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Many aspects of the classical price-setting newsvendor problem have been studied in the literature and

most of the results pertain to the case where the price-demand relationship and demand distribution are

explicitly provided. However, in practice, one needs to model and estimate these from historical sales data.

Furthermore, many other drivers besides price must be included in the demand response model for statistical

accuracy, along with conditional heteroskedasticity effects in the demand distribution. In this paper we

develop a practical framework for data-driven, distribution-free, multivariate modeling of the price-setting

newsvendor problem, which includes statistical estimation and price optimization methods for estimating

the optimal solutions and associated confidence intervals. The specific novelty of the framework is that

the relevant statistical estimation methods are carried out in close conjunction with the requirements of

the optimization problem, which in this context requires the estimation of three distinct aspects of the

demand distribution, namely the mean, quantile and superquantile (also known as conditional value-at-

risk, CVaR). We investigate different statistical estimators, which are broadly based on generalized linear

regression (GLR), mixed-quantile regression (MQR), and superquantile regression (SQR) respectively. Our

results extend the previous literature, notably to incorporate heteroskedasticity in MQR, and to obtain a

novel and exact large-scale decomposition method that is computationally efficient for SQR (these extensions

are of independent interest, besides the application discussed here). Our detailed computational experiments

indicate that quantile-based methods such as MQR and SQR provide better solutions for a wide range

of demand distributions, although for certain location-scale demand distributions that are similar to the

Normal distribution, GLR may be preferable.

Key words : Pricing, newsvendor, statistics: estimation, decomposition algorithm, heteroskedastic least

squares, quantile regression, conditional value-at-risk, superquantile regression
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1. Introduction

The classical price-setting newsvendor problem (and its many variants described for example in Por-

teus 1990, Khouja 1999) occupies a central and prominent role in pricing and inventory decision

theory. In its simplest form, a firm must simultaneously and jointly determine the optimal price

and optimal order quantity for a product with a known stochastic price-dependent demand, in

order to maximize the expected profit during a single inventory period. The newsvendor profit

function accounts for underage and overage costs which are respectively associated with scenarios

when the demand is higher or lower than the order quantity, as well as the revenue that is obtained

from the observed demand.

The topic of coordination of pricing and inventory is of great interest to firms from an operations-

management perspective, since it offers up the possibility of obtaining a better solution to the

profit maximization problem, particularly when compared to the corresponding uncoordinated case

where the pricing and inventory decisions are made independently, or sequentially at best. This

coordinated approach has received great impetus with the emergence of internet-based technolo-

gies for real-time inventory tracking and dynamic pricing, and is now widely used for revenue

management in several application areas (Phillips 2005).

In many of these existing and emerging application areas, however, the relevant demand function

is a random variable, whose probability distribution and dependence on price is not explicitly

known, and must be modeled and estimated from historical sales data. Furthermore, many other

drivers besides price must be included in the demand response model for statistical accuracy,

along with conditional heteroskedasticity effects in the demand distribution. The objective of this

paper is to address this issue using data-driven, distribution-free, multivariate regression methods

to characterize the stochastic demand response, and the primary novelty is that the statistical

modeling methods are carried out in close conjunction with the requirements of the optimization

problem in the coordinated setting, here, the classical price setting newsvendor.

One motivation for our work is the potential application of the price-setting newsvendor model

and related schemes to the emerging electricity smart grid for demand response planning. Here, the

electric utility may simultaneously decide on both the scheduled generation and certain demand-

shaping price incentives, so as to minimize the impact on the expected operational profits. In this

application, other factors besides price, such as weather and time-of-day effects, will influence the

demand response and demand variability, and must be taken into consideration in the statistical

modeling. For example, consider the energy consumption data in Fig. 1 recorded during the morn-

ing peak in a dynamic price experiment at the Olympic Peninsula. Notice the significant impact of

temperature on demand and the presence of temperature-dependent heteroskedasticity. The con-

sumption patterns can also display significant daily and weekly dependencies (not shown). One
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approach here is to estimate a separate demand model from historical data for each combination

of the levels of the relevant external factors; however, this is clearly impractical when the number

of such combinations is very large. Besides, many potential combinations are rarely observed in

the historical data. Therefore, it is preferable to capture these high-dimensional relationships using

flexible, multivariate regression methods to obtain robust demand response models (e.g., see, Hastie

et al. 2001) for operational planning.
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Figure 1 Energy consumption in kWh per household recorded every 15 mins between 7-9am from April 1, 2006

to March 31, 2007 in a dynamic pricing experiment in the Pacific Northwest GridWise Testbed Demon-

stration Project (Hammerstrom et al. 2007).

The same issues arise for applications of the price-setting newsvendor model in the retail, man-

ufacturing and services sectors. For example, the data in Fig. 2 shows a price-dependent het-

eroskedasticity in individual stores sales of a product, as well as distributional variations across

store locations (perhaps influenced by their individual characteristics and shopper demographics).

Moreover, we observe a price-dependent monotonic variance function with the lowest demand vari-

ability at the largest price. The presence of non-monotonic variance functions are also quite likely in

practice. For example, the lowest demand variability can come in the middle range of prices where

one has a good understanding of the market (Raz and Porteus 2006). The methods described in

this paper are therefore relevant in all these application areas as well.
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Figure 2 Retail sales data for a non-seasonal product as a function of price across several stores (data anonymized

to protect confidentiality). The red lines are the quantiles at levels 0.1,0.25,0.5,0.75 and 0.9 respectively,

and individual panels are ordered by increasing mean sales.

1.1. Contributions

This paper focuses on the classical price-setting newsvendor problem and provides results that

address the two common variants of this problem: the lost sales setting where the excess demand

is entirely lost and the emergency order setting where the excess demand is also met but at a high

cost that is exogenous to the price. Our contributions are as follows and unless otherwise explicitly

specified, our contributions refer to either variant of the decision problem.

1. Practical framework for a data-driven, distribution-free, multivariate modeling

approach to the price-setting newsvendor problem: In this paper we develop a practical

framework for data-driven, distribution-free, multivariate modeling of the price-setting newsven-
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dor problem, which includes statistical estimation and price optimization methods for estimating

the optimal solutions and associated confidence intervals. The specific novelty of the framework

is that the relevant statistical estimation methods are carried out in close conjunction with the

requirements of the decision problem, which in this context, requires the estimation of three

distinct aspects of the demand distribution, namely the mean, quantile and superquantile (also

known as conditional value-at-risk, CVaR).

In contrast to the current state of the art for solving the data-driven, price-sensitive newsven-

dor problem, the proposed framework does not require the complete price-dependent demand

distribution prior to the optimization. More specifically, for emergency order setting, the three

distinct aspects of the demand distributions, specifically the quantile and the superquantile

estimators, are queried exactly at one quantile level. The same is true for the lost sales setting

except for the superquantile estimator that is queried at a few different quantile levels as a part

of a bounded one dimensional search in the price optimization step. Note that the latter is far

from the full distribution.

2. Consideration of different statistical estimation methods: We investigate three different

distribution-free, multivariate regression methods adapted to the price-setting newsvendor prob-

lem; these methods are broadly based on generalized linear regression (GLR), mixed-quantile

regression (MQR), and superquantile regression (SQR) respectively. In fact, any combination of

these or other new techniques may be used to estimate the three distinct quantities of interest,

leading to a profusion of ways for implementing the desired optimization computations.

