) and f(X′(k)).

4. Obtain a new estimate of the optimal solution X∗(k+
1). Let k = k + 1 and go to step 2.

There are several choices in this general search method: (1)
defining the neighborhood H(k); (2) generating a candidate
solution X′(k); (3) determining a next point X(k + 1); and
(4) estimating an optimal solution X∗(k).

Examples of optimization algorithms that follow this ran-
dom search paradigm are simulated annealing (SA) and evo-
lutionary computation, such as genetic algorithms. In con-
trast, we introduce a new class of random search algorithms
which uses importance sampling and biasing. For short,
we refer to this algorithm as Biased Sampling Algorithm
(BSA). In particular, our solution approach makes the fol-
lowing choices: (1) the neighborhood H(k) is characterized
by the marginal probability distributions of the mth element
in X; (2) candidate solution X′(k) is generated using a mod-
ified Gibbs sampling as described below; (3) the next point
X(k + 1) is the generated point X′(k); (Hence, BSA is dif-
ferent than SA as it does not attempt to walk from point
to point in the search space.) (4) an estimate of optimal so-
lution X∗(k) is generated using importance sampling tech-
nique [12]. The optimality of BSA has been demonstrated
on small-sized problems [14]. The main idea of importance
sampling is that in order to find an optimal solution to a
combinatorial (maximization) problem, one generates many
samples of solutions using a parametrized probability distri-
bution. The samples (solutions) are ordered in their attained
values of the objective function. Then, the top small frac-
tion of important samples are used to adjust the values of the
parameters of the generating probability distribution so as
to skew the generation process to yield samples with large
objective values. The method iterates a few times until a
good solution is obtained.

4.2 BSA Approach
A straightforward implementation of the random search al-
gorithm to the cloud placement problem has been shown to
be impractical [14]. Rather than the single loop outlined in
the random search algorithm above, we use two loops: an
outer loop and an inner loop. The outer loop is related to the
estimation of the optimal solution. It uses the importance
sampling technique, applied to all sample points generated
in the inner loop, to create a generator of points in the sub-
sequent execution of the outer loop. In particular, we use
a generator G(A), where A is the set of important samples
generated in the inner loop. And, the inner loop relates to
generating candidate points using the generator provided by
the outer loop. Hence, the neighborhood H(k) is defined by
the outer loop generator, candidate solution points in the
inner loop are sampled using the generator provided by the
outer loop. And, the outer loop generator is computed using
the importance sampling technique applied to the generated

candidate solution points in the prior execution of the outer
loop. A high level description of the BSA algorithm follows.

1. Iteration ι = 0. Initialize generator Gι.
2. While stopping criterion not met. (Outer loop)

(a) For k = 1, 2, · · · ,K. (Inner loop)

i. Generate X(k) through sampling using gen-
erator Gι, and applying biasing (as described
in Section 4.3).

(b) ι = ι+ 1. Create set A including the L� K best
points X(k), i.e. with minimum f(X(k)). Create
a new generator Gι(A) .

After the stopping criterion is met, we use the sample with
the minimum f(), throughout, as the solution to the prob-
lem.

Let B = {B(r); r ∈ R} be a family of R stochastic matrices,
each of size M × N , where R = {1, 2, · · · , R}, R ≥ 1. We
refer to B as a set of biasing matrices. For R biasing crite-
ria, B(r) represents the basing matrix for criterion r, r ∈ R.
Each criterion represents a type of requirement constraint in
the user request, e.g. communication, location, target pref-
erence, license usage, and cost constraints. Define a weight
vector W of length R, where element wr ≥ 0 is a weight
associated with B(r), r ∈ R.

4.3 BSA Algorithm
An outline of the BSA placement algorithm follows.

1. ι = 0. Initially, set the stochastic matrix P(0) pro-
portional to resource availability, i.e. pm,n(0) = 1 −
u(PMn), m ∈ M, and n ∈ N , where u() represents
the utilization of the bottleneck resource or a measure
of utilization of the multiple resources on a PM. (This
particular choice helps achieve load balancing. Other
expressions may be needed for different objectives.)

