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ABSTRACT

Rush hour and sustained traffic flows in eight cities are studied using the IBM

Mega Traffic Simulator to understand the importance of road structures and vehicle

acceleration in the prevention of gridlock. Individual cars among the tens of thousands

launched are monitored at every simulation time step using live streaming data transfer

from the simulation software to analysis software on another computer. A measure of

gridlock is the fraction of cars moving at less than 30% of their local road speed. Plots of

this fraction versus the instantaneous number of cars on the road show hysteresis during

rush hour simulations, indicating that it can take twice as long to unravel clogged roads

as fill them. The area under the hysteresis loop is used as a measure of gridlock to

compare different cities normalized to the same central areas. The differences between

cities, combined with differences between idealized models using square or triangular

road grids, indicate that gridlock tends to occur most when there are a small number

of long roads that channel large fractions of traffic. These long roads help light traffic

flow but they make heavy flows worse. Increasing the speed on these long roads makes

gridlock even worse in heavy conditions. City throughput rates are also modeled using a

smooth ramp up to a constant vehicle launch rate. Models with increasing acceleration

for the same road speeds show clear improvements in city traffic flow as a result of

faster interactions at intersections and merging points. However, these improvements

are relatively small when the gridlock is caused by long roads having many cars waiting

to exit at the same intersection. In general, gridlock in our models begins at intersections

regardless of the available road space in the network.

Subject headings: traffic, cities, simulation, agent based, gridlock

1. Introduction

Traffic flow in cities differs from traffic on highways because city driving has many types of

streets with various road speeds, and it has frequent intersections where driver judgement, signs,
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and lights determine the right of way. Cities also have complex road networks that can make them

difficult to model. Here we use the IBM Mega Traffic Simulator to simulate rush hour traffic and

sustained flows in eight cities. The purpose is to understand the influence of driver acceleration and

road structure on the development and dissipation of gridlock, a condition where a high fraction

of drivers are unable to move at the normal road speed because of congestion. Reviews of traffic

models are in Newell (1965); Helbing (2001); Bellomo & Dgobe (2011).

A discriminant for traffic mobility at merge points is the dimensionless parameter aD/v2 for

vehicle acceleration a, separation D and speed v. For example, when this number equals 1, cars

can accelerate from a stop and fit between two cars moving at speed v and separation D. High

values corresponds to easy merging conditions from a stop, while low values make merging difficult

because there is no room to fit without precise timing. For any given city, the average separation

D scales inversely with the ratio of the number of cars on the road, N , to the total occupied road

length L, which is the sum of the product of all the utilized road lengths and their corresponding

number of lanes. Then aL/(Nv2) might be considered an important, analogous, quantity that

should be as high as possible. Low values occur during rush hour when N is high. They also

occur when traffic tends to prefer a few main boulevards and cross streets, decreasing L for fixed

N . Slow speeds help, as do high accelerations. However, the average road length per car, L/N , is

not as decisive an indicator of potential flow problems as the local separation D if the congestion

tends to occur near an intersection with free flow on the road before that. The best indicators are

the most local and instantaneous, which makes traffic analysis extremely data rich on the scale of

whole cities.

High acceleration also relieves congestion on roads without intersections, such as highways.

For a discussion of highway flow, oscillation instabilities, and possible solutions, see, for example,

Daganzo (1996); Li & Shrivastava (2002); Baran & Horn (2013); Li et al. (2014). If the mean flow

rate per lane, Nv/L = v/D measured in cars per second, exceeds the outflow rate at the rarefraction

front leading a pack that forms, which is (0.5a/D)0.5, then more cars will join the pack at the back

end than can leave it at the front end. The pack therefore grows. This outflow rate is the inverse

time that it takes to accelerate up to the point where the vehicle separation is D. The pack does

not grow when aD/v2 exceeds 2. Cars that accelerate more quickly and roads that have lower

speeds each lead to more stable conditions.

Car acceleration is useful to consider as a variable in models of traffic control. Future commu-

nication systems between cars could aid in the control of this variable by prompting the driver to

adjust the car’s acceleration – up to a reasonable limit – when needed to improve the flow Ge et al.

(2013). Autonomously driving cars could also have optimum accelerations. As it is now, most

drivers accelerate at fairly low rates in city conditions. For example, acceleration up to 30 miles

per hour in half of a city block, which is ∼ 0.05 of a mile, is the equivalent of only 11% of the

acceleration of gravity, 0.11g. The fastest sports car accelerates from 0 to 60 at about 1g Anderson

(2009). The maximum deceleration during braking is also about 1g with a typical value of unity

for the coefficient of rolling friction between rubber tires and the road.
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In city conditions, when cars cannot merge after turning from one road to another at an

intersection, traffic backs up. We would like to model such gridlock and see if it can be relieved

by increasing the key dimensionless quantity discussed above, aD/v2. We do this using the IBM

Mega Traffic Simulator code (Osogami et al. 2012, 2013) applied to 8 cities using road networks

and speeds from www.openstreetmap.com, and using vehicle launch rates that simulate either a

rush hour, which is done with a Gaussian launch rate profile, or a steady flow, which is done with a

half-Gaussian ramp up to a steady flow. We randomize the origin and destination positions for this

rate profile, and then the code chooses the route in advance. Idealized road networks are studied

also. Several measures of gridlock are employed and tested against variations in the launch rate

and acceleration. Certain cities are found to be consistently worse than others depending primarily

of the number of difficult intersections.

