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ON THE SPEED OF CONVERGENCE OF gen-OMPALGORITHM UNDER

RIP CONDITIONS

AURÉLIE LOZANO, TOMASZ NOWICKI AND GRZEGORZ ŚWIRSZCZ

Abstract. Following the program of translation of algorithmic problems into a dynamical sys-

tem setup, we investigate the bounds for a gen-OMP algorithm in the terms of iterates of a
piecewise affine one dimensional map. OMP algorithms are greedy methods for sparse signal re-

covery or approximation from random measurements. They originate from the signal-processing

community and have also been popular in the domains of function approximation, statistics and
machine learning.

1. Introduction

The aim of this paper is to represent a problem of number of iterates in a gen-OMP (generalized
Orthogonal Matching Pursuit) algorithm in the language of dynamical systems and to analyze it
using geometrical intuitions derived from the understanding of the underlying dynamics. The class
of Orthogonal Matching Pursuit techniques has received considerable attention in machine learning,
statistics and signal processing as a key tool for sparse signal recovery and sparse model estimation
from noisy data [11, 5, 10, 13, 14]. OMP procedures are iterative. At each step the column of
the data matrix which is most correlated with the current residuals is picked. This column is
then added into the set of selected columns. The residuals are then updated by projecting the
observations onto the linear subspace spanned by the columns that have been selected so far and
the algorithm then iterates. The representation of algorithms in dynamics proved to be successful
in many cases. In [7, 8] dynamics in a functional space helped establish a tight estimation of a
parameter in an algorithm describing maximal matching in graphs; in [9] a study of convergence
to a neutral attractor clarified the behaviour in a routing algorithm; in [3] a study of an dynamical
evolution in the space of distributions provided a better value of a critical parameter in a scheduling
problem; and several papers such as [1, 2] about Error Diffusion have applications in half toning
and color printing. It is our belief that both algorithmic and dynamics communities can benefit
from such inter-disciplinary approach.

This work was inspired by an excellent but involved article [12]. We aimed at making the argu-
ments more accessible and geometric, and also obtained sharper results. While the improvement
would hopefully be of interest to the algorithmic community, our goal is also to expose this type of
problems to the wider range of recipients, such as but not limited to dynamical systems experts.

In this section, we introduce key notation and definitions, and review the gen-OMP procedure.
We then split the remainder of this paper into two parts. In the first part (Section 2) we deal
with dynamical systems generated by a family g of one dimensional piecewise affine functions,
parameterized by finite sequences of points related to the discontinuities. We prove Theorem 1.2
bounding from above the number of iterates of the function g for which the rightmost point is
mapped below the leftmost discontinuity.

In the second part (Section 3) we show how to use this Theorem to estimate the number
of steps of the gen-OMP algorithm that are sufficient to run before stopping the procedure. We
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define the stopping rule below. The dependence between the functions g and gen-OMP is described
in Theorem 3.1. Finally in Theorem 1.3 we state explicitly the number of steps in gen-OMP .

1.1. Piece-wise linear functions f and g. In the definitions of both families f and g we use
two constants 0 < ρ < 1 < µ. Let Q = (QM , QM−1, . . . , Q0) be a finite sequence of real numbers
with QM = 0 for which we denote |Q| = M . We artificially define Q−1 = µQ0. For 0 ≤ j < i ≤M
we define the functions

fi,j(q) = fQ,i,j(q) = Qi +

(
1− ρ

i− j

)
(q −Qi) if q ∈

[
Qj−1

µ
,
Qj
µ

)
and q ≥ Qi

and fQ,i,j(q) = q otherwise. Let

f(q) = fQ,µ,ρ(q) = min
0<j<i≤M

fQ,i,j(q).

Define also hj(q) = Qj if Qj < q < Qj−1/µ and hj(q) = q otherwise. Let h(q) = min0<j<M hj(q).
If Qj ≥ Qj−1/µ we have hj(q) ≡ q. Finally define

(1.1) g(q) = gQ,µ,ρ(q) = h ◦ f(q) .

When it does not lead to confusion we will be writing fQ, fi,j , gQ etc. instead of fQ,i,j , gQ,µ,ρ.

Figure 1. Graphs of fQ, hQ and gQ

As usual one defines the iterates φn of a function φ as by φ0 = id and φn+1 = φ ◦ φn.
We will be interested in estimating from above the number n of iterates of the function gQ after

which gnQ(Q0) = 0. As we shall see later, this corresponds to gen-OMP algorithm terminating

successfully. Note that gnQ(Q0) = 0 is indeed equivalent to gnQ(Q0) ≤ QM−1/µ, thanks to the
introduction of a somewhat mysterious function h in the definition of g. Once we start discussing
gen-OMP algorithm in more detail in Section 3.1 the reason for the presence of this function will
become clear.