2. Use P(ι) to generate K independent samples (solu-
tions).

(a) A sample X is constructed incrementally, one el-
ement at a time. After (m− 1) elements are gen-
erated, where m = 2, · · · ,M , we have X<m. The
element xm is generated given X<m. In other
words, the set B are filled in as conditional prob-
abilities given X<m. Hence, we generate the ele-
ments as per the Gibbs sampling method, except
that we remove the dependency on the previous
sample. This yields independent samples, rather
than a Markov Chain Monte Carlo sequence. (In
general, the chain resulting from independent sam-
ples behaves well if the jumping distribution has
a heavier tail than the posterior marginal distri-
butions.)

(b) We evaluate the one-step jumping stochastic ma-
trix P′(ι) as follows. Let B denote the weighted
product of B(r), given by

B = ◦
r∈R

B(r)wr , (2)

where the symbol ◦ represents the Hadamart ele-
ment wise product of matrices, and the exponent
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wr applies to all elements of matrix B(r). Then,
we write

P′(ι) = diag(C) (P(ι) ◦B) , (3)

where C is a normalization constant vector of
length M to make P′(ι) stochastic.

3. Order the K generated samples w.r.t. f() and se-
lect the best top portion of the samples. Represent
each selected sample by its corresponding determin-
istic stochastic matrix, add all such matrices element-
wise and normalize to generate a new stochastic matrix
P(ι + 1). The latter is a characterization of the top
generated samples. In such a matrix, Pm(ι+ 1) repre-
sents the marginal probability distribution of the mth

element in the optimal solution.
4. ι = ι + 1. Go to step 2 until a stopping criterion is

satisfied.

5. FUNCTIONAL DEFINITIONS
5.1 Biasing Functions
In this section we describe the biasing B that we use in
our implementation of the BSA algorithm. Obviously, the
functions are parameterized and the effect of such param-
eters on the quality of the placement results is studied in
Section 6. We consider two biasing functions: usage and lo-
cation. Other functions follow a similar mechanism for their
creation.

Without loss of generality, we consider only PMs as PEs and
VMs as LEs. Let PM denote the set of N physical machines
in the cloud, N = |PM|. We will refer to an element in the
set as pmn, n = 1, 2, · · · , N . Each PM provides a set of re-
sources, E , consisting of resources re, e = 1, 2, · · · , E. Exam-
ples of such resources are CPU, memory, and disk storage.
The total capacity of resource re on pmn is denoted by ce,n.
The utilization of such a resource is denoted by ue,n ∈ [0, 1].

We assume that the cloud system forms a hierarchical tree
with height L, where the leaves are the PMs and an inter-
mediate node represents a zone of availability. Levels are
defined as follows. A node at level l, l = 0, · · · , L, repre-
sents a leaf if l = 0 and the root if l = L. For convenience
we define gn(l), n = 1, 2, · · · , N , and l = 0, · · · , L as the set
of PMs such that for pmn′ ∈ gn(l) we have pmn and pmn′

with the lowest common ancestor at level l.

A VM is characterized by a set of resource demands, one per
resource type in the set E . We refer to the PM which hosts
vmm as pm(vmm). The resource demand of vmm for re-
source re is denoted by de,m. Assuming that over-utilization
is not allowed, then before placing vmm on pm(vmm), it
must be that

de,m ≤ (1− ue,pm(vmm))ce,pm(vmm),

for all e = 1, 2, · · · , E. A pattern is a collection of M VMs
that make up a deployable application unit given by the set
VM = {vm1, vm2, · · · , vmM}.

Location constraints are expressed as follows. Let S ⊂
VM × VM be a set of distinct pairs of VMs in the pat-
tern. A pair (vmm, vmm′) ∈ S has a location constraint
specified with a desired l and an achieved level given by

vpm(vmm),pm(vm′
m). This requirement is satisfied if pm(vmm′)

∈ gk(l), where pm(vmm) = pmk for some l, 0 ≤ l ≤ L.
As a simple extension, one may specify a range of levels
[linf , lsup], where 0 ≤ linf ≤ lsup ≤ L, instead of the fixed
value l. In this case, it is straightforward to handle a colloca-
tion constraint at level l as a range [0, l] and anti-collocation
constraint at level l as a range [l + 1, L]. Further, location
constraints are specified as hard or soft.