In Section 2, overviews of the IBM Mega Traffic Simulator and the traffic model are given. We

also discuss a method to stream results from the Simulator into an analytics program on another

computer. Section 4 shows the rush hour results comparing 8 cities in a standard model, and Section

5 considers idealized cities. Section 6 shows results for these cases again with higher accelerations.

Section 7 discusses steady flow-through models for the 8 cities. The conclusions are in Section 8

2. Method

2.1. IBM Mega Traffic Simulator

The IBM Mega Traffic Simulator, called Megaffic in what follows, is an agent-based traffic

simulator (Osogami et al. 2013) that uses street maps from http://www.openstreetmap.com and

accepts as input a table of origin and destination points on a rectangular grid for each second of

time. Streets are designated as “primary,” “secondary,” and so on, with different speeds for each

type ranging from 80 km hr−1 for “motorways” to 20 km hr−1 for “residential.” The algorithm

to determine the route for each car from the origin and destination grid points is discussed in

Imamichi & Raymond (2013). These routes follow from the origin-destination table and are fixed

for each car at the start of the simulation. Driver preferences with regard to travel time, distance,

and number of turns are considered.

The program uses the Gipps model for driver action Gipps (1981), which contains an accel-

eration value a, evaluated here with a Gaussian probability distribution function with standard

deviation σa. Our nominal value is a = 1.7 ± 0.3 m s−2 but different values are used for exper-

imentation. For reference, the vehicle lengths are all assumed to be 4.46 meters, the time step

is 1 second, and the reaction time in the Gipps model is 2/3 second. The program also uses the

lane-selection model in Toledo et al. (2003).

Although Megaffic is highly sophisticated as a simulation tool, it is still under development.

It moves cars according to standard models along realistic road networks but there are elements
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of real traffic flow that are not present yet. For example, the models used here do not have traffic

lights at intersections, nor can drivers change their routes to respond to changing road congestion.

Still, it is useful as a comparison between cities and to test some basic properties of traffic flow in

complex networks with tunable conditions, such as driver acceleration.

Use of Megaffic also allows monitoring of every car at every second, something that is not

possible in real cities. The data rates are enormous for this, however. Traffic flow is an interesting

problem from the point of view of data volume. Every car among tens or hundreds of thousands

of cars is doing something interesting every second, such as braking, accelerating, turning, or

interacting with other cars that are only seconds away in time. Understanding the source, origin

and control of potential bottlenecks requires second by second monitoring at key locations, and for

some cities, at many locations. Thus the problem has a large dynamic range in both space and

time dimensions. For example, the range of spatial scales is the ratio of the city size to the car size

(e.g., ∼ 2000-squared), or the total road length to the car size (∼ 50000), while the range of time

scales may be determined by 1 second intervals for an hour or two (∼ 5000). This dynamic range

even for inner city areas can exceed a billion distinct information elements during rush hour. For

a large city and with commuters from the suburbs, the information can exceed a trillion elements.

2.2. Streaming Analytics

Megaffic enables traffic analysis on microscopic levels while generating massive amounts of

simulation data. At each simulation time step, each car’s longitude, latitude, speed, acceleration,

distance to the leading car, road of travel, CO2 output, and other quantities, are computed and

updated for the next time step. For a small city model, these values can be written to storage for

later use, but for a large city with many cars traveling a long time, the data volume can be too

large to store, and only the time-averaged or integrated quantities can be saved. This inability to

write what is essentially every variable at every time step is common for computer simulations,

which typically store only values at widely spaced intervals to limit the total data volume. Traffic

flow is an intrinsically data-rich problem, however, where something interesting and important has

the potential to occur at every time step for every car. Other physical problems are like that too,

such as turbulence, weather forecasting, and financial markets.

For Megaffic, a lack of transparency to the state of the simulation at every time step makes it

very difficult to perform a car-by-car analyses and visualizations that represents the real experiences

of drivers in a large city. Also, the usual procedure of writing to disk during the simulation and

they analyzing the results later only gives visibility to the problem after it is too late to change

anything.

In order to overcome these limitations, we added a streaming capability (Elmegreen et al.

2014) to the Megaffic software. At each simulation time step, each car state was packaged into a

message and streamed to another process running on another computer which is only responsible for
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analyzing and visualizing the simulated data as it arrives. This approach decouples the simulation

program from the analysis program. The analysis can then handle arbitrarily large amounts of

data without ever requiring it to be stored. Streaming analytics also makes it easier to modify

the analysis method, seeking out unexpected features, for example, without altering the simulation

code while it is running.

In our application, the communication between processes used UDP protocol as it does not

require hand-shaking and connection between them. This approach guarantees that the simulation

program can still run at a full speed without worrying about the latency of the network or the

analysis program on a different computer. However, since UDP protocol does not guarantee de-

livery and ordering, the analysis program needs to compensate for or be impervious to occasional

transmission errors.