Remark 1.1. The condition QM = 0 can be achieved by change of coordinates (translation) q 7→ q−
QM , Qi 7→ Qi−QM . Without it the definitions of fQ,i,j would be more cumbersome: the intervals
of definition would be given by (Qj − QM )/µ ≤ q < (Qj−1 − QM )/µ, and similar complications
would arise in the formulas for functions hj . Additional rescaling allows to make Q0 = 1, but that
does not make the formulas much simpler, so we are not using it. The artificial Q−1 helps defining
the functions fi,0 acting near Q0.
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Set

κM =
M

ρ
(2 lnµ+ 3ρ+ 3 ln 2) ,

κQ = inf{κ : ∀n∈N,n>κ gn(Q0) = 0}.

Theorem 1.2. If n ∈ N satisfies n ≥ κ|Q| then gn(Q0) = 0.

In other words, for every Q there holds κQ ≤ κ|Q|.
The proof of Theorem 1.2 is given in Section 2, where we reduce it to the monotone sequences Q.

1.2. The steps in the gen-OMPalgorithm. The gen-OMP algorithm is used to approximate a
minimum of a function Q : Rp → R which is convex and has somewhat restricted geometry. To be
blunt, it is a generalization of a quadratic functionQ(x) = ||Ax−y||2, whose minimization produces
the regression coefficients x. This models the response vector y by a linear combination of columns
of the matrix A. The columns are usually called features and the rows examples. Take a regression
model of a medical treatment with (not too many) p patients and d (very large) observable variables
(temperature, weight, height, partial pressures, concentration of various chemicals, medications),
where y is a variable we desire to predict or control such as the expected number of days to
recovery. One would prefer to have as few variables x as possible to consider in order to make
a good estimate of the outcome y in this otherwise largely over-determined situation. The price
to pay is the accuracy of the prediction and the cost and time of the calculation, expressed for
example in the number of steps of an algorithm to be performed.

The classic OMP algorithm that can be thought of as an ”iterated linear regression“ seeks the
approximation point with a small (compared to p) number of non-zero coordinates, by adding the
coordinates one by one. Denote by supp (x) = {i : xi 6= 0} the set of indices of non-zero coordinates
of x, and ||x||0 = cardsupp (x). Denote by X (F ) the minimizer of Q on the set of coordinates
F , Q(X (F )) ≤ Q(x) for all x with supp (x) ⊂ F . Suppose that a set F of features (columns of
A) is already chosen and X (F ) was found. With the OMP algorithm we look then for the next
column Ai which best aligns with the residuum AX (F )− y, that is for which |(Ax− y) ·Ai|2/|A2

i |
is maximal. The next set of features will be F ′ = F ∪{i} with the minimizer X (F ′). The stopping
rule needs to balance the size of the resulting set of features and the accuracy of approximation.

For a convex function Q(x) one can generalize OMP to gen-OMP as follows. We assume that
for any point we can determine easily both the value of Q and its gradient ∇Q and that the cost
of finding a relative minimum over all the points with a small (relative to p) number of non-zero
coordinates is bearable. In gen-OMP at step n, given some subset Fn ⊂ {1, . . . , p} of coordinates
(the starting set at n = 0 may be empty) we look for the minimal value q(n) of Q over all the points
with the non-zero coordinates in this set only. Then we choose the largest component (over all the
coordinates) of the gradient at this point, add its index to our subset, forming Fn+1 and find the
next relative minimal value q(n+ 1). We can stop the algorithm when the relative minimal value
is satisfactory, for example when the gradient is small, which suggests a closeness to the global
minimum. Following [12] we define an estimate on the gradient called Restricted Gradient Optimal
Constant as:

(1.2) εs(x) = min{ε : |∇Q(x)u| ≤ ε||u||2 for all u ∈ Rd with ||u||0 ≤ s} .

Small ∇(x) implies small εs(x).
If there exists an unknown point with M non-zero coordinates which approximates the minimum

in a satisfactory way we would like to know that using gen-OMP we can find a point with not many
more coordinates at which the value of Q is not much worse.
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We define positive numbers ρ±s as estimates of sorts of the Hessian, that is by the Restricted
Strong Convexity condition:

(1.3) ρ−s ||y − x||22 ≤ |Q(y)−Q(x)−∇Q(x)(y − x)| ≤ ρ+
s ||y − x||22 .

for all ||y − x||0 ≤ s. This condition is closely related to the highly celebrated RIP conditions
from [4]. Given S we set

(1.4) ρ = ρ(S) =
ρ−S
ρ+

1

.

Speaking about gen-OMP we introduce yet another constant c fixed throughout the paper, which
in turn helps us to define µ. For any fixed c > 0 we define:

(1.5) µ = µ(s,m) = (c+ 2)(c+ 2
ρ+
m

ρ−s
) .