We place VMs in the pattern in a sequential manner, with-
out backtracking, i.e. once vmm′ ,m′ = 1, 2, · · · ,m − 1, are
placed, the choice for placement is only left for vmm, · · · ,
vmM . Once vmm′ is placed on say pmk = pm(vmm′), we ex-
amine any location constraint with vmm,m = m′+1, · · · ,M
in a look-ahead fashion. More precisely, we apply biasing
functions for the choice of placement of vmm given the place-
ment of vmm′ ,m′ = 1, 2, · · · ,m−1. We consider two biasing
functions: usage and location, abbreviated as usg and loc,
respectively.

5.1.1 Usage Biasing
Let B(usg) be the biasing probability matrix for usage bi-
asing and bias(usg)m,n be the bias of placing vmm on pmn.
The probability distribution given by B(usg)m is the vector
resulting from normalizing bias(usg)m,n, n = 1, 2, · · · , N .
The value of bias(usg)m,n is calculated as follows. Assum-
ing an objective of load balancing, biasing should be towards
a PM with higher resource availability. (Other objectives
may be handled according to the objectives.) Without loss
of generality, assume that resource r1 is the resource of con-
cern (i.e. the bottleneck resource). Let u′1,n be the current
utilization of r1,n, i.e. before considering placing vmm on
pmn. And, let U(m,n) be the respective utilization after
placing vmm on pmn, i.e.

U(m,n) = u′1,n + d1,m/c1,n,

The value of bias(usg)m,n, n = 1, 2, · · · , N should be a non-
increasing function of resource utilization. We use a simple
function given by

bias(usg)m,n =

{
(1− u1,n)βusg , U(m,n) ≤ 1,
0, U(m,n) > 1,

(4)

where βusg ≥ 0 is a parameter which we refer to as the usage
bias factor. A value of βusg = 0 corresponds to no biasing
at all, and the higher the value of βusg the more biasing is
applied.

5.1.2 Location Biasing
Let vmm and vmm′ have a location constraint at level l.
Then, we need to bias pm,n positively towards pmn ∈ gk(l),
where pmk = pm(vmm′), and negatively to all other PMs.
In case the constraint is hard then the negative bias should
make the corresponding entries zeros. Otherwise, the neg-
ative biasing becomes more negative for pmn ∈ gk(l − 1) ∪
gk(l + 1), pmn ∈ gk(l − 2) ∪ gk(l + 2), and so on. That is
if the constraint is soft on both sides of the desired location
level. Otherwise, it would consider only the higher levels.

Let B(loc) be the biasing probability matrix for location bi-
asing and bias(loc)m,n be the bias of placing vmm on pmn.
The probability distribution given by B(loc)m is the vector
resulting from normalizing bias(loc)m,n, n = 1, 2, · · · , N .
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The value of bias(loc)m,n is calculated as follows. Let v(m,m′, n)
be the level of the lowest common ancestor of pm(vmm′) and
pmn, where (vmm, vmm′) ∈ S and m′ = 1, 2, · · · ,m−1. Let
dev(l, l′) ∈ [0, 1] be a measure of deviation for a location con-
straint with desired level l and achieved level l′. Define the
deviation measure as

dev(l, l′) =
|l − l′|
L

,

where l, l′ = 0, 1, · · · , L. Thus, a deviation of zero (one)
corresponds to a best (worst) case for the constraint. The
value of bias(loc)m,n should be a non-increasing function in
the amount of deviation. We use a simple power function
given by

bias(loc)m,n = β
τ

∑
m′ (1−2 dev(l,v(m,m′,n)))

loc , (5)

where the sum over m′ covers (vmm, vmm′) ∈ S and m′ =
1, 2, · · · ,m − 1, and βloc ≥ 0 and τ > 0 are parameters.
The bias value ranges from a maximum bias of βτloc and a
minimum bias of β−τloc . We arbitrarily choose τ = 3. How-
ever, the choice of βloc, which we refer to as the location bias
factor, is crucial in determining the amount of bias applied
when searching for a ”good” solution. A value of βloc = 0
corresponds to no biasing at all, and the higher the value
of βloc the more biasing is applied. In general, in the case
of conflicting constraints in the placement of a pattern, it
is not desirable to apply a lot of bias for each constraint.
This may force the search for solution towards the infeasible
region. The investigation of the impact of the value of the
bias factor is studied in Section 6.