We used MATLAB and IBM’s Infosphere Streams as two examples for the analysis software.

In some cases we ran Megaffic on a multinode IBM Cloud computer and streamed the data to

a socket on a desktop computer, where it was retrieved on-the-fly and put through MATLAB or

Infosphere Streams. In other cases we ran Megaffic on one desktop computer and streamed the

results to another running these programs. In all cases, we were able to visualize and monitor the

traffic state at single-second time resolution and on an individual car basis. Since the streaming

was performed while the simulation was in progress, a real time display of every car on the road

was realized.

Streaming was also used to display and map instantaneous gridlock measures (Section 4). By

viewing where and when the slow spots occurred on a city road map, the positions and speeds

of other cars around them, the level of congestion on adjacent roads where the slow cars needed

to merge, the relative speeds of cars on the adjacent roads, the road structures, and so on, we

could watch the gridlock patterns develop and understand their origins, such as the difficulty of

merging onto new roads at certain intersections. We could also try various fixes in different Megaffic

simulations, such as higher accelerations for all cars, and understand quickly how well they worked

by watching the same cars at the same intersections when the problem was solved.

One study, for example, considered the role of a few vehicles with low accelerations. We noted

that these vehicles did not affect the overall city congestion much and wondered why. So we tagged

them and watched them move through the city streets along with all of the other cars. The laggards

accumulated lines of other cars behind them between intersections, as expected, but as soon one left

an intersection, the cars trapped behind it dodged off to other roads at their normal accelerations

and the line temporarily went away. This was a different behavior compared to the long lines that

accumulated at permanently bad intersections, which were the most common cause of gridlock.

InfoSphere Streams was developed to ingest and analyze information in large data streams to

enable on-the-fly big data applications (Infosphere Streams 2015). It provides built-in operators for

basic streaming operations, and has a Stream Programming Language (SPL) where end-users can

create their own operators. For this project, we used the built-in udp sink operator to ingest and
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convert the aggregated message stream from Megaffic into a flow of tuples, and the built-in split

operator to extract a single car state from a tuple. Then we defined an operator to calculate our

gridlock condition, i.e., the fraction of cars moving below 30% of their corresponding road speed

(Section 4), and other interesting quantities. For visualization, the http tuple view operator was

used to stream the car position to a display program on the internet while Megaffic was running.

Although the visualization tools were limited for InfoSphere Streams, this software is a much more

scalable option than MATLAB for analyzing large amounts of data.

3. Launching Rates for Cars

To simulate rush hour, we launched cars in various cities using a 10x10 grid inside the central

10 km by 10 km square road network. Normalization of each city to the same area mitigates trivial

scaling differences when we compare the results. The cars were launched in batches, with some

number R at a time using randomly chosen origin and destination points. The launching times

were separated by 10 seconds to space them out along the adjacent streets. Thus the launch rate

was R/10 cars per second within the 100 km2 area. To simulate a rush hour, we set

R(t) = R0 exp
(
−0.5 [t− t0]

2 /σ2
)

(1)

where t = 0, 10, 20, 30, ... seconds up to some maximum time tmax, taken to be 5000 seconds in

many cases but varied to study the impact of spacing out cars during rush hour. To make a smooth

Gaussian launch pattern, we took t0 = tmax/2 and σ = tmax/5. Sample launch patterns are shown

in Figure 1. The curves are boxy because the launch numbers have to be integers for discrete cars.

Rush hour simulations using launch rates like this are discussed in section 4.

In another set of experiments, cars were launched at a rate that has a half-Gaussian ramp with

σ = 1000 seconds up to the peak at 2500 seconds, and then remains constant thereafter for at least

20,000 seconds. After the initial ramp up, this model simulates a steady flow of cars to determine

what a city can sustain without gridlock conditions. These steady flow models are discussed in

section 7.

4. Results for Rush Hour Simulations

Cars launched into the road network of a city accelerate up to the road speed and move around,

negotiating other cars with a no-collision rule and turning from one street to another according to

pre-determined routes. Cars that hesitate or stop at intersections and other places cause the cars

behind them to slow down or stop as well, as in a normal traffic flow.

We are interested in finding a good diagnostic for gridlock conditions, when a high fraction of

cars cannot move at the nominal road speed. To search for such a diagnostic, we tried various things,

such a the distribution function of trailing distances between cars, the fraction of cars stopping, and



– 7 –

0 1000 2000 3000 4000 5000
0

20

40

60

80

100

Time (seconds)

N
um

be
r 

of
 T

rip
s 

ea
ch

 1
0 

S
ec

on
ds

Fig. 1.— Trip launch rates for rush hour simulations. Rates are in cars or trips per 10 seconds.
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so on. The clearest diagnostic we found was the fraction of cars with an instantaneous speed below

some fraction of the nominal road speed. To find this limiting fraction, we plotted histograms of

the ratio of car speed to local road speed in fixed intervals of time.

Figure 2 shows an example with 6 equal time intervals out of the total travel time of 5973

seconds for a rush hour simulation in Washington DC. The peak launch rate in equation 1 is

R0 = 80 cars per 10 second interval and the launch window is tmax = 5000 seconds. Each plotted

interval represents 1/19th of the total time when cars are on the road. The other time intervals

between these look about the same. The total time is longer than tmax because cars continue to

move to their destinations after the last one is launched.