3. Extensions to current CVaR estimation methods: We develop an efficient and exact

large-scale decomposition method to solve large instances of the SQR which currently does not

scale beyond a few hundred sample points. The proposed algorithm is a novel cutting plane

algorithm that is shown to be empirically far more tractable than the original SQR formula-

tion. We also extend the MQR method to to allow conditional homoskedasticity and conditional

heteroskedasticity over respectively desired subsets of covariates, a method critical for exam-

ples discussed in the introduction. The extensions to CVaR regression methods described in

this paper have wider applicability and are of independent interest, besides the price-setting

newsvendor application discussed in this paper (e.g., in financial applications).

4. Computational Experiments and Insights: We carry out a detailed computational analysis

and comparison for a variety of stochastic demand models with different functional and noise

characteristics. Our computational experiments highlight that quantile based methods such as

MQR and SQR provide better solutions for a wider range of demand models, except for the

case when the noise terms have a location-scale form that is similar to the Normal distribution

(e.g., symmetric, unimodal, and not heavy-tailed) when GLR methods may be preferred.
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1.2. Background and Relevant work

We review the background and relevant work in order to motivate the elements of the proposed

framework outlined in this paper.

The evolving literature on the coordination of pricing and inventory decisions has been reviewed

by Elmaghraby and Keskinocak (2003), Chan et al. (2004), Yano and Gilbert (2005), and more

recently by Chen and Simchi-Levi (2010).

A synthesis of the literature on the price-setting newsvendor problem for the lost sales formulation

(described in Section 2) is provided in Petruzzi and Dada (1999), which particularly covers the

case when the stochastic price-demand relationship is specified in a certain form, e.g., the additive

model with a linear demand function (Mills 1959), the multiplicative model with a iso-elastic

demand function (Karlin and Carr 1962), and the mixed additive-multiplicative model (Young

1978). In all these cases, the mean demand is specified as a monotonic decreasing function of

the price, and the variance is specified as a non-increasing function of price (further, typically, a

constant variance is assumed in the additive case, and monotonic decreasing variance is assumed in

the multiplicative and mixed additive-multiplicative case). The relevant existence and uniqueness

conditions are provided, and the resulting optimal solutions are also compared to the equivalent

risk-free case (i.e., where the deterministic price-demand relationship has the same functional form

as the mean demand in the corresponding stochastic case). Yao et al. (2006) have extended these

results to a more general class of price-demand functions for the additive and multiplicative models.

Kocabıyıkoğlu and Popescu (2011) provide further generalizations, in particular, including the

case when the demand variance may be a non-monotonic function of the price for mixed additive-

multiplicative models. Such a non-monotonic variance function is quite likely in practice (e.g., see

Lau and Lau (1988), Raz and Porteus (2006), and the discussion below), but was not previously

covered by the analysis of the mixed additive-multiplicative models in Petruzzi and Dada (1999).

In Arikan et al. (2007), the model parameters for the additive-multiplicative class of models

are estimated from some retail data sets (which were seasonally de-trended to isolate the price-

dependent effects for regression modeling). They concluded that, based on statistical fit criteria

alone, it was often difficult to distinguish between alternative model classes. Although the esti-

mated models were used to obtain optimal solutions for the price-setting newsvendor problem,

the confidence intervals for these solutions were not estimated; consequently, their results were

inconclusive in terms of clarifying the impact of model fit and estimation errors on the optimal

solutions.

Arikan and Jammernegg (2009) have reviewed a number of approaches for modeling the stochas-

tic price-demand relationship in the literature, and they characterize the following two approaches
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as being distinctive. The first, due to Lau and Lau (1988), models the first four lower-order moments

of the demand distribution as a function of price. The second, due to Raz and Porteus (2006),

models the individual quantiles of the demand distribution as piecewise-linear functions of the

price. These two “distinctive” approaches are in some sense complementary in terms of specifying

price-dependent heteroskedasticity effects in the demand model: in the first, through the moments

of the distribution function and in the second, through the levels of the quantile function. However,

in both these papers, the model parameters are specified based on subjective assessment of experts,

rather than directly estimated from historical sales data. For instance, the model specification is

given in terms of the first four moments in Lau and Lau (1988) which are then somewhat subjec-

tively matched to the corresponding moments of a four-parameter beta distribution for performing

the newsvendor optimization. Raz and Porteus (2006) recommend obtaining the subjective esti-

mates for the demand variability at a few selected price points, which are then interpolated and

extended throughout the price range of interest using piecewise-linear functions.

A fully data-driven approach, by contrast, is not constrained by the need to obtain the subjective

estimates in some convenient manner. So, for example, multiple demand drivers can be directly

incorporated and estimated in the demand model, whereas the subjective assessment of these

multivariate effects would be difficult at best. While the subjective approach is not the focus of

this paper, it is nevertheless a useful alternative approach, particularly when there is no historical

data (e.g., for new products that have little or no sales history).

For the standard newsvendor problem, the only decision variable is the order quantity (and price

is not a decision variable). Beutel and Minner (2012) describe an approach where the demand

model can comprise of multiple drivers that include the effects of price, price changes and weather.

They observe that the inclusion of these additional drivers in the demand modeling substantially

improves the accuracy of the demand forecasts, leading to a corresponding reduction in the safety

stock requirements. They describe two data-driven modeling approaches for estimating the optimal

order quantity for the standard newsvendor problem: the first is based on linear regression for

the demand response, with a first-order heteroskedasticity correction for the model coefficient

estimates; the second is based on direct estimation of the optimal order quantity using a linear

programming formulation that is essentially equivalent to quantile regression (see also Rudin and

Vahn (2014), who additionally propose using regularization and kernel-based methods for high-

dimensional problems). The two methods in Beutel and Minner (2012) are quite cognate to the first

two approaches in our work described below; however, the extensions required for the price-setting

newsvendor problem are non-trivial and require the estimation of the CVaR.

Other related data-driven perspectives on the standard newsvendor problem include, for exam-

ple, the use of bootstrap confidence intervals for newsvendor quantile estimates (Bookbinder and



Harsha, Natarajan and Subramanian: A data-driven approach for the price-setting newsvendor problem
8

Lordahl 1989), robust optimization (Scarf et al. 1958, Gallego and Moon 1993, Perakis and Roels

2008), non-parametric approaches in censored data environments (Godfrey and Powell 2001, Huh

et al. 2008, Huh and Rusmevichientong 2009, Besbes and Muharremoglu 2013), operational statis-

tics (Liyanage and Shanthikumar 2005, Chu et al. 2008) and sampling-based bounds (Levi et al.

2007, 2011, Rudin and Vahn 2014). None of these papers, however consider price as a decision vari-

able, and barring Rudin and Vahn 2014, they also do not consider multiple drivers in the estimated

demand models.

Some of the other variants of the price-setting newsvendor problem in the literature include:

(a) the coordination of pricing and inventory for an assortment of products where the demand of

any item depends on the prices of all the items (Aydin and Porteus 2008); (b) use of an alternate

objective such as a risk-averse profit objective as opposed to a traditional risk-neutral one (Agrawal

and Seshadri 2000, Chen et al. 2009); (c) multi-period models with backordered inventory (Fed-

ergruen and Heching 1999 and other related work). The focus in these papers is on the existence

and uniqueness of the optimal decisions and related structural results (in similar spirit to Petruzzi

and Dada 1999).

Our framework requires the estimated CVaR of the multivariate demand distribution, for which

we have considered the following two recent approaches to CVaR or superquantile regression.