5.2 Objective Function
The objective function f(X) is a weighted sum of system
(provider) objective and pattern (user) objective, as a result
of placement X, given by

f(X) =
wsysfsys(X) + wpatfpat(X)

wsys + wpat
. (6)

The system objective is taken to be the standard deviation
of the utilization of the prime resource across the cloud
system, i.e. the objective is to balance the load across
the cloud. The pattern objective captures the deviation
from the desired location constraints specified in the pat-
tern request. For all m and m′ s.t. (vmm, vmm′) ∈ S,
let desired(m,m′) be the desired level of the pair-wise con-
straint and achieved(m,m′) = vpm(vmm),pm(vm′

m) be the
achieved level. Then, we write

fpat(X) =
1

|S|
∑
m,m′

dev(desired(m,m′), achieved(m,m′)),

(7)
∀m,m′s.t.(vmm, vmm′) ∈ S.

6. EXPERIMENTAL RESULTS
We briefly describe the setup and present the performance
of our placement algorithm as well as an investigation of the
impact of the choice of bias factors on the quality of place-
ment solutions. The BSA algorithm is coded in C and runs
on a MacBook Pro with 2.4 GHs Intel Core 2 Duo and 4GB
RAM, running Mac OS X 10.9.5 with optimized code. The
number of samples generated per BSA iteration is K = 20
and a fraction ρ = 0.1 of those is used as important samples.

The stopping criterion is a relative improvement in the ob-
jective function of less than 0.001, or a maximum number of
iterations set at 10. The weights in the objective function
are set to wsys = wpat = 1. Further, R = 2 biasing distri-
butions are used, one for usage and the other for location.
The biasing weight vector W is 1.

6.1 Setup
We consider a cloud system which consists of 1024 PMs, each
with CPU resource capacity of 8 units. The cloud system has
a balanced tree topology of height 4 with widths 2, 4, 8, and
16, respectively from the root downward. In other words,
the cloud system consists of 2 data centers, where each data
center has 4 zones, each zone consists of 8 racks, and each
rack holds 16 PMs. The system is simulated, starting from
an empty system, and subjected to a load of 0.8. This is
done through simulating a stream of Poisson requests, each
with a uniformly distributed lifetime, spanning an average
lifetime, such that the average CPU utilization across the
cloud system reaches 0.8 in steady state, given that no re-
quest was dropped due to placement failure. After the initial
warm-up period, the average utilization varied in the range
[0.64, 1.00], with an average of 0.81 and standard deviation
of 0.07.

We consider several pattern configurations in three experi-
ments to demonstrate the efficiency of the BSA algorithm
and investigate the sensitivity of the bias factors.

6.2 Experiment 1
The pattern in this experiment consists of 32 independent
homogeneous VMs, each with demand 1 CPU units. Hence,
there are no location constraints among the VMs. Starting
from an idle system, steady state (average utilization of 0.8)
was reached after 234 request arrivals. An additional 1,766
requests were simulated in steady state. Only 7 of those re-
quests were dropped only due to lack of resources, i.e. there
were no placement failures resulting from our BSA algo-
rithm. Therefore, the probability of request drop was 0.004.
All statistics are based on the successful 1,759 requests that
were admitted and placed into the system.

In this case, due to independence, we have fpat(X) = 0,
and therefore we get from Equation 7 that f(X) = fsys(X),
which is the standard deviation of the CPU utilization across
the cloud system.

In Figure 4(a), we use βusg = 2 where the x-axis shows
the sequence of pattern arrival requests and the (left) y-
axis shows the value of the objective function, the standard
deviation of CPU utilization in this case, and the (right)
y-axis shows the average utilization of the cloud system,
i.e. the load at the time. At each point on the x-axis,
i.e. request arrival, the placement problem is solved for the
incoming request through invoking the BSA algorithm. Note
that as the utilization increases, the corresponding standard
deviation decreases simply due to the shrinking of resource
availability range. At the steady state utilization of 0.8, the
objective was kept around 0.08.