Figure 2 shows that at the beginning of the simulation, in the time interval from 315 to 629

seconds (top left), most cars are within 30% of the local road speed, whatever that is (the local

road speed varies from car to car, depending on which type of road that car is on). There is no

significant congestion. At time progresses, more and more cars dip below 30% of their road speed,

which is indicated by the red vertical line. At the time of peak launch rate, which is t0 = 2500

seconds, a high fraction of cars are moving below 30% of the local road speed, and gridlock prevails

(there are even more cars not plotted and out of range to the left in the figures, moving slower than

0.1% of the road speed). This bad condition continues until well after the last car is launched, with

a significant fraction moving slowly even at t = 5339 − 5653 seconds. Only after ∼ 5600 seconds

do the roads clear up.

The fraction of cars moving slower than 30% of the local road speed is considered here to be

a good measure of bad driving conditions after experiments like this. There is hysteresis in the

congestion, with bad conditions asymmetrically shifted toward late times compared to the time of

peak launch. Figure 2 shows that roads fill up quickly but drain slowly.

The main results in Figure 2 are made more concise by plotting the fraction of cars moving

slower than 30% of the road speed versus the number of cars currently on the road. Such plots

are shown in Figure 3 for Washington DC with seven different peak launch rates, R0 = 40, 50,

60, ..., 100 cars per 10 seconds, all with tmax = 5000 seconds. Each curve is a single experiment

of a complete rush hour in the road network using the same 10x10 grid for origin and destination

points, although all of these points are random and different for each case. The resulting curves

do not depend on these random routes significantly for a given launch rate. The wiggles in the

curves reflect the details of individual cars stopping and starting. As time progresses, the position

of a simulation on a curve moves counter clockwise, as indicated by the blue arrow. Alternate

curves have fiducial markers indicating the time: green triangles are at tmax/4 (i.e., 1250 seconds;

these are difficult to see as they occur in the lower noisy part of each curve); filled circles are at

tmax/2, squares are at 3tmax/4, and diamonds are at tmax. The worst gridlock occurs at the top

of each curve, where the fraction of cars moving slower than 30% of the road speed is high, often

exceeding 10%. The corresponding time is between 30% and 100% of the maximum launch time.

As expected, the gridlock improves and the number of cars on the road decreases as the peak launch
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Fig. 2.— Distributions of the ratio of instantaneous car speed to road speed for several intervals

of time in a rush hour simulation of the central 10 km square region in Washington DC. At early

times, there are very few cars and none are moving slower than 30% of the road speed (vertical

red lines). As more cars enter the roads, the total number increases and the fraction of cars that

move slowly increases too. The total duration of the rush hour start times is as shown in figure

1, 5000 seconds, but histograms here in the lower panel show significant numbers of cars and high

fractions that are moving slowly long after this time. The time at the peak launch rate, 2500

seconds, corresponds to the upper right panel. This delay in clearing of the congestion, compared

to the relatively fast time for it to build up, corresponds to an asymmetry of traffic flow, leading

to the hysteresis shown in Figure 3.
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Fig. 3.— The fraction of the cars moving slower than 30% of their local road speed is shown as

a function of the number of cars on the road for rush hour simulations in Washington DC. Each

curve has a different peak launch rate, R0, with lower R0 corresponding to less congestion because

the number of cars on the road at any one time is lower. The curves are traversed in a counter

clockwise direction, as shown by the arrows. The green triangles in the lower part of the ascending

curves corresponds to a time midway up the rising part of the rush hour model, i.e., at t0/2 = 1250

seconds. The dots correspond to the time of peak launch rate, 2500 s, the squares are at 3750 s,

and the diamonds are at 5000 seconds, when cars stop entering the road. For high launch rates,

the worst traffic jams occur after the cars stop entering the road (the peak in the curves is counter

clockwise from the diamonds) because the last tens of percent of cars have no where to go.
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rate decreases.

Figure 4 shows the well-known result that gridlock improves if the rush hour time is prolonged

for the same total number of cars. The different curves have different R0 and tmax with a constant

product R0tmax, which is proportional to the total number of cars launched. As R0 decreases and

tmax increases, the peak fraction of slow cars decreases. The plot has a logarithmic ordinate, so the

decrease is rapid with small increases in tmax. Doubling the maximum time from 4000 s to 8000 s

changes the flow from 20%–50% gridlocked to less than 1% gridlocked.

Now we consider eight different cities, all with the inner 10 km square used for the road

network. These cities span a variety of network shapes, from regular grids, as in Indianapolis and

Beijing, to highly convoluted small streets, as in London, Istanbul, and Damascus. Some have large

waterways running through them with several bridges going from one side of the city to the other

(e.g., Washington D.C., Istanbul).

Figure 5 shows the results for the 8 cities. They all have the same launch rate and duration,

R0 = 80 cars per 10 s, tmax = 5000 s. The cities with high looping curves in the figure are more

easily congested in our models than the others. Note that the total number of cars launched is the

integral under the launch rate in equation 1, (2π)0.5σR0/10 = 20053. The maximum number on

the road at any one time for most of the cities is about 20% of this integral, which indicates that

most cars get where they are going even when there is severe gridlock elsewhere. Nairobi roads

reach a peak count of 7567 cars and a peak fraction of cars slower than 30% of the road speed equal

to 77.4%. Four cities have slow-car fractions of about a per cent or less.