We recall that κ(M,µ, ρ) = M
ρ (2 lnµ+ 3ρ+ 3 ln 2).

Theorem 1.3 (Number of steps in gen-OMP ). For any x̄ ∈ Rd with F̄ = supp (x̄) and F0 ⊂
{1, . . . , d} with M = card (supp (x̄) \ F0):

If there exists an integer S satisfying:

S ≥ |F̄ ∪ F0|+ κ(M,µ(S,M), ρ(S))

then for any κ ≥ κ(M,µ(S,M), ρ(S)) steps of the gen-OMP algorithm starting with initial set F0

of features we have:

q(κ) ≤ Q(x̄) +
εS(x̄)2

cρ−S
.

In Section 3.5, using the results from Section 3.1 we reduce this Theorem to Theorem 1.2.

Remark 1.4. The implicit assumption on S follows the setup from [12].

Remark 1.5. Zhang’s result [12] states that for κZ = 4 M
ρ(S) ln

20ρ+M
ρ−S

if there exists an S ≥ |F̄ ∪F0|+

κZ then for any κ ≥ κZ we have q(κ) ≤ Q(x̄) + 2.5εS(x̄)2

ρ−S
.

With c = 0.4 to keep the constant at ε the same, our result essentially improves the constant
4 lnµ to 2 lnµ and the constant 20 to 15 (for small ρ(S)).

2. Proof of Theorem 1.2

2.1. Preliminaries. We start the section with the following simple observation

Lemma 2.1. Let κ be such that for every n > κ and for every decreasing Q with |Q| = M there
holds gnQ(Q0) ≤ QM . Then gnQ(Q0) ≤ QM for every Q with |Q| = M (not necessarily decreasing).

Proof. Let Q = (QM , QM−1, . . . , Q+1j,Qj , Qj−1, . . . , Q0) and let
R = (QM , QM−1, . . . , Qj+1,min{Qj , Qj−1}, Qj−1, . . . , Q0) for some 0 < j < M . If Qj ≤ Qj−1

then trivially fQ,µ,ρ(q) ≡ fR,µ,ρ(q). If Qj > Qj−1 then for every i, q there holds

(1) fQ,i,j(q) ≤ fQ,i,j−1(q) and fR,i,j(q) = fR,i,j−1(q),
(2) fQ,j−1,k(q) ≤ fQ,j,k(q) and fR,j−1,k(q) = fR,j,k(q)

therefore

fQ,µ,ρ(q) = min
0<k<i≤M

fQ,i,k(q) = min
0<k<i≤M

k 6=j−1,i6=j

fQ,i,k(q) = min
0<k<i≤M

k 6=j−1,i6=j

fR,i,k(q) = min
0<k<i≤M

fR,i,k(q),

thus gQ ≡ gR and Lemma 2.1 follows. �



ON THE SPEED OF CONVERGENCE OF gen-OMP ALGORITHM UNDER RIP CONDITIONS 5

Therefore we need only to consider sequences Q such that = QM ≤ QM−1 ≤ · · · ≤ Q0 and from
this point on the monotonicity of Q will be assumed.

We want to estimate the number of iterates κ = κQ, such that fκ(Q0) ≤ QM−1

µ . We shall split

the monotone trajectory f j(Q0) into several parts separated by a monotone sequence of points Pt.
Define K to be such that µ−K < QM−1/Q0 ≤ µ−(K−1). For any t set Pt = QM−1 ·µK−t. We have

P0 > Q0, P1 ∈
(
Q0

µ , Q0

]
, PK = QM−1 and PK+1 = QM−1

µ . The trajectory between two points

Pi−1 and Pi will be split into two parts by a point Pi−α for some appropriate α ∈ (0, 1). The
following three Lemmata will help us to define this number.

2.2. Looking for α.

Lemma 2.2 (ξ). For every 0 < ρ < 1, µ > 1 there exists a ξ ∈ (0, µ] such that for any γ ∈ I =
[1 + e−ρξ, 1 + ξ) we have γ3/(γ − 1)2 < 8.

Proof. Define Ξ(γ) = γ3/(γ − 1)2, We look for such ξ ≤ µ that the maximum of Ξ on the interval
I is minimal. As Ξ is convex for γ > 1 its maximum is achieved at the endpoints of I. The
value at this maximum is minimal when we choose ξ such that the values at the endpoints are
equal. The positive solution to Ξ(1 + e−ρξ) = Ξ(1 + ξ) is at ξ(ρ) = (1 + e−ρ/3)e2ρ/3 with the value
Ξmax = (1 + e−ρ/3 + e−2ρ/3)3/(e−2ρ/3(1 + e−ρ/3)2) which is not larger than 7.33... < 8, the value
for ρ = 1. The maximal value of ξ over all ρ is at ρ = 1 and then ξmax = e2/3 + e1/3 = 3.433....
The choice of ξ = ξ(ρ) satisfies the bound when µ ≥ ξmax for any value of 0 < ρ < 1. For
µ ≤ ξmax we can choose ξ = µ. Because µ > 1 > e1/3(e1/3 − 1) > eρ/3(eρ/3 − 1) we have
Ξ(1+µ) ≥ Ξ(1+e−ρµ), that is the maximum Ξ(γ) on I is at Ξ(1+µ). But for 1 < µ ≤ ξmax < 3.5
we have Ξ(1 + µ) < 7.43... < 8. �

Remark 2.3. For gen-OMP usage there is no need of the second part of the proof as in gen-OMP we
have µ ≥ 4.

In order to avoid rounding errors we prove that we can find integers in some intervals.

Lemma 2.4 (κ). Given µ > 1 and 0 < ρ < 1 for any 0 < ξ ≤ µ there exist:

(1) γ ∈ [1 + ξe−ρ, 1 + ξ) with κ =
ln µ
γ−1

ρ ∈ N,

(2) γ ∈ [γ, γeρ) with κ =
ln γ

ρ ∈ N.

Proof. The interval [1 + ξe−ρ, 1 + ξ) is mapped by γ 7→ ρ−1 ln µ
γ−1 onto

(
ρ−1 ln(µ/ξ), ρ−1 ln(µ/ξ) + 1

]
of length 1, containing an integer κ > 0, as µ > ξ. Its pre-image defines γ. Similarly the map
γ 7→ ρ−1 ln γ transforms [γ, eργ) onto

[
ρ−1 ln γ, ρ−1 ln γ + 1

)
containing an integer κ > 0 as γ > 1.

Its pre-image defines γ ≥ γ. �

Given ρ and µ we use ξ from Lemma 2.2 to set up γ from Lemma 2.5 and to define:

(2.1) α =
ln((µ− 1)γ + 1)

lnµ
− 1,

Lemma 2.5. We have: γ = µα+1−1
µ−1 , µα−1

µ−1 = γ−1
µ and α ∈ (0, 1). Moreover µα < γ.

Proof. The equalities follow from a simple calculation and they imply the last inequality. From
(µ−1)γ+1 = µ+(µ−1)(γ−1) > µ we get α > 0 and from (µ−1)γ+1 = µ2−(µ−1)(µ−(γ−1)) < µ2

(as µ ≥ ξ > γ − 1) we get α < 1. �
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Lemma 2.6. With the above notation for any n, i we have:

(1− ρ

n
)nκ ≤ e− ln µ

γ−1 =
γ − 1

µ
=
µα − 1

µ− 1
=
Pi−α − Pi
Pi−1 − Pi

,

(1− ρ

n
)nκ ≤ e− ln γ =

1

γ
≤ 1

γ
=

µ− 1

µα+1 − 1
=

Pi − Pi+1

Pi−α − Pi+1
.

Proof. Straightforward from the definitions of α and Pt. We used (1− x) ≤ e−x. �

For i ∈ {0, . . . ,K + 1} let the integer ji be minimal such that: Qji ≤ Pi. By definition of K at
the beginning of this subsection we have j0 = 0, jK = M − 1 and jK+1 = M .

Using κ and κ from Lemma 2.4 we define κi: for i ∈ {2, . . . ,K}: κi = κi + κi, where κi =
(ji− ji−2)κ, κi = (ji+1− ji−2)κ. For i = 1 we set κ1 = j1κ and κ1 = j2κ, which follows the general

definition if we set artificially j−1 = 0. For i = K + 1: κK+1 = dM−jK−1

ρ lnµe.

Lemma 2.7 (Bounds on κi). For any 1 ≤ i ≤ K + 1: fκi(Pi−1) ≤ Pi.

Proof. Let Γj = [Qj/µ,Qj−1/µ), the interval where fi,j(q) 6= q. For i = 1, . . .K we have Qji ≤
Pi < Qji−1, that is, after dividing by µ: Pi+1 ∈ Γji . As P1 > Q0/µ we also have P1 ∈ Γ0 = Γj0 .
In the following we shall use that for Q < P < x, 0 ≤ r ≤ 1 : Q + r(x−Q) ≤ P + r(x− P ). Fix
1 ≤ i ≤ K, then using Lemma 2.6 and the definition of Pt:

fκi(Pi−1) ≤ fκiji,ji−2
(Pi−1) = Qji + (1− ρ

ji − ji−2
)κi(Pi−1 −Qji)

≤ Pi +
Pi−1 − Pi
Pi−α − Pi

(Pi−1 − Pi) = Pi−α

fκi(Pi−α) ≤ f
κi
ji,ji−2

(Pi−α) = Qji+1
+ (1− ρ

ji+1 − ji−2
)κi(Pi−α −Qji+1

)