The mixed quantile regression method proposed by Chun et al. (2012) estimates the CVaR using

a linear programming formulation similar to quantile regression. Their method is restricted to

homoskedastic or constant variance distributions and is extended in our paper to include conditional

heteroskedastic effects. The superquantile regression method proposed by Rockafellar et al. (2014)

also estimates CVaR using a linear programming (LP) formulation, which is however derived

based on the risk quadrangle (see Rockafellar and Uryasev 2013). Although this method makes no

assumptions about homoskedasticity, as indicated by the authors in their paper (as well as by our

experience with this method), it does not scale beyond a few hundred sample points because of

size explosion in the LP (both in the number of constraints and variables). We propose a novel

decomposition method that enable this LP formulation to be scaled to very large sample sizes.

Organization: The organization of the rest of the paper is as follows: In Section 2 we describe

the price-setting newsvendor problem and our data-driven distribution-free multivariate regression

framework for practical implementations. We describe the three multivariate regression techniques

along with our extensions in Section 3. In Section 4, we provide the details of our computational

experiments and discuss our observations based on the results. In Section 5, we describe some

additional enhancements for the operationalization of the data-driven approach for the price-setting

newsvendor problem. Section 6 provides some concluding remarks.
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2. Price-Setting Newsvendor Problem

Consider a single-product, profit-maximizing firm, which at the beginning of an inventory period

has to set a unit product price p ∈ P, where P is a closed and continuous set of feasible prices.

Simultaneously, the firm also has to set the order quantity x for stocking the product at the unit

procurement cost c. The stochastic price-dependent demand is denoted by D(p,z), where z denotes

the external drivers, as elucidated further below. Any unsold stock units at the end of the inventory

period are redeemed at the unit salvage price s. Note that p > c> s is required in order to have a

meaningful and non-trivial newsvendor problem.

The external drivers z in the stochastic demand D(p,z) may include the effects of time-of-

day, day-of-week, season, weather, holidays, special events, advertising campaigns, promotional

incentives, and so on. Furthermore, when dynamic time-series effects are considered, z may also

include the lagged effects demand, price and other relevant drivers (see, e.g., Hanssens et al. 2003,

Leeflang et al. 2000). The values of all external drivers z are assumed to be known at the beginning

of the inventory period. Therefore, any demand drivers that are unknown, unmeasured or uncertain

are not included in z, and their effects are considered to be part of the stochastic component of

D(p,z).

We consider two common variants of the price-setting newsvendor problem that arise in different

applications.

Lost Sales Formulation: For a product retailer, we are primarily concerned with this variant

of the price-setting newsvendor problem. Here, if the observed demand D(p,z) exceeds the order

quantity x, then the resulting underage is associated with a unit cost p− c+ v where v may be

the monetary equivalent of the loss of consumer goodwill that is incurred due to the out-of-stock

situation. On the other hand, if the observed demand D(p,z) is lower than the order quantity

x, then the resulting overage is associated with a unit cost c− s. The product retailer aims to

maximize the expected profit by jointly optimizing the two decision variables, viz., the unit price

p and the order quantity x. As is well known, this optimization problem can be formulated as:

Πls(z) : max
p∈P,x

(p− c)E[D(p,z)]− (p− c+ v)E [D(p,z)−x]
+− (c− s)E [x−D(p,z)]

+
. (2.1)

Emergency Order Formulation: For the electricity provider, by contrast, we are primarily con-

cerned with this variant of the formulation. Here, the order quantity x represents the pre-scheduled

electricity generation. If the observed demand D(p,z) exceeds x, then the resulting shortfall is

immediately procured from the spot market or from spinning reserve, but at the premium fixed

unit procurement cost m> c. The resulting underage unit cost m−c is also often referred to as the

unanticipated stock-replenishment costs. The unit salvage price s < c is associated with the excess
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in the pre-scheduled generation; for example, s may represent the contracted per unit sell price

with a bulk storage farm. The electricity provider also aims to maximize the expected profitability

by jointly optimizing the two decision variables, viz., the unit price p and the order quantity x.

Similarly, this optimization problem can be formulated as:

Πeo(z) : max
p∈P,x

(p− c)E[D(p,z)]− (m− c)E [D(p,z)−x]
+− (c− s)E [x−D(p,z)]

+
. (2.2)

We now describe a reformulation of (2.1) and (2.2) that is suitable for the implementation of

the required optimization procedures.

2.1. Optimization Formulation

The properties of the newsvendor objective function have been widely studied (Zipkin 2000).

For the lost sales (2.1) and emergency order (2.2) formulations, the objective function is concave

in x for given p. Therefore, in both cases, there is a unique optimal solution for x given p, denoted

VaRα[D(p,z)], and given by

VaRα[D(p,z)] = inf
{
x≥ 0 : FD(p,z)(x)≥ α

}
, (2.3)

where FD(p,z)(.) is the cumulative distribution function (c.d.f.) of the random variable D(p,z). The

critical quantile or the newsvendor quantile α∈ [0,1] is denoted by αls for the lost sales formulation,

and by αeo for the emergency order formulation respectively, with

αls =
p− c+ v

p− s+ v
, αeo =

m− c
m− s. (2.4)

The quantity VaRα[D(p,z)] in Eq. (2.3) is the α-level value-at-risk of D(p,z), or equivalently, the

α-level quantile function of D(p,z).

In Eq. (2.4), the value αeo depends only on the known problem parameters m, c and s. The value

αls, however, depends on the decision variable p, in addition to the specified parameters c, s and v.

While this distinction between αeo and αls is important for the respective optimization procedures,

as described later below, for notational brevity, and to emphasize the common aspects of the

optimization formulation, we suppress the dependence of αls on p, and also omit the subscripts on

αls and αeo below (except where this distinction is explicitly required).

Then, substituting the conditional optimal value for x from Eq. (2.3) into either (2.1) or (2.2)

results in the following reduced objective function which only involves the decision variable p:

Πls(z) or Πeo(z) : max
p∈P

(p− s)E[D(p,z)]− (c− s)CVaRα[D(p,z)]. (2.5)
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Here CVaRα[D(p,z)] denotes the α-level conditional value-at-risk of D(p,z), which is defined

in Rockafellar and Uryasev (2000) as

CVaRα[D(p,z)] = min
x

[
x+

1

(1−α)
E [D(p,z)−x]

+

]
. (2.6)

For a continuous random variable D(p,z), this is identical to the conditional expected value in the

upper α tail, given by

CVaRα[D(p,z)] = E[D(p,z)|D(p,z)≥VaRα[D(p,z)]]

≡ 1

1−α

∫ 1

α

VaRτ [D(p,z)]dτ. (2.7)

For discrete or mixed discrete-continuous D(p,z), there is an equivalent definition to Eq. (2.7)

which is given later below.

The conditional value-at-risk CVaRα[D(p,z)] in Eq. (2.6) arises in diverse disciplines, although

the terminology may vary depending on the interpretation of the random variable D(p,z). For

example, in the electricity distribution industry, ifD(p,z) denotes the stochastic electricity demand,

and if α denotes the quantile level of D(p,z) corresponding to the pre-scheduled electricity genera-

tion, then CVaRα[D(p,z)] is essentially equivalent to the well-known reliability metric LOLE - Loss

of Load in Expectation (Billinton and Allan 1996, Harsha et al. 2013). In more recent literature,

the conditional value-at-risk is also referred to as the superquantile (Rockafellar et al. 2014).