In Figure 4(b), we vary the usage bias factor βusg in the
range [0, 8]. The values plotted for the average objective
function and algorithm execution time are averaged over the
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(a) Time series. (βusg = 2)
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(b) Effect of βusg.

Figure 4: Experiment 1.

steady state period of the simulation. Overall, we note that
the average execution time is 100 msec, or less. Small values
of βusg result in less iterations in the algorithm since the
stopping criterion kicks in earlier, hence the smaller average
execution time of about 80 msec. As for the value of the
objective function, we note that it improves, i.e. decreases,
as βusg increases. The rate of improvement decreases from
an initial 0.0212, going from 0 to 0.5, to an insignificant
0.0017, going from 6 to 8. We use a default value of βusg = 2.

6.3 Experiment 2
In this experiment we consider location constraints. In par-
ticular, a pattern in this experiment consists of 4 groups
of homogeneous VMs, each with demand 2 CPU units, de-
noted by group1, group2, group3, and group4. Each group
consists of 4 VMs. The location constraints are set to model
a need for hard availability requirements among the groups,
yet with soft closeness of VMs within each group (to min-
imize communication overhead). The inter-group location
constraints are all hard and specified as follows: anti collo-
cation at the data center level between group1 and group2,
as well as between group3 and group4; and anti-collocation
at the zone level between group2 and group3, as well as
between group4 and group1. The intra-group location con-
straints are all soft and specified as collocation at the PM
level. As in experiment 1, steady state was reached after
234 arrivals, with additional 1,766 requests in steady state.
Only 7 of those requests were dropped only due to lack of
resources.
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Figure 5: Experiment 2. (βusg = 2)

In Figure 5 we keep βusg = 2. In Figure 5(a) we show the
time series of one experiment where we set βloc = 6. The
total value of the objective function is a weighted sum of
system value and pattern value. As before, the system value
is the standard deviation of CPU utilization. The pattern
value is the deviation of the intra-group location constraints
from the desired level of same PM. Given that each group
has a size 4, then the total number of edges in a group is 6,
hence a total number of edges of 24 over all 4 groups. In case
only one VM in only one group is placed in a different PM
than VMs of its group, but in the same rack, 3 edges to the
other 3 VMs in the group would deviate by 1 level. Hence,
in this case the pattern value, as given in Equation 7, would
be 3/(24 ∗ 4) = 0.031. This is the most frequent non-zero
value of the pattern value illustrated in Figure 5(a). We also
see roughly multiples of such a value, especially during the
warm up period. Though not visible due to the thickness
of the pattern value curve, the pattern value was zero with
probability 0.71 during steady state. In other words, all soft
constraints in the pattern were fully satisfied.

βloc Total System Pattern Satisfied
2 0.2578 0.1596 0.3563 0.0000
3 0.1858 0.1950 0.1767 0.0006
4 0.1634 0.2451 0.0816 0.0404
5 0.1657 0.2940 0.0374 0.2297
6 0.1765 0.3430 0.0100 0.7089

hard 0.1874 0.3748 0.0000 1.0000

Table 1: Experiment 2: Effect of βloc.
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In Figure 5(b) we vary the location bias factor βloc in the
range [2, 6]. The corresponding values are provided in Ta-
ble 1, where in addition we provide in the last column the
probability that all soft constraints in the pattern are satis-
fied. Further, the last row provides values when the intra-
group location constraints are made hard. This corresponds
to the best pattern value and is provided for reference. As
illustrated in Figure 5(b), the algorithm execution time is
fairly short at slightly above 200 msec. As βloc increases,
the solution favors achieving a lower patent value and, at
the same time, a higher system value. The total value ex-
hibit a convex behavior with a minimum at about βloc = 4.
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Figure 6: Experiment 2.