≤ Pi+1 +
Pi − Pi+1

Pi−α − Pi+1
(Pi−α − Pi+1) = Pi

For i = 1 the argument uses artificial j−1 = 0 and that P0 ∈ Γ0 = [Q0

µ , Q0). Finally for i = K + 1

we have QM−1 = PK ∈ ΓjK−1
and:

fκK+1(PK) ≤ f
κK+1

M,jK−1
(PK) =

(
1− ρ

M − jK−1

)κK+1

PK

≤
(

1− ρ

M − jK−1

)M−jK−1
ρ lnµ

PK <
PK
µ

=
QM−1

µ
= PK+1 .

�

2.3. Completing the proof of Theorem 1.2.

Proposition 2.8 (Total number of iterations). For κ =
∑K+1
i=1 κi we have κ ≤ κM = M

ρ (2 lnµ+ 3ρ+ 3 ln 2)

and fκ(Q0) ≤ QM−1/µ.
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Proof. The estimate for fκ(Q0) follows inductively from the previous Lemma. For the estimate
on κ remind that we chose the parameter 0 < ξ ≤ µ from Lemma 2.2. We have:

κ =

K+1∑
i=1

κi =

K∑
i=1

κi + κK+1 =

K∑
i=1

(κi + κi) + κK+1

≤ (jK + jK−1 − j0 − j−1)κ+ (jK+1 + jK + jK−1 − j1 − j0 − j−1)κ+ κK+1

≤ ρ−1
(
2M lnµ+ (2M + jK−1) ln γ − (M + jK−1) ln(γ − 1)

)
+ 1

≤ ρ−1

(
2M lnµ+M ln

γ3

(γ − 1)2

)
+ 1 ≤ 1 +Mρ−1

(
2 lnµ+ 3ρ+ ln

γ3

(γ − 1)2

)
≤ 1 +Mρ−1 (2 lnµ+ 3ρ+ 3 ln 2) ,

where last estimates follows from Lemma 2.2. �

From Proposition 2.8 Theorem 1.2 follows.

3. The iterative estimation in gen-OMP

We make the description of the gen-OMP algorithm more specific. We begin by explicating
how the features are selected by gen-OMP . Then we describe the trade-off between the number of
feature selected and the quality of the solution. Next we describe and provide a set of results on
what we call the “feature gaining mechanism” of gen-OMP . Finally, we conclude the section with
the proof of Theorem 3.5.

3.1. The gen-OMPalgorithm. For x ∈ Rd let xi ∈ R denote its ith coordinate and for a set of
indices (features) F ⊂ {1, . . . , d} let x|F ∈ Rd be the restriction of x to the support F defined by:

(x|F )i =

{
xi i ∈ F ,
0 i 6∈ F .

We shall use some properties of the restriction such as ||x||22 = ||x|A||22 + ||x|B ||22 − ||x|A∩B ||22. By
supp (x) ⊂ {1, . . . , d} we denote the support of x or the set of its (non-zero) features:

supp (x) = {i ∈ {1, . . . , d} : xi 6= 0} .
The cardinality of this set will be denoted by ||x||0 = card supp (x). Given the set of features F
we denote ”the minimal x“:

X (F ) to be any x ∈ Rd with supp (x) ⊂ F such that Q(x) ≤ Q(y) for all y with supp (y) ⊂ F .
We note that it is possible that supp (X (F )) 6= F .

Given a point x optimal on the set of features F , Q(x) = Q(X (F )) we denote by next(F ) and
next(x) respectively the set of features and any point generated by the gen-OMP algorithm in the
following way. Denoting the partial derivative with respect to j-th variable by ∇jQ = ∇Q · ej we
first we choose any ”maximal gradient“ index j, i.e. any j such that |∇jQ(x)| ≥ |∇iQ(x)| for all
1 ≤ i ≤ d. We set

next(F ) = F ∪ {j} and

next(x) = X (next(F )).

Because F ⊂ next(F ) we have Q(next(x)) < Q(x) unless ∇Q(x) = 0 and x = next(x) is the global
minimum of Q. Starting at some set of features F = F (0) and the point x = x(0) = X (F0) we
shall denote the iterates of the gen-OMP algorithm by F (k) and x(k) respectively thus F (k+ 1) =
next(F (k)) and x(k + 1) = next(x(k)). We shall denote the the value Q(x(k)) by q(k). The
algorithm stops when some approximation condition is met.
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Figure 2. gen-OMP algorithm

3.2. Approximation of a suspected almost optimal point. The trade-off of number of fea-
tures versus the closeness to the optimum can be expressed as follows.