2.1.1. Discussion and Perspective The optimization formulation in Eq. (2.5) involves a

specific linear combination of the two quantities E[D(p,z)] and CVaRα[D(p,z)]. Although rarely

presented in this form in the operations management literature, Eq. (2.5) is reminiscent of the

mean-CVaR objective function used in risk optimization, e.g., Rockafellar and Uryasev (2000). A

third quantity VaRα[D(p,z)] is required to obtain the optimal order quantity in Eq. (2.3).

In summary, the specification of the three quantities E[D(p,z)], CVaRα[D(p,z)] and

VaRα[D(p,z)] is sufficient to obtain the desired optimal solutions to the price-setting newsvendor

problem from Eq. (2.3) and Eq. (2.5). If the stochastic demand function D(p,z) is available in

some standard, explicit form, these three quantities can be directly evaluated (e.g., using closed-

form expressions available for many standard distributions; see, Andreev et al. 2005, Nadarajah

et al. 2014). From the perspective of this paper, however, the optimization formulation in Eq. (2.3)

and Eq. (2.5) suggests that it may be fruitful to directly estimate these quantities from the his-

torical sales data, without the intermediate step of explicitly ascertaining D(p,z). A variety of

multivariate regression-based techniques can be used for this purpose, which are capable of flexibly

modeling the respective functional dependencies on the demand drivers, with minimal assumptions

on the form and distribution of D(p,z), as described further below.
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2.2. Optimization Algorithms

We outline one possible approach for obtaining the optimal price and optimal order quantity for

the optimization formulation described in Section 2.1.

Algorithm 1 Optimization Procedure for Price-Setting Newsvendor Problem (Emergency Order)

Input: Given m,c, s.

1: Estimate E[D(p,z)].

2: Obtain α from Eq. (2.4).

3: Estimate CVaRα[D(p,z)], and obtain the corresponding optimal price p∗ ∈P from Eq. (2.5).

4: Estimate optimal order quantity x∗ = VaRα[D(p∗,z)] from Eq. (2.3).

Output: optimal price p∗, and optimal order quantity x∗.

Algorithm 1 is given for the emergency order setting. The corresponding algorithm for the

lost sales setting only differs in Steps 2 and 3. In particular, after Step 1, an initial guess of

price p0 is made in Step 2 of the algorithm that results in an initial quantile estimate α0. Then,

Steps 3 and 2 are iteratively executed till some converge criterion is met to obtain an optimal price

estimate, p∗. Finally, the corresponding optimal order quantity estimate is obtained from Step 4. A

pictorial representation of our framework that enables data-driven, distribution-free, multivariate

modeling approaches is provided in Fig. 3, which captures the high-level implementation details of

the algorithms for the emergency order and lost sales settings.

We make some remarks about Algorithm 1. First, not only can this algorithm be used when the

explicit form of the stochastic demand function D(p,z) is known, but it can also be used when

the three quantities E[D(p,z)], CVaRα[D(p,z)] and VaRα[D(p,z)] are directly estimated from the

data. Second, the objective function of problem (2.5) need not be concave in general (the existence

and uniqueness results for the price-setting newsvendor problem are given in Kocabıyıkoğlu and

Popescu (2011), see Section 1.2 below). Consequently, even though the optimal price p∗ always

exists (given a continuous objective function (2.5) in a closed set P)), there may be multiple local

maxima. However, a standard univariate, derivative-free, non-linear optimization procedure (Brent

1973) can be used to directly obtain the desired optimal solution for (2.5) for both the lost sales

and the emergency order settings.

3. Some Relevant Statistical Estimation Methods

As noted in Section 2.1, the optimization formulation in Eq. (2.3) and Eq. (2.5) is completely

specified in terms of the three quantities E[D(p,z)], VaRα[D(p,z)], and CVaRα[D(p,z)], and each
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Superquantile
Estimation

Mean
Estimation

Price
Optimization

Quantile
Estimation

Cost parameters: c, s, and m (or v for lost sales model)
Final covariate values except price: z̃

E[D(p, z)] CVaRα[D(p, z)]

Data: Demand D and
covariates p, z

p∗

= VaRα[D(p, z)]|p∗,z̃x∗p∗,Π∗

(in lost sales model
till α and p converge)

Eq(1.5)

Figure 3 Framework for a practical data-driven approach to the price-setting newsvendor problem

of these can be directly estimated from historical sales data by a variety of different techniques.

Therefore, any appropriate combination of these techniques can therefore be used in the optimiza-

tion formulation, leading to a profusion of ways for implementing the computations.

We consider three specific approaches below, which, broadly speaking, are based on generalized

linear regression (GLR), mixed quantile regression (MQR), and superquantile regression (SQR)

respectively. The first two approaches are related to the methods previously described in Chun

et al. (2012) for estimating conditional risk measures using linear regression and quantile regression,

but extended here to include conditional heteroskedasticity effects. The third approach is related

to recent work in (Rockafellar et al. 2014) on obtaining direct regression estimates of conditional

risk measures. For all three approaches, we provide appropriate extensions, and adaptation to the

price-setting newsvendor problem.

The standard notation for regression problems is used in the description below. The response

variable is denoted by Y , which is typically the demand D(p,z) itself, and the regression models

typically involve the estimation of E[Y ], VaRα[Y ] or CVaRα[Y ]. The set of regression covariates are

denoted by X (or sometimes by Z), and this set typically includes the constant or intercept term

(except where explicitly indicated below), along with other terms that involve transformations and

interactions of the various external demand drivers (p,z) as appropriate. The regression functions

involve linear combinations of these regression covariates with the coefficients being the parameters

to be estimated from historical data, based on the appropriate regression formulation. We note
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that the regression functions are typically linear in the parameters, the ability to include nonlin-

ear and interaction terms in the covariate effects, as well as nonlinear response transformations,

provides sufficient generality for modeling a wide range of functional forms required in practical

applications (Hastie et al. 2001).

3.1. Generalized Linear Regression (GLR)

The first approach is based on heteroskedastic regression using generalized linear models (GLM).

If Y has a known distribution from the exponential family (e.g. see McCullagh and Nelder 1989),

then the corresponding GLM regression estimates can be obtained using maximum likelihood.

However, the GLM approach can also be based on maximum quasi likelihood (Wedderburn 1974),

which only requires a specification of the relation between the first two moments of Y instead of

the full distribution. For modeling the response mean E[Y ], the regression estimates from maxi-

mum quasi likelihood are essentially equivalent to maximum likelihood estimates whenever Y has

an exponential family distribution. However, the maximum quasi likelihood estimates retain the

desirable properties of consistency, efficiency and asymptotic normality of the maximum likelihood

estimates, even if the distribution of Y is not explicitly known. The maximum quasi likelihood

formulation can also be extended to incorporate heteroskedasticity modeling (see e.g. Nelder and

Pregibon 1987, Davidian and Carroll 1987). This a highly desirable property for demand modeling

in the context of the price-setting newsvendor problem.

To describe this approach in full generality, we denote E[Y ] = µ, we need a specification of the

mean-variance relationship, i.e. E[(Y − µ)2] = φV (µ), where V (µ) is the variance function, and

φ is the dispersion parameter. For example, a common specification for the variance function is

V (µ) = µθ for some fixed θ. For the Normal, Gamma and Inverse Gaussian distributions, θ = 0,2

and 3 respectively. In general any other value of θ can also be specified. Regression models for µ

and φ can be specified in the form of generalized linear models, and the model parameters can

be estimated iteratively using two GLM maximum quasi-likelihood function calls that iteratively

estimate the mean and the dispersion. For more information on this heteroskedastic method we

refer the reader to papers by Nelder and Pregibon (1987), Davidian and Carroll (1987, 1988)

and Nelder and Lee (1992) respectively. We apply this above approach to data-driven newsvendor

problem and describe the resulting algorithm next.