What differences between cities contribute to a range of slow-car fractions even when they

have same launch rates and city areas? We considered that the differences could be the total road

capacity for all of the occupied roads, or perhaps the normalized capacity which is the road length

per car, or the average number of cars per road, or perhaps the average road speed per occupied

road. These quantities were measured at every second and a representative sample for Figure 6

was taken at two specific time steps, the time of peak launch, t0 = 2500 s, and midway down the

Gaussian after the peak, at t = 3750 s. The abscissa in the plots is the integral under the hysteresis

loop in Figure 5, which is a measure of gridlock. Filled circles are for the first time, and squares

are the second time (the same symbols as in Figures 3 and 4). Colors represent cities as in Figure

5.

Figure 6 shows only weak correlations between these four quantities and the degree of gridlock.

An obvious relation is in the lower right, where the number of occupied roads per car drops for

the worst gridlock cases. This merely reflects the inability of cars to reach their destinations in

these cities, and is more a result of gridlock than a determinant. In the upper right, the average

road speed per car drops for the red point, which is Nairobi; this is not the car speed but the road

speed limit. Still, even with slow road speeds, a high fraction of the cars are moving more than

30% slower.

The road length per occupied road and the road length per car seem to increase with gridlock.
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Fig. 4.— The fraction of slow cars is plotted versus the number of cars on the road for Washington

DC in 7 cases with different total time spans for the rush hour, all with the same total number of

cars launched. As the rush hour is spread out in time, the fraction of slow cars decreases. Even

small changes in the duration of rush hour lead to large changes in the slow fraction, considering

the ordinate is in logarithmic coordinates. The pair of numbers indicated for each curve is the

launch function pair, (R0, tmax), in the notation of equation 1.
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as shown by the high values of the instantaneous slow fraction. Time increases counter clock wise

in each loop. The correspondence between color and city is preserved in the next two figures, for

clarity.
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Fig. 6.— Distributions of various quantities for the 8 cities plotted versus the area under the top

part of the curves in Figure 5. The quantities considered are: (top left): the average occupied road

length per car, (top right) the average occupied road speed per car (road speed is a function of the

road and is not the car’s speed), (bottom left): the road length per occupied road, and (lower right):

the average number of cars per occupied road. Aside from quantities that result from congestion,

there is no evidence for a cause of congestion in properties of the roads themselves, leading to the

inference that the cause begins at the intersections.
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This was not expected because it means there is more room in the road network for cars when

gridlock is worse. We would have expected the opposite, that gridlock results when there is less

room on the road for the existing cars.

These considerations lead us to suspect that the intersections are more the problem than the

roads. To study this, we plot on the left in Figure 7 the number of roads with slow cars (defined as

above as cars moving at less than 30% of their local road speed) versus the fraction of the occupied

roads with slow cars. Time varies clockwise around the jagged curves. The bottom panel has a

bigger scale than the top panel so that all of the cities can be seen clearly in one panel or another.

Similarly, the right-hand side of Figure 7 shows the number of roads with slow cars versus the

average fraction of the road speed for all cars.

These distributions have an interesting pattern. In the left-hand panels, all of the cities start

moving along a diagonal line toward the upper right until about the time of the peak launch rate,

which is shown by the square (symbols are the same as in Figures 3 and 4). This trend corresponds

to a simultaneous increase in both the number and the fraction of roads with slow cars. After the

time of peak launch rate, the fraction of occupied roads with slow cars continues to increase as

the roads without slow cars begin to free up. The roads with slow cars free up much more slowly,

decreasing the curve gradually along the ordinate as it continues to move to the right. Eventually

all of the gridlocked roads begin to empty and the curves decrease down and to the left. This

pattern is another manifestation of the hysteresis seen in Figures 3-5, but it shows that even with

bad gridlock only a small fraction of the occupied roads, less than 1%-10% for 7 of the cities,

actually have this gridlock – the rest are relatively free. Also, as shown in the right-hand panels,

the average speed of all the cars is within 80% of the local road speed for 6 of the 8 cities. In the

worst cases, it drops down to 20%.

For Istanbul (black curve), the fraction of occupied roads with slow cars in Figure 7 is a

maximum, and the average fraction of the road speed is a minimum, when the number of roads

with slow cars is far lower than the peak number. The same is true for Washington DC. What this

means is that after a while, most of the gridlock is on only a few roads and the rest of the roads

are relatively clear. It takes a long time for these blocked roads to free up while all the other roads

empty. Cities without this pattern, such as Damascus (yellow) and Beijing (gray) have distributions

that go up and come down on nearly the same diagonal line. For these cases, the roads that block

up easily also free up easily. Thus the openness of the curves in Figure 7 indicates the range in the

ability of blocked roads to free up. Narrow curves have a small range, which means the troublesome

roads and intersections are all about the same, while open curves have a wide range, which means

that some intersections are much worse than others.