For any point X with m non-zero coordinates whose closeness to the minimum is measured by
some estimate of the gradient of Q at X we will estimate the number of steps from any initial
point x(0) until we reach the value which is comparable with this estimate. It turns out that the
gen-OMP algorithm either decreases the value q(k) = Q(x(k)) by a controllable amount or adds
the coordinates of X to the coordinates of x(k). After a number of steps k which depends on
||X||0, but not on d nor on p, either (a) F (k) contains E = supp (X), but not much more, in which
case q(k) ≤ Q(X) and cardF (k) ≤ const card (E) or (b) q(k) will be close enough to Q = Q(X)
and x(k) will be close to X, both of them in terms of the gradient estimate (1.3).

Remark 3.1. In the model function Q(x) = ||Ax − y||22 = (Ax − y)T (Ax − y), x ∈ Rd, y ∈ Rp,
A ∈ Rp×d, the difference in the 1.3 formula is equal to (y − x)TATA(y − x), and the constants ρ±s
can be estimated respectively by the minimum and maximum of the set of all eigenvalues of the
matrices ATFAF , where F runs over all subsets of {1, . . . , d} with cardinality at most s and AF is
formed by the columns of A with indices in F .

Remark 3.2. The function s 7→ ρ±s is non-increasing, in particular for any m, s we have ρ+
m ≥ ρ−s .

3.3. The iterative model. Suppose that for a set of features F we found the optimal point
x = X (F ):

Q(X (F )) ≤ Q(z) for any z with supp (z) ⊂ F .

When we apply gen-OMP we get the coordinate j of maximal gradient and the next minimum
next(x) = X (F ∪{j}) = X (next(F )) relative to the new set of features. We estimate Q(next(x)) ≤
minαQ(x+ αej), and using (1.3):

Q(next(x)) ≤ min
α

(
Q(x) + α∇Q(x)(ej) + ρ+

1 α
2
)

= Q(x)− (∇jQ(x))2

4ρ+
1

,

where the minimum was achieved at α = −∇jQ(x)/2ρ+
1 .
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By gen-OMP choice |∇jQ(x)| was maximal and by optimality ∇iQ(x) = 0 for i ∈ F . For any
point z with features E = supp (z) we have

|∇jQ(x)|
∑
i∈E\F

|zi| =
∑
i∈E\F

|∇jQ(x)||zi − xi| ≥
∑
i∈E\F

|∇iQ(x)||zi − xi|

=
∑

i∈E∪F
|∇iQ(x)||zi − xi| ≥ |

∑
i∈E∪F

∇iQ(x)(zi − xi)|

= |∇Q(x)(z − x)| ,

where we used xi = 0 for i 6∈ F ⊃ supp (x), and similarly zi = 0 for i 6∈ E(= supp (z)). Again
using (1.3) and setting s = cardF ∪ E we continue:

|∇jQ(x)|
∑
i∈E\F

|zi| ≥ |∇Q(z)(z − x)| ≥ −∇Q(x)(z − x) ≥ Q(x)−Q(z) + ρ−s ||z − x||22 ,

It follows that for any point z with Q(z) ≤ Q(x) we have

Q(next(x)) ≤ Q(x)− (Q(x)−Q(z) + ρ−s||x− z||2)2

4ρ+
1 (
∑
i∈E\F |zi|)2

.

Consider the function φ(ξ) = ξ − (ξ + α)2/4β, with β > α > 0 (if β < α then φ(ξ) < 0). The line
λ(ξ), tangent to φ at α lies above φ, hence φ(ξ) ≤ λ(ξ) = (1− α/β)ξ. (The same can be achieved
via (α+ β)2 ≥ 4αβ.) It follows that:

Q(next(x)) ≤ Q(z) +

(
1− ρ−s

ρ+
1

||x− z||22
(
∑
i∈E\F |zi|)2

)
(Q(x)−Q(z)) .

We have

||x− z||22 ≥
∑
i∈E\F

|zi|2 ≥
(
∑
i |zi|)2

cardE \ F
,

and finally with ρ =
ρ−s
ρ+1

and l = cardE \ F :

(3.1) Q(next(x)) ≤ Q(z) +
(

1− ρ

l

)
(Q(x)−Q(z)) .

We shall use this inequality with different z’s in order to estimate the decrease of the gen-
OMP sequence. Remark that the equality may happen at each iteration and that the estimate
depends only on the values of the function Q. This is the prototype of the functions fQ,i,j .

3.4. The Feature Gaining Mechanism. From now on we shall fix a point X with ||X||0 = M .
We do not assume anything else about this point, in particular we do not know its coordinates.