Model Specification and Estimation. To fix ideas for our context, we consider the following

generating model for the stochastic demand function:

Y = µ+
√
φV (µ)ε, (3.1)
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where ε is a random variable whose distribution is independent of X with E[ε] = 0 and E[ε2] = 1,

with

g(µ) =βTX, h(φ) = γTZ, (3.2)

where β,γ are the respective regression parameters, and g : R→ Range(Y ), and h : R→ R+ are

the respective link functions for µ and φ, and X and Z denote the respective set of covariates in

the mean and dispersion models. Note that if X and Z have a common subset of covariates, then

there may be aliasing in the specification of φ and V (µ), but it is always advantageous to carefully

specify V (µ) so that φ can take a simpler form with fewer parameters to capture the additional

heteroscedastic variation.

The model in Eq. (3.1) and Eq. (3.2) is equivalent to the additive-multiplicative demand model

in the inventory literature, and the covariates X and Z represent the demand drivers including

price in this model. We outline the steps for estimating µ and φ in Algorithm 2.

Algorithm 2 Heteroscedastic regression

Input: Data {Xi,Zi, Yi} for i = 1, ...,N , the variance function V (µ), and the link functions g(.)

and h(.) respectively.

1: Set the initial values for φ̂i for i= 1, ...,N .

2: Obtain the mean regression parameters β̂, using response Yi, covariates Xi, variance function

V (µ), dispersion φ̂i, and link function g(.). Set µ̂i = g−1(β̂TXi) and obtain the Pearson residuals

d̂i = (Yi−µ̂i)2
V (µ̂i)

.

3: Obtain the dispersion regression parameters γ̂, using response d̂i, covariates Zi, variance func-

tion V (φ) = φ2, dispersion 2, and link function h(.). Set φi = h−1(γ̂TZi).

4: Repeat from step 2 till β̂, γ̂ converge.

Output: Estimates β̂ and γ̂ for heteroscedastic regression.

Algorithm 2 has a very modular structure, which can be easily implemented using existing

software for fitting GLM models using maximum quasi likelihood. Other modifications to improve

iterative convergence, and to obtain unbiased estimates for the dispersion regression parameters in

small samples, described in Smyth et al. (2001),

The VaR and CVaR of ε can now be obtained from the empirical distribution of the adjusted

residuals ε̂ where ε̂i = Yi−µ̂i√
φ̂iV (µ̂i)

. We denote the empirical cdf Fε̂(u) = 1
N

∑N

i=1 I[ε̂i](u), where I[ε̂i](u)

is the indicator function which takes the value 1 if (u− ε̂i)≥ 0, and 0 otherwise. Then,

VaRα[ε̂] = inf {u : Fε̂(u)≥ α} , (3.3)

CVaRα[ε̂] = λα(ε̂)VaRα[ε̂] + (1−λα(ε̂))E [ε̂|ε̂ >VaRα[ε̂]] , (3.4)

where λα(ε̂) =
Fε̂ (VaRα[ε̂])−α

1−α .
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This description of CVaR for discrete distributions is given by Rockafellar and Uryasev (2002).

In summary, given Y , X and Z, the three quantities of interest for the price-setting newsvendor

problem (see Fig. 3 and Section 2.2) are as follows:

E[Y ] = µ̂, (3.5)

VaRα[Y ] = µ̂+

√
φ̂V (µ̂)VaRα[ε̂], (3.6)

CVaRα[Y ] = µ̂+

√
φ̂V (µ̂)CVaRα[ε̂], (3.7)

where g(µ̂) = β̂TX and h(φ̂) = γ̂TZ. Here, β̂ and γ̂ are the outputs of Algorithm 2.

3.2. Mixed Quantile Regression (MQR)

The second approach is based on quantile regression which is a method to estimate VaRα[Y ]

given α. We note that E[D(p,z)] = CVaR0[D(p,z)] and so a module for estimating CVaRα[D(p,z)]

given α can obtain the remaning two of the three desired quantities for the price-setting newsvendor

problem. One method for the evaluation of CVaRα[Y ] is motivated from the module for estimating

VaRα[Y ] given α exploiting Eq. (2.7), as described further below.

One motivation for using the quantile regression approach is that it enables a broader class of

stochastic demand functions to be modeled. For instance, the specific example below describes

a response variable for which different covariates are significant at different quantile levels. This

characteristic cannot be modeled using the parameterization that was used for heteroskedastic

regression models in Section 3.1.

Example 1. This example describes a stochastic demand function with different demand drivers

at different quantile levels. Consider the random variable ε, and let

Y =βTX +γT1 Z1 min{ε,λ}+γT2 Z2 max{λ, ε}, (3.8)

where the constant λ= VaRζ [ε] for some value ζ ∈ (0,1). Note that since

VaRα[min{ε,λ}] =

{
λ, α≥ ζ,
VaRα[ε], α < ζ.

VaRα[max{ε,λ}] =

{
VaRα[ε], α≥ ζ,
λ, α < ζ,

and similarly since

CVaRα[min{ε,λ}] =

{
λ, α≥ ζ,
CVaRα[ε] + (λ− τ) 1−ζ

1−α , α < ζ.

CVaRα[max{ε,λ}] =

{
CVaRα[ε], α≥ ζ,
ζ−α
1−αλ+ 1−ζ

1−ατ, α < ζ.
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where τ = CVaRζ [ε], we have

VaRα[Y ] =βTX + VaRα[min{ε,λ}]γT1 Z1 + VaRα[max{ε,λ}]γT2 Z2.

along with a similar expression for CVaRα[Y ].

A situation highlighted in this specific example arises frequently in practice. For example, the

uppermost quantiles of the stochastic electricity demand are likely to be quite sensitive to price

and weather covariates, whereas the lowermost quantiles are quite insensitive to these covariates.

We would like to note that generating model in Eq. (3.8) is an example where the sum of VaR or

CVaR of two different random variables (i.e., min and max) is equal to their individual sums. This

property does not hold for general random variables.

Model estimation. Given a response Y , covariates X and quantile level α, the estimate for

VaRα[Y ] is obtained using quantile regression (Koenker and Bassett 1978) in the form

VaRα[Y ] =βTv X. (3.9)

Quantile regression involves solving the following optimization problem to estimate βv:

QR : β̂v = arg min
β

1

N

N∑
i=1

ψα(Yi−βTX i) (3.10)

where ψθ(t) = θ[t]+ + (1− θ)[−t]+ and θ = [0,1]. The function ψθ(t) is commonly referred to as

the quantile loss function and is the quantile weighted sum of the positive and negative deviations

between the response variable and its estimate. The goal of QR problem is to minimize this loss

function. The QR optimization problem can be rewritten as a linear programming problem and

can be solved very efficiently. QR is a standard subroutine available in most commercial software

packages.

For a fixed data sample, the estimates of these quantile regression coefficients will depend on

α in general, and significance tests can be used to ascertain if these differences are indicative of

heteroskedasticity.