At this point, one of the limitations of the Megaffic code should be recalled, as the results for

real cities could be different from what we simulate. This limitation is that the routes used by all

of the cars are determined and fixed before the simulation begins, so drivers cannot change their

routes as the congestion develops. In one sense this is realistic because drivers sometimes have few
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Fig. 7.— (Left:) The number of roads with slow cars (defined to have less than 30% of the road

speed) versus the fraction of the occupied roads with slow cars. (Right:) The same quantity versus

the average fraction of the road speed for all cars. Each curve is for a different city during the rush

hour models shown in Figure 5 using the same color scheme. Points move clockwise around the

curves in time for the left-hand panels and counter clockwise for the right-hand panels. The top

two panels show enlargements of the lower two panels and also exclude the red and black curves

for clarity. These figures indicate that gridlock is dominated by a few intersections in a city.
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options for different routes and are forced to follow the congested roads. However, some cities have

many more side streets connected to the main thoroughfares than other cities do, and for these

well-connected cities, smart drivers will get off the congested roads and take alternate routes even

if they are longer.

We experimented with more diverse route plannings on a square grid of roads to see what

possible improvements there might be. The road grid measured 51 by 51 roads intersecting at

right angles; it will be discussed later for another purpose in Section 5. We used Dijkstra’s (1959)

algorithm to design trips. In one case, we generated 100 trips that start from the upper-right

cross-point in the square grid to the lower left cross-point using Dijkstra’s shortest path for all of

them. As a result, they followed the same path. In a second case, we generated 100 trips from the

same start and end points and each trip again used the shortest path algorithm but the cost of the

used roads was raised sequentially as the trips were generated. The result was a sequence of trips

distributed all over the map. The second approach improved the average trip time in this idealized

model by a few per cent and avoided jams at crowded intersections.

Another experiment moved cars from the entire left-hand column to the entire right-hand

column in a square 51 × 51 road grid. Dijkstra’s method decreased the total trip time by 7%

compared to the Megaffic algorithm for trip designs.

These tests suggest that modest levels of improvement are possible with trip designs that

program in some avoidance strategy. Square grids are optimum for this however, because the

number of routes with the same total road length is enormous. Small variations in routing can

decrease the traffic flow on each road by the inverse of the number of different routes.

5. Idealized Road Networks

Idealized road networks allow us to study the most basic properties of traffic flow without the

complexity that comes from a mixture of road structures in real cities. We considered the three

idealized networks shown in Figure 8; only the inner portions of the left and middle networks are

shown. On the left is a square grid composed of 51 single lane roads in each direction; the dots are

the intersections. Each road segment has the same length L and the same speed v. In the center is

a triangular network with single-lane roads in each direction along the 60◦ angles, and with segment

lengths L and uniform speeds v. On the right is a square grid with two-way, single-lane segments

as before, but now the central parts along each axis have roads 10 times longer. This third case is

intended to simulate cities with boulevards or highways that can hold more cars than the shorter

side streets elsewhere. In another set of simulations we considered higher or lower road speeds for

the same middle segments in the vertical and horizontal directions, but now with normal short road

lengths there as in the left panel.

The results of rush hour launch rates for these cases are shown in Figure 9. Each panel has

five cases for the grid type indicated: four with (R0, tmax) = (80, 5000) and (160, 5000) for each of
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(L, v) = (200, 30) and (400, 60), and a fifth with (R0, tmax) = (40, 10000) and (L, v) = (400, 30).

Units of R0 are cars per 10 seconds; units of tmax are seconds; units of L are meters, and units of v

are km hr−2. This choice of cases is made because cases with (L, v) = (200, 30) and (400, 60) have

the same average travel times (i.e., from the ratio of road length to speed), which normalizes the

simulations to time. The different (R0, tmax) give light and heavy rush hour traffic with one having

twice the launch rate as the other. The fifth case has half the launch rate for the same number

of cars compared to (R0, tmax) = (80, 5000), but the road density is the same because the speed is

half compared to the case (L, v) = (400, 60). For comparison, the square grid results from the top

left are repeated in the lower left as dotted curves.

The results show relatively little gridlock for the square and triangular grid cases (top left and

right) unless there are long roads mixed with short roads (lower left). Then the congestion gets

much worse for the heavy rush hour cases (red and cyan curves in the lower left). This worsening

condition contrasts with the light rush hour case in the lower left, where long roads improve the

flow (blue, black and green solid-line curves have slightly smaller slow-car fractions than the dotted

curves of the same colors). For equal road lengths, the triangular grid is marginally better than

the square grid. In all cases, the lowest launch rates (blue curves) have the least congestion.

The results for a square grid with uniform road lengths and variable road speeds are shown

in the lower right of Figure 9. As mentioned above, all of the road speeds are the same except

for horizontal roads in a vertical strip through the center and vertical roads in a horizontal strip

through the center, where the roads are either half the speed of the other roads (dashed curves) or

twice the speed (solid curves). Lowering the speed of some fraction of the roads does not increase

congestion noticeably (the dashed curves in the lower right panel are like the similarly-colored

curves in the upper left). However, increasing some road speeds creates problems for all launch

rates. The reason for this is that cars on the fast roads come to their ending intersections quickly,

and then they have to wait for the cars ahead of them to cross before they can go.