After some (minimal) number of steps K the iterates of the gen-OMP algorithm starting at
a point x(0) would reach q(K) = Q(x(K)) < Q(X) + const ε2S(X), where S = ||X − x(k)||0 ≤
k0 + K + M , and εS(X) was defined in (1.2). It is possible as Q(xK) decreases to the absolute
minimum and εs increases with K. The heuristic is that M is small (compared to d and p) and that
ε(X) is small, so that X is close to the minimum, with a small number of features. The number K
represents the number of steps to achieve a relative closeness to X and hence also to the minimum,
it is our hope that K depends linearly on M and so we would find a satisfactory approximation
of the minimum with a number of coordinates comparable with the number of features of the
(unknown) candidate X, and not with a possibly large number of examples p or even a very large
total number of features d.
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First we show under which conditions the set F (k) gains the features (indices) from the set
supp (X). We need two technical definitions. For any L ≤ ||X||0 we define:

(3.2) kL = min{k : card (F (k) ∩ supp (X)) ≥ L},

(3.3) EL = EL(X, k) = supp (F (kL)) ∩ supp (X).

Note that such kL and EL exist always as cardF (k) = k, and that by definition cardEL = L. The
feature gaining sequence EL was constructed by adding the features of X in the order in which
they appeared in the gen-OMP sequence.

Proposition 3.3 (Feature Gaining Mechanism). With the above notation if ||x(k)−X||2 < ||X −
X|EL ||2, then k ≥ kL+1. In other words card (F (k) ∩ supp (X)) ≥ L+ 1.

Proof. If card (F (k))∩ supp (X)) > L we are done. Otherwise we have F (k)∩ supp (X) ⊂ EL and
supp (X) \ F (k) ⊃ supp (X) \ EL

||x(k)−X||22 = ||(x(k)−X)|F (k) −X|supp (X)\F (k)||22
= ||(x(k)−X)|F (k)||22 + ||X|supp (X)\F (k)||22
≥ ||X|supp (X)\EL ||

2
2 = ||X −X|EL ||

2
2 ,

contradicting the assumption. �

Remark 3.4. The same proof of Proposition 3.3 works with any p-norm.

Remark 3.5. In Proposition 3.3 one can consider any sequence, not necessarily generated by gen-
OMP , x(k) satisfying card (supp (x(k + 1)) ≥ card (supp (x(k)) + 1, with F (k) = supp (x(k)).

We shall use Proposition 3.9 on the gen-OMP sequence in order to provide the inequality in
the assumption of Proposition 3.3 to gain the features from the point X into the features of the
gen-OMP points.

Remark 3.6. It is possible to construct different feature gaining sequences, for example one can
choose the sequence of largest coordinates of X.

The following Lemmata lead to Proposition 3.9 which is crucial to establish the condition in the
Feature Gaining Mechanism.

Lemma 3.7. Let a, b be two points with s = ||a− b||0. If for εs(a) from (1.2) and some constants

c, ρ > 0 we have: Q(b)−Q(a) ≥ εs(a)2

cρ then:

||b− a||22 ≤ (Q(b)−Q(a))
cρ+ 2ρ−s

(ρ−s )2
(3.4)

||b− a||22 ≥ (Q(b)−Q(a))
1

cρ+ 2ρ+
s
.(3.5)

Remark 3.8. In case a 6= b sharp inequality Q(b) − Q(a) > εs(a)2

cρ yields sharp inequalities (3.4)

and (3.5).

Proof. Inequality (3.4):

Q(b)−Q(a) ≥ ρ−s ||b− a||22 +∇Q(a)(b− a) by (1.3)

≥ ρ−s ||b− a||22 − εs(a)||b− a||2 by (1.2).
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Hence ρ−s ||b− a||22 − εs(a)||b− a||2 − (Q(b)−Q(a)) ≤ 0 and therefore:

||b− a||2 ≤
εs(a) +

√
εs(a)2 + 4ρ−s (Q(b)−Q(a))

2ρ−s
≤

√
εs(a)2 + 2ρ−s (Q(b)−Q(a))

ρ−s
,

where the last inequality follows from concavity of
√
·. But by assumption, εs(a)2 ≤ cρ (Q(b)−Q(a)),

so:

||b− a||2 ≤

√
(cρ+ 2ρ−s )

ρ−s

√
Q(b)−Q(a) .

By inequality (3.5) we have

ρ+
s ||b− a||22 ≥ Q(b)−Q(a)−∇Q(a)(b− a) by (1.3)

≥ Q(b)−Q(a)− εs(a)||b− a|| by (1.2).

Similarly as before that means that ρ+
s ||b− a||22 + εs(a)||b− a|| − (Q(b)−Q(a)) ≥ 0 and therefore,

as Q(b) ≥ Q(a) by assumption and ||b− a| ≥ 0 by definition, we have:

||b− a||2 ≥
−εs(a) +

√
εs(a)2 + 4ρ+

s (Q(b)−Q(a))

2ρ+
s

=
2 (Q(b)−Q(a))

εs(a) +
√
εs(a)2 + 4ρ+

s (Q(b)−Q(a))

≥ Q(b)−Q(a)√
εs(a)2 + 2ρ+

s (Q(b)−Q(a))
,

where again we used concavity in the last inequality. From εs(a)2 ≤ cρ (Q(b)−Q(a)), we finally
get:

||b− a||2 ≥
√
Q(b)−Q(a)√
cρ+ 2ρ+

s

.