One method for the evaluation of CVaRα[Y ] is based on the numerical quadrature of the integral

in Eq. (2.7). Hence CVaRα[Y ] will be a linear combination, with appropriate quadrature weights, of

VaRα′ [Y ] evaluated at certain quadrature nodes α′, where α<α′ < 1 (we typically use quadrature

rules that only involve nodes that are in the interior of the interval to avoid the estimation of the

extremal quantiles α′ = 0,1). From Eq. (3.9), the corresponding estimate for CVaRα(Y ) also has

the form (Peracchi and Tanase 2008, Leorato et al. 2012):

CVaRα(Y ) =βTc X. (3.11)
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A related method was first described in Rockafellar et al. (2008), and further explored by Chun

et al. (2012) where it is aptly referred to as a mixed quantile regression (MQR). However, as pre-

sented there, MQR is restricted to the homoskedastic case (in which the the variance does not

depend on any of the covariates). We extend this method to incorporate conditional heteroskedas-

ticity. As pointed in the introduction, this is highly desirable property for demand modeling in the

context of the price-setting newsvendor problem.

In order to describe this formulation, we let
∑M

j=1wjVaRαj [Y ] be the discretization of Eq. (2.7),

where αj and wj denote the quadrature nodes and weights respectively. Then, we have

MQR : β̂c = arg min
β,τj

1

N

N∑
i=1

M∑
j=1

wjψαj
(
Yi− (τj +β)TXi

)
, (3.12)

s.t.,
M∑
j=1

wjτj = 0, (3.13)

ē.τj = 0 ∀ j = 1, . . . ,M. (3.14)

where ψθ(t) is the loss function for quantile regression and ē is a vector such that ēp = 1 if the

pth covariate (not including the intercept) is homoskedastic (i.e., does not impact variance) and

0 otherwise. For example, if a simple mid-point quadrature rule is used for the discretization

of Eq. (2.7), then with ∆ :=M−1(1−α), we have wj = (1−α)−1∆ and αj := α+ (j − 0.5)∆, j =

1, ..,M . Similarly, if a Gauss-Legendre quadrature rule is used, then wj = 0.5(1− α)δj and αj =

0.5 [(1−α)ξj + (1 +α)] where δj and ξj ∈ (−1,1) respectively denote the weights and nodes of the

corresponding M -point quadrature rule.

The objective function in problem MQR is a weighted sum of individual loss functions for each

quantile level αj, with the corresponding regression function (β+τj)
TX. Constraint (3.13) ensures

that β̂Tc X is the desired estimate of CVaRα[Y ]. Constraint (3.14) is more restrictive version of

constraint (3.13) and imposes the condition that τj is set to zero for any homoskedastic covariate

(besides intercept which is always treated as a heteroskedastic covariate).

Claim 1. The MQR formulation by design allows for conditional homoskedasticity and condi-

tional heteroskedasticity over the space of covariates.

Proof. The space of covariates are divided into homoskedastic and heteroskedastic covariates

and this is similar in effect to limiting the set of covariates Z that are allowed in the dispersion model

for heteroskedastic regression in Eq. (3.2). Constraint (3.14) imposes conditional homoskedasticity

on the homoskedastic covariates by restricting all quantiles to have an identical coefficients (the

elements of the τj are set to zero for any covariates in X but not in Z) and thus ensuring parallelism

in that covariate dimension. On the other hand, constraint (3.13) (which is the only constraint for
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the heteroskedastic covariates) provides τj a degree of freedom that it can vary across quantiles

thus the estimation method can choose to have quantiles that are not parallel to obtain a better

fit, similar to Fig. 2. �

Thus to model homoskedasticity in all covariates all τj’s are set to zero except for the intercept

term. This recovers the MQR formulation in Chun et al. (2012) as a special case. In the most general

full heteroskedastic case, where all τj’s can be non-zero, the objective function Eq. (3.12) decouples

and can be evaluated with independent and individual quantile regressions for each αj. This is the

method discussed in (Peracchi and Tanase 2008, Leorato et al. 2012) and can be implemented with

the widely-available quantile regression modules. On the other hand, the extended MQR method

described here can limit the subset of covariates over which heteroskedasticity is manifested and

requires implementing a specialized linear program.

One difficulty with the individual quantile regression estimates in Eq. (3.10) is that these may

not monotonic in α over the range of the covariates X, particularly for mis-specified regression

models (see, e.g. Chernozhukov et al. 2010). This long-standing problem called “quantile crossing”

is partly mitigated in the homoskedastic case by explicitly enforcing parallel quantile functions via

constraint (3.14) in the MQR formulation. While this aspect is not pursued here, the resulting

CVaR regression estimates may not be monotonic in α over the range of the covariates X, thereby

leading to an equivalent “superquantile crossing” problem.

In summary, given Y , X and the homoskedastic covariates, the three quantities needed to solve

the price-setting newsvendor problem (see Fig. 3 and Section 2.2) are as follows:

E[Y ] =
ˆ̃
βTc X, (3.15)

VaRα[Y ] = β̂Tv X, (3.16)

CVaRα[Y ] = β̂Tc X, (3.17)

where
ˆ̃
βc, β̂v and β̂c are outputs of subroutines that solve optimization formulations MQR, QR,

and MQR with input quantiles 0, α and α respectively.

3.3. Superquantile Regression (SQR)

Recently, Rockafellar et al. (2014) proposed superquantile regression for estimating CVaRα[Y ]

conditional on a set of covariates X, using methods that are not based on the discretization

of Eq. (2.7) as in Section 3.2. To motivate their approach, we recall that in quantile regression,

VaRα[Y ] is estimated as a linear function of the form βTv X by using a suitable error measure (or

loss function) for the residual (Y − βTv X). Similarly, Rockafellar et al. (2014) provide a suitable

modification of the error measure used in quantile regression leading to the superquantile regression
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estimates for CVaRα[Y ]. This modified error measure is based on an auxiliary response variable

whose quantiles, by construction, are equivalent to the desired superquantiles CVaRα[Y ].

An earlier result in Rockafellar et al. (2008) provides the relationship between the three quan-

tities, viz., the error measure, the deviation measure, and the statistic to be estimated in any

regression problem. For example, in quantile regression, this error measure is the quantile error

(or loss) function ψα(.) of the residual, the deviation measure is the difference between CVaR and

expectation of the residual, and the statistic is the estimated quantile of the response variable.

In Rockafellar et al. (2008) (Theorem 3.2), it was shown that minimizing the error measure for

the residual may be decomposed into two steps. The first step is to minimize the corresponding

deviation measure of the residual excluding the intercept term to estimate all coefficients but the

intercept. The second step is to set the intercept term to the statistic associated with the estimated

optimal residual from the first step.

This theory is extended to superquantile regression in Rockafellar et al. (2014), using the modified

error measure and a corresponding deviance measure. This leads to a linear programming (LP)

formulation for estimating the regression function for CVaRα[Y ]. We refer the reader to Rockafellar

et al. (2014) for the full details of their methodology; however, the LP formulation for obtaining

the estimates of the superquantile regression coefficients is summarized below.

We note that for any random variable R, the deviation measure for superquantile regression is

defined in Rockafellar et al. (2014) as

Dα(R) =
1

1−α

∫ 1

α

CVaRτ [R]dτ −E[R], (3.18)

while the corresponding statistic is simply CVaRα[R]. Let us consider regression functions where

the constant term is explicit, i.e. β0 + βTX, whilst X consists of columns for all the covariates

except the column of ones unlike the earlier sections. Therefore, the minimization of the error

measure in superquantile regression may be equivalently written as

βc = arg min
β

1

1−α

∫ 1

α

CVaRτ [Y −βTX]dτ −E[Y −βTX], (3.19)

βc,0 = CVaRα[Y −βTc X]. (3.20)

and the estimated superquantile regression is given by βc,0+βTc X. Observe that the random variable

R in Eq. (3.18) is set to the residual Y −βTX without the intercept in Eq. (3.19).