Since we have two bias factors in this experiment we illus-
trate the effect of both on the total objective value, the sys-
tem value, and the pattern value in Figures 6(a)-(c), respec-
tively, where we vary the usage bias factor βusg on the x-axis
and plot values for the location bias factor βloc = 2, 4, and 6.
Clearly, the case βloc = 2 results in fairly large pattern val-

ues. The cases for βloc = 4 and βloc = 6 result in opposite
behavior, as far as the system value and pattern value are
concerned. However, the combined total value seems fairly
flat, suggesting the insensitivity of βusg in those cases.

6.4 Experiment 3
The objective of this experiment is to consider a special con-
figuration where the optimal placement of a pattern is known
a priori as placing the pattern entirely in one PM. We vary
the usage bias factor to investigate how close can we get to
that solution. The cloud system is made 4 times smaller, i.e.
256 PMs, each with CPU resource capacity of 8 units. The
tree topology of height 3 with widths 2, 8, and 16, respec-
tively from the root downward. In other words, the cloud
system consists of 2 data centers, where each data center
consists of 8 racks, and each rack holds 16 PMs. As the
above experiments, the system is simulated, starting from
an empty system, and subjected to a load of 0.8, with Pois-
son arrivals and uniform life times.
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Figure 7: Experiment 3: Effect of βusg. (βloc = 2)

The pattern consists of a single group of 8 homogeneous
VMs, each with a CPU demand of 1 unit. All VMs are
required to be located in the same PM through an intra-
group soft location constraint at the PM level. As in the
above experiments, steady state is reached after 234 arrivals,
with 1,766 requests in steady state and 7 dropped requests
due to lack of resources.

βusg Total System Pattern Satisfied
0 0.1768 0.3407 0.0129 0.8488
1 0.1745 0.3313 0.0178 0.7965
2 0.1695 0.3087 0.0304 0.6748
4 0.1518 0.2291 0.0745 0.3559
6 0.1492 0.1643 0.1340 0.1285
8 0.1533 0.1235 0.1831 0.0648

hard 0.1874 0.3748 0.0000 1.0000

Table 2: Experiment 3: Effect of βusb.

In Figure 7 we vary the usage bias factor βusg in the range
[0, 8]. The corresponding values are provided in Table 2,
where in addition we provide in the last column the prob-
ability that all soft constraints in the pattern are satisfied.
Further, the last row provides values when the intra-group
location constraints are made hard. This corresponds to the
best pattern value and is provided for reference. As illus-
trated in the figure, the algorithm execution time for this
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small pattern and 256 PMs is fairly swift at about 25 msec.
As βusg increases, the system value decreases and the pat-
tern value increases, resulting in a fairly constant total value
around 0.17.
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Figure 8: Experiment 3: Time series. (βloc = 2)

In Figures 8(a)-(c), we fix the location bias factor βloc = 2
and show the time series corresponding to three experiments
for the usage bias factor βusg = 0, 4, and 8, respectively.
Note the continual decrease in system values across the three
experiments. But, more importantly, note the behavior of
the pattern value. For βusg = 0 in Figure 8(a), the pattern
value is fairly small and, surprisingly, most patterns have
their location constraints satisfied at high load. A simple
calculation suggests that one VM in the pattern being placed
in a different PM than the rest, yet in the same rack, result

in a pattern value of 7/(24 ∗ 3) = 0.0833. For βusg = 4
in Figure 8(b), the pattern value increases resulting in only
about a third of the patters having their location constrains
satisfied. Finally, for βusg = 8 in Figure 8(c), the pattern
value becomes increasingly high with only 6 percent of the
patterns satisfied. However, the system value drops to an
average 0.12.

7. CONCLUSION
We presented an approach for solving a cloud placement op-
timization problem. The approach is based on a general
random search technique where we employ importance sam-
pling to construct the marginal distribution of the solution,
and a modified Gibbs sampling technique restricted to intra-
sample dependency using the marginal distributions as pos-
teriors. This dependency results into biasing the sampling
process. We investigated the sensitivity of the solution to
the choose of biasing factors. Several remaining work is un-
derway. We mention, for example, convergence properties of
the algorithm, criterion for selecting parameters of the algo-
rithm, comparison of the algorithm to other techniques.
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