Note that the nominal road speeds in all of these cases can be reached after traveling only at

most 20% of the road length, so the congestion is not an artifact of acceleration in a limited domain.

For example, several cases in Figure 9 have a road length of 200 meters with a road speed of 30 km

hr−1, which is 8.3 m s−1. The acceleration is always 1.7 ± 0.3 m s−2. With this acceleration, the

road speed is reached after traveling only 20 m, which is 10% of the road length. For 60 km hr−1

roads of 400 m length, the speed is reached after 20% of the road is traveled.

6. Dependence on Acceleration

Merging and leaving an intersection or other stopping point should be faster if the acceleration

is higher. The dimensionless quantity aD/v2 was discussed in the introduction. For a given road

density, written here as the separation between cars, D, and road speed, v, a higher acceleration

a, and higher corresponding braking rate, which in our simulations is proportional to a, allow for
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easier merging between cars, either during lane shifts or while entering new roads at intersections.

To test for this in Megaffic, we increased the mean and standard deviation for the accelerations

of all cars by factors of 20.25i for i = 0, 1, 2, up to 9. Thus the acceleration ranges between the

nominal value we have been using in Figures 1-7, which is a = 1.7±0.3 m s−2 up to a = 8.09±1.43

m s−2.

The rush hour models with these accelerations are shown in Figure 10 for Washington DC

and Damascus. The looping curves decrease rapidly with increasing acceleration. After reaching

a certain value, they increase again but only at a level of 0.1% or so. Too large an acceleration

increases the gridlock because then cars move too fast after a single time step to merge with traffic

at the nominal road speed.

Figure 11 shows the decrease in area under the hysteresis loop versus the acceleration factor

for the five cities in Figure 5 that have the most gridlock. Each city improves when the acceleration

increases, with the least gridlocked cities improving the fastest. Highly gridlocked cities do not

improve as much with acceleration because each bad intersection has a lot of stopped cars and

only a small fraction of cars get to accelerate at the beginning of the queue when it leaves the

intersection. Improvements from increased acceleration help more when there are small queues at

a large number of intersections, rather than large queues at a few intersections.

7. Results for Steady Flow Simulations

Steady traffic flow inside a city center was also investigated using a vehicle launch rate that

increases first as a half-Gaussian with σa = 1000 seconds up to the peak rate R0 at t0 = 2500, as

for most of the rush hour simulations discussed above, and then levels off to the steady rate R0 for

another 20,000 seconds. At low R0, traffic was stable with the rate of trip completion equaling the

launch rate. As R0 increased, there was a certain value beyond which the number of cars on the

road increased indefinitely, causing more and more congestion over time.

Figure 12 shows the results for one city; other cities are similar. The launch rates increase

from R0 = 10 cars in each 10 second interval, up to 100 cars/10 s, in steps of 10 cars/10 s. In the

lower right panel, the number of cars is shown for each R0 as a function of time using logarithmic

coordinates on the ordinate. The lower curves level off, indicating a constant number of cars or

equilibrium between trip starts and completions. Higher launch rates have increasing numbers of

cars without leveling off. The center panel on the right plots the same thing but in linear coordinates

on the ordinate, to emphasize the rapid increase in car counts for large R0 at later times. The lower

and middle left panels show the summed speeds of all the cars versus the number of cars and the

time, respectively. The summed speed is a measure of the total traffic flux. Higher R0 gives higher

summed speed even at late times and high car numbers, so the city is supporting these cars and

still moving them. However, the average speed per car, shown by the red decreasing curves in the

bottom left, decreases rapidly with increasing car numbers, suggesting congestion. This congestion
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is shown better in the top panels where the fraction of cars with speeds less than 30% of their local

road speed is plotted versus time and number of cars on the road. This fraction stays low for low

R0 but increases to a saturated value of ∼ 0.9 at high R0 and late times. It does not reach unity

because even with congestion, there are still cars that move on unblocked routes.

The maximum R0 for equilibrium flow varies for the 8 cities in the same way that the congestion

indicator varies for the rush hour experiments. This variation is shown in Figure 13 where the

number of cars on the road at 10,000 seconds is plotted versus the launch rate R0 on log-log axes.

The 4 cities on the left have the largest congestion and are plotted separately from the 4 cities on

the right, using a different range of coordinate values. Following the order of cities in Figure 5,

those that are most easily congested in a steady state branch off earlier in Figure 13 from the linear

increase of car numbers with R0.

The solid curves in Figure 13 are for the normal acceleration, a = 1.7±0.3, used above, and the

dotted curves are for twice this acceleration with the same road speeds. As in Section 6, increased

acceleration decreases congestion. In this case, the decreased congestion allows higher launch rates

and more cars on the road in a steady state before the runaway growth begins at high R0. Thus

the dotted lines lie below and to the right of the solid lines. The result is sensitive to acceleration

as found above: launch rates can increase safely by ∼ 25% if the average acceleration doubles.

8. Conclusions

City traffic was investigated using the IBM software package Megaffic combined with car-by-

car and second-resolved streaming analytics using socket writes to a second computer. Rush hour

and sustained traffic flows in 8 cities were followed with Gaussian-shaped vehicle launch rates and

random city routes determined in advance.