Model Estimation In practice, we have data samples {Xi, Yi} for i = 1, . . . ,N for obtaining

the estimates of the regression function for CVaRα[Y ]. Note here that Xi does not contain the

constant 1 covariate for the intercept term. The residual random variable has a discrete support,

thereby leading to a cumulative distribution function which has a piecewise constant structure.
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This structure, along with the formulation of the CVaR estimation as a minimization problem

in Rockafellar and Uryasev (2000), allows Problem (3.19) to be expressed as the following nonlinear

mathematical program,

βc = arg min
β,U

1

1−α

N−1∑
k=Nα

(κk−κk−1)Uk +
1

(1−α)

N−1∑
k=Nα

akE[max{Y −βTX−Uk,0}] (3.21)

+
1

N(1−α)
max
i=1...N

(Yi−βTXi)−
1

N

N∑
i=1

(Yi−βTXi)

In the above model, Nα = dNαe, and the decision variables include βc ∈Rn, U ∈RN−Nα where n

is the number of coefficients to be estimated except the intercept term. Further κNα−1 = α, and

κk = k
N

, which capture the various piecewise constant levels within the limits of the integration

in Eq. (3.19), and ak = ln(1−κk−1)− ln(1−κk).
Linearization using additional decision variables, V ∈RN(N−Nα), and W ∈R yields the following

linear program as developed in Rockafellar et al. (2014).

SQR : β̂c =arg min
β,U,V,W

1

1−α

N−1∑
k=Nα

(κk−κk−1)Uk +
1

N(1−α)

N−1∑
k=Nα

N∑
i=1

akVki (3.22)

+
1

N(1−α)
W − 1

N

N∑
i=1

(Yi−βTXi),

s.t., Vki ≥ Yi−βTXi−Uk, ∀ k=Nα, . . . ,N − 1, i= 1, . . . ,N, (3.23)

Vki ≥ 0, ∀ k=Nα, . . . ,N − 1, i= 1, . . . ,N, (3.24)

W ≥ Yi−βTXi, ∀ i= 1, . . . ,N. (3.25)

The estimation procedure can then be summarized as an algorithm.

Algorithm 3 Superquantile regression for CVaR estimation

Input: Data {Xi, Yi} for i= 1, ...,N , and the level α. Note that Xi does not include the constant

1 covariate corresponding to the intercept term.

1: Set up and solve the linear program SQR. The solution produces an estimate for β̂c.

2: Obtain constant term, using Eq. (3.20), by computing the empirical CVaR of the residual

corresponding to β̂c. This is computable as,

β̂c,0 =
1

Nα

bNαc∑
i=1

R(i) +
(Nα−bNαc

Nα

)
R(dNαe),

where R= (Y − β̂Tc X), and R(i) represent the decreasing order statistics of R over the empirical

sample {Xi, Yi}, i= 1, . . . ,N , i.e. R(1) ≥ · · · ≥R(N).

Output: Estimates [β̂c,0; β̂c] for superquantile regression, i.e., CVaRα[Y ] = β̂c,0 + β̂Tc X.
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The methodology for the price optimization is then similar to that described in Section 3.2,

except that the CVaR terms can now estimated using superquantile regression.

3.3.1. An Efficient Algorithm For Superquantile Regression We begin by observing

that the above formulation SQR involves O(N 2) number of variables as well as constraints. When

N is large, this quadratic complexity makes the above formulation impractical in terms of the com-

putational time needed to solve the linear program. We instead present an alternative linearization

of Eq. (3.21), RSQR (reformulated SQR), which enables the derivation of an efficient cutting plane

algorithm. We begin with a technical observation which is then used to arrive at the alternative

linear reformulation.

Claim 2. Let N = {1 . . .N}. Then, for any fixed index k, the following equality holds, where P(N )

denotes the power set, i.e. the set of all subsets of N .

N∑
i=1

max{Yi−βTXi−Uk,0}= max
Jk∈P(N )

∑
i∈Jk

(Yi−βTXi−Uk) (3.26)

Proof. Consider the subset J∗k = {i∈N | Yi−βTXi−Uk > 0}. Then, we have

N∑
i=1

max{Yi−βTXi−Uk,0}=
∑
i∈J∗

k

max{Yi−βTXi−Uk,0} (3.27)

since any index i 6∈ J∗k contributes zero to the summation on the left hand side. Similarly, it is also

evident that,

J∗k ∈ arg max
Jk∈P(N )

∑
i∈Jk

(Yi−βTXi−Uk) (3.28)

This is because any subset, say, Jk ⊂ J∗k can be augmented with elements from J∗k \ Jk to strictly

increase the objective function, while no superset Jk ⊃ J∗k can possibly increase the objective

function relative to J∗k due to its definition. Taken together, Eqs. (3.27–3.28) lead to Eq. (3.26). �

Expressing the expectation in Eq. (3.21) as a finite summation and applying Eq. (3.26) leads to

the following formulation.

β̂c = arg min
β,U,W

1

1−α

N−1∑
k=Nα

(κk−κk−1)Uk +
1

N(1−α)

N−1∑
k=Nα

ak max
Jk∈P(N )

∑
i∈Jk

(Yi−βTXi−Uk) (3.29)

+
1

N(1−α)
W − 1

N

N∑
i=1

(Yi−βTXi),

s.t., W ≥ Yi−βTXi, ∀ i= 1, . . . ,N. (3.30)
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We may then linearize the above formulation using an exponential number of constraints, with

only an O(N) number of additional variables, Tk, as follows.

RSQR : β̂c =arg min
β,U,W,T

1

1−α

N−1∑
k=Nα

(κk−κk−1)Uk +
1

N(1−α)

N−1∑
k=Nα

akTk (3.31)

+
1

N(1−α)
W − 1

N

N∑
i=1

(Yi−βTXi),

s.t., Tk ≥
∑
i∈Jk

Yi−βTXi−Uk, ∀ Jk ∈P(N ), k=Nα, . . . ,N − 1, (3.32)

Tk ≥ 0, ∀ k=Nα, . . . ,N − 1, (3.33)

W ≥ Yi−βTXi, ∀ i= 1, . . . ,N. (3.34)

The proposed reformulation allows us to derive an efficient decomposition algorithm. We first

present the following claim that lets us successfully seed the following algorithm in its very first

iteration. Let RSQR−RELAX denote a relaxation of RSQR, where we replace P(N ) in con-

straint Eq. (3.31) with respective subsets Jk ⊆P(N ), for each index k.

Claim 3. Let Jk = {N},∀ k. Then, the corresponding relaxation, RSQR−RELAX is a bounded

linear program.