�

Next Proposition shows the condition for the Feature Gaining Mechanism to work.

Proposition 3.9. Let u, y, z be three points with ||y − u||0 = s and ||z − u||0 = m. If for some
c > 0 and ρ ≤ ρ−s :

ε2s(u)

cρ
≤ Q(y)−Q(u) ≤ 1

(c+ 2)(c+ 2ρ
+
m

ρ−s
)

(Q(z)−Q(u))

then

||y − u||2 < ||z − u||2 .

Proof. Note that as ρ+
m ≥ ρ−s we have 1

(c+2)(c+2ρ+m/ρ
−
s )

< 1/4 < 1 which means that both u, y and

u, z fulfil the assumptions of Lemma 3.7. We use (3.4) with b = y and a = u and (3.5) with b = z
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and a = u (with a sharp inequality in this case) and get:

||y − u||22 ≤ (Q(y)−Q(u))
cρ+ 2ρ−s

(ρ−s )2

by assumption ≤ 1

(c+ 2)(c+ 2ρ
+
m

ρ−s
)

(Q(z)−Q(u))
cρ+ 2ρ−s

(ρ−s )2

<
1

(c+ 2)(c+ 2ρ
+
m

ρ−s
)

cρ+ 2ρ−s
(ρ−s )2

(cρ+ 2ρ+
m)||z − u||22

=
(cρ+ 2ρ−s )(cρ+ 2ρ+

m)

(cρ−s + 2ρ−s )(cρ−s + 2ρ+
m)
||z − u||22 ≤ ||z − u||22 .

�

Remark 3.10. 1
c+2

1

c+2
ρ
+
m

ρ
−
s

≥ 1
(c+2)2

ρ−s
ρ+m

which for c = 2
5 yields 25

144
ρ−s
ρ+m

> 1
6
ρ−s
ρ+m

.

Corollary 3.11. If for some k and m,S there holds ||x(k)−X||0 ≤ S, L ≤ m and

Q(x(k))−Q(X) ≤ 1

c+ 2

1

c+ 2ρ
+
m

ρ−S

(
Q(X|EL)−Q(X)

)
,

then either εS(X)2 > cρ−S (Q(x(l))−Q(X)) or card (F (k) ∩ supp (X)) > L .

Proof. If the condition on εS(X) is not satisfied then we can use Proposition 3.9 with y = x(l),
u = X, z = X|EL in order to fulfill the assumption of Proposition 3.3 and use Proposition 3.3. �

3.5. Proof of Theorem 1.3. As in the beginning of subsection 3.4 let X be fixed with M and
K defined there. From now on we shall assume that for the gen-OMP sequence starting at x(0),

x(k + 1) = next(x(k)), k = 0, . . . , S the following condition is satisfied Q(x(k))−Q(X) > εS(X)2

cρ−S
,

as otherwise for some k < S we have the statement of the Theorem.
Define µ, kL and EL as in (1.5), (3.2) and (3.3). Denote QL = Q(X|EL)−Q(X) and recall

fi,j(q) =

{
Qi + (1− ρ

i−j )(Qi − q) Qi ≤ q < Qj−1

µ ,

q q otherwise .

For any 0 ≤ x(k) <
Qj
µ we have card (supp (X|Ei) \ supp (x(k))) < i− j and thus by (3.1) we have

q(k + 1)−Q(X) = Q(next(x(k)))−Q(X) ≤ Qi + (1− ρ
i−j ) [Q(x(k))−Q(X)−Qi] = fi,j(q(k)−

Q(X)). Moreover, by Corollary 3.11, if for any L q(k + 1)−Q(X) < QL
µ then q(k + 1)−Q(X) ≤

QL+1. Thus q(k + 1) − Q(X) ≤ h(fi,j(q(k) − Q(X)). Therefore the number of iterates of the
gen-OMP algorithm can be estimated from above by the number of iterates of the function g (1.1)
at q = q(k) − Q(X), starting at q(0) − Q(X) and ending with q(K) − Q(X) ≤ QM−1/µ because
then all the features of X will be caught and hence Q(x(K)) ≤ Q(X). Thus, the problem of
estimating the number of steps of gen-OMP has been reduced to the following:
Given µ and ρ - what is the maximal number of iterates of g from q = Q0 to q ≤ QM−1/µ, where
the maximality is searched over all the sequences Q? But that was established by Theorem 1.2.
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