A good measure of congestion was found to be the fraction of cars moving slower than 30% of

their local road speed. Decreasing the launch rates for the same window of time, or increasing the

time interval for vehicle launching with the same total number of cars, both decreased congestion,

as expected from common experience. Increasing vehicle acceleration for the same road speed also

improved traffic flow as it increased the probability that a car waiting at an intersection could enter

the next road and merge safely.

The main impediments to traffic flow seemed to occur at the intersections in our models, not in

the free-streaming traffic between intersections. Cars stopped at an intersection had to wait for an

opening to cross to the next road, and all of the cars behind them had to wait also. Increasing car

acceleration helped, as just mentioned, but only for the lead car at the intersection. If a road system

was jammed to a certain level by a small number of cars at each of a large number of intersections,

then increased acceleration improved the overall flow rate, sometimes by a large factor. However,

if the same level of jamming was caused by a large number of cars stuck at a small number of

intersections, then vehicle acceleration did not matter much as the fraction of cars with improved



– 21 –

mobility was small.

Real-time streaming analytics using all of the data generated by Megaffic was found to help

in visualizing and understanding problems as they arose. It would have been impossible with

the available computers to store all of the data and analyze it later in large-network simulations.

Standard storage and retrieval methods used for limited runs could not be scaled to real-life systems.
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Fig. 8.— Idealized road grids: (left) The inner portion of a square grid with a total of 51 vertical

and 51 horizontal roads. Each segment is 400 m long and consists of single-lane traffic in each

direction. The axes labels give the road positions in km. (middle) The inner portion of a triangular

grid with 51 roads in each 60◦ direction supporting single-lane two-way traffic; each segment is 400

m long. (right) The full image of a square grid with 51 roads in each direction and roads 10 times

longer than the others in the central cross; the roads are also single-lane and support traffic in each

direction. Segment lengths are 400 m in each quadrant corner and 4 km in the central cross.
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Fig. 9.— The fraction of cars moving slower than 0.3 of the local road speed is plotted versus the

current number of cars on the road for the idealized grids shown in Figure 8. Each panel has 5 rush

hour launch rates characterized by the parameter combinations (R0, tmax, v, L) = (80, 5000, 60, 400)

for green curves, (160, 5000, 60, 400) for red, (80, 5000, 30, 200) for black, (160, 5000, 30, 200) for

cyan, and (40, 10000, 30, 400) for blue. The meaning and units of these parameters are, in order,

peak launch rate in cars/10s, total time span for car launching in seconds, road speed in km hr−1,

and segment length in m. The top left and right panels show only these curves. The lower left

panel shows solid-line curves for the square grid with long roads in a cross pattern (Fig. 8), and

it repeats the curves in the upper left as dotted lines, for comparison. The lower right panel is for

a uniform square grid like the upper left panel, but the road speed in the segments of the central

cross is 2 times higher (solid curves) or 2 times lower (dashed curves) than the speed in the other

roads. Road networks with long segments (lower left) or road networks with fast segments (lower

right) experience greater congestion at high launch rates because these enhanced road segments

can have a lot of cars but they have only one endpoint to exit onto the rest of the grid.
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Fig. 10.— The fraction of slow cars versus the number of cars for two cities, Washington DC and

Damascus, with (R0, tmax) = (80 cars/10s, 5000 s) and different accelerations, increasing by powers

of 20.25 from the top curve down to the green curve and then back up again to the cyan curve.

Greater average car acceleration decreases congestion.
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Fig. 11.— The integral below the curve of slow car fraction versus car number – the hysteresis loop

– is shown versus the acceleration factor for simulations of 5 cities. The acceleration for each point

in a segmented curve equals the nominal acceleration, 1.7±0.3 m s−2 multiplied by the acceleration

factor. Highly congestible cities like Nairobi and Istanbul are less sensitive to acceleration than

weakly congestible cities because the congestible cities have a smaller number of more difficult

intersections where the queue to cross is long. Then only a small fraction of slow cars get a chance

to accelerate up to the road speed while the rest of the cars wait in the queue.
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Fig. 12.— These curves show the time development of traffic in one representative city, Istanbul,

when the rate of car launching increases and then levels off to a value R0 = 10, 20, ... 100 cars per

10 seconds. For small launch rates, the number of cars on the road can remain constant because

the starting and ending rates are equal. For large launch rates, the number of cars continuously

increases and the average speed per car continuously decreases (red curves, lower left) because of

increasing congestion. The various panels are described in the text. Note that the summed speed

is a measure of the total car flux in and around the city, and it continuously increases with time

(middle left panel) even as the congestion increases (top left panel). The relationship between the

fraction of slow cars and the number of cars on the road is nearly independent of the launch rate

in a steady state (upper right).
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Fig. 13.— The number of cars on the road versus the launch rate for the case of steady flows

shown in Figure 12. The number increases linearly with launch rate for small launch rates when

the roads are uncongested, but the number increases much faster when the launch rate reaches a

critical value and the roads begin fill up. The critical launch rate increases with city in the same

order as the hysteresis loops decrease in Figure 5.