Proof. We firstly note that constructing a finite, feasible solution for the corresponding dual

LP is sufficient to establish boundedness of the above LP, due to weak duality. The corresponding

dual LP is:

max
p,q

N∑
i=1

piYi +
N−1∑
k=Nα

N∑
i=1

Yiqk (3.35)

s.t., qk ≤
ak

N(1−α)
, ∀ k=Nα, . . . ,N − 1, (3.36)

qk =
κk−κk−1
N(1−α)

, ∀ k=Nα, . . . ,N − 1, (3.37)

N∑
i=1

pi =
1

N(1−α)
, (3.38)

N∑
i=1

piXi,l +
N−1∑
k=Nα

N∑
i=1

Xi,lqk =
1

N

N∑
i=1

Xi,l, ∀ l= 1, . . . , n, (3.39)

pi, qk ≥ 0, ∀ i= 1, . . . ,N, k=Nα, . . . ,N − 1. (3.40)

Consider the candidate solution that evidently satisfies the non-negativity constraints, as well as

constraints Eq. (3.37) and Eq. (3.38).

p̃i =
1

N 2(1−α)
, q̃k =

κk−κk−1
N(1−α)

(3.41)
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Constraint Eq. (3.36) is satisfied because, using a series expansion for the natural logarithm (where

each |κk|< 1), we have

ak = ln(1−κk−1)− ln(1−κk) =
∞∑
j=1

κjk−κik−1
j

> κk−κk−1 (3.42)

The final constraint Eq. (3.39) is also satisfied as verifiable via substitution, where ∀ l = 1, . . . , n,

we have,

LHS =
N∑
i=1

Xi,l

(
1

N 2(1−α)
+

N−1∑
k=Nα

κk−κk−1
N(1−α)

)

=
N∑
i=1

Xi,l

(
1

N 2(1−α)
+

1

N(1−α)

(
N − 1

N
−α

))

=
N∑
i=1

Xi,l

(
1

N

)
= RHS.

We also note that feasibility of the above relaxed primal, namely RSQR−RELAX is self-evident.

Taken together, these imply a finite, non-empty optimal solution for RSQR−RELAX. �

The decomposition algorithm may then be presented as in Algorithm 4.

Theorem 1. Algorithm 4 converges in finite time and solves problem RSQR, equivalently SQR,

upon convergence.

Proof. Step 2 is guaranteed to result in a finite, non-empty solution in the very first iteration,

due to Claim 3 and thereby successfully seeds the delayed constraint-generation procedure. Finite

convergence is guaranteed due to the finiteness of the power set, P(N ). Convergence in the LP solu-

tion is achieved in step 3, when no new constraint is identifiable for each index k, i.e. J∗k is already

present in Jk. Upon such convergence, it can be seen that the (final) converging linear program

RSQR−RELAX is a relaxation of RSQR with respect to the representation of Eq. (3.31), but

it also satisfies all the unrepresented constraints from RSQR. Thereby, its solution is also optimal

for RSQR, and equivalently SQR. �

In practice, convergence is realized in far fewer iterations than the cardinality of the power set.

We present below an empirical investigation of the computational performance of the algorithm.

3.3.2. Computational Results We consider the heteroskedastic generating model G1

described in Section 4.1 below with a unit Normal error distribution. Fig. 4 shows the average

computational time needed to solve formulation SQR using Algorithm 3, as well as the proposed

reformulation using Algorithm 4, as a function of N , namely, the number of sample points at

two quantile levels α = 0.7,0.85. For each value of N and α, the plot shows the mean value and

error bars estimated over 200 independently generated data sets, each of size N . All computations
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Algorithm 4 Decomposition Algorithm for Superquantile regression used for CVaR estimation

Input: Data {Xi, Yi} for i= 1, ...,N , and the level α. Note that Xi does not include the constant

covariate corresponding to the intercept term.

1: Initialize Jk = {N}, ∀ k=Nα, . . . ,N − 1.

2: Solve the relaxed linear program RSQR−RELAX implied by the current value of Jk. Let β̂

and Ûk be the optimal solution values for these variables.

3: For each k, identify the most violated constraint, relative to the full set of constraints

in Eq. (3.31). This is computable in O(N) effort for each k as

J∗k = {i∈N | Yi− β̂TXi− Ûk > 0},

and do Jk =Jk ∪J∗k . This results in adding a constraint for each k.

4: Repeat steps 2-3, until convergence of the LP solution in step 2. Let the converged solution for

variable β be denoted as β̂c.

5: Obtain constant term, using Eq. (3.20), by computing the empirical CVaR of the residual

corresponding to β̂c. This is computable as,

β̂c,0 =
1

Nα

bNαc∑
i=1

R(i) +
(Nα−bNαc

Nα

)
R(dNαe),

where R= (Y − β̂Tc X), and R(i) represent the decreasing order statistics of R over the empirical

sample {Xi, Yi}, i= 1, . . . ,N , i.e. R(1) ≥ · · · ≥R(N).

Output: Estimates [β̂c,0; β̂c] for superquantile regression, i.e., CVaRα[Y ] = β̂c,0 + β̂Tc X.

were carried out using Matlab/CPLEX on 64-bit Macbook Pro, Intel R©CoreTM i7 @ 2.5 GHz, 16

GB RAM. While Algorithm 3 fails to acceptably scale beyond a five hundred sample points, the

proposed decomposition algorithm performs well even for really large sets.

In our experiments, we observe that it is often more stable to implement RSQR−RELAX in

terms of the scaled covariate X̂ = (X−µX)/σX without any loss of generality. For some instances

of the optimization problem with N = 5000, and with greater frequency for larger values of N and

α, we observe that CPLEX can sometimes throw an exception of the form: ‘optimal solution is

available, but with infeasibilities after unscaling’ in the unscaled problem, whereas the scaled prob-

lem does not encounter these difficulties. Many commercial regression automatically incorporate

this form of scaling for better numerical stability, and a similar practice in for Algorithm 4 also

seems to be quite beneficial.



Harsha, Natarajan and Subramanian: A data-driven approach for the price-setting newsvendor problem
26

0 500 1000 1500
0

20

40

60

80

100

120

140

160

180
A

ve
ra

ge
 R

un
 T

im
e 

(s
ec

s)

Sample size, N
0 2000 4000 6000 8000 10000 12000

0

500

1000

1500

2000

A
ve

ra
ge

 R
un

 T
im

e 
(s

ec
s)

Sample size, N

 

 

SQR−Algo:3,α = 0.7
SQR−Algo:3,α = 0.85
SQR−D Algo:4, α= 0.7
SQR−D Algo:4, α= 0.85

Figure 4 Computational run times for Algorithm 3 and Algorithm 4 as a function of N for α= 0.7,0.85. The left

plot is zoomed version of the right plot for the range [0, 1500].

4. Monte-Carlo Simulation Study

In this section, the proposed methodologies for the data-driven, price-setting newsvendor prob-

lem described in Section 3, are evaluated through a Monte Carlo simulation study. To fix ideas, we

focus on the lost-sales formulation of the price-setting newsvendor problem, although the general

conclusions carry over to the emergency order formulation as well.

If the stochastic price-demand function is explicitly known, then the exact optimal solutions to

the price-setting newsvendor problem can be directly obtained (e.g., using the methods in Sec-

tion 2.2). Furthermore, simulated data sets can be generated from these known stochastic price-

demand functions, and the estimated optimal solutions for each simulated data set can be obtained

using the methods in Section 3. These results can be used to evaluate the statistical properties of

the estimated optimal solutions, as well as the coverage and length of their estimated bootstrap

confidence intervals, as described further below.

4.1. Simulated Data Sets

Denoting the stochastic price-demand functions by Y , we consider two such explicit functions which

are motivated from Eqs. (3.1) and (3.8) respectively (for simplicity of exposition, price is the only

demand driver that is included)

G1. Y = β0 +β1p+
(
γ0 + γ1p+ γ2p

2
)
ε, (4.1)

where ε is a random variable with mean 0 that is specified further below, and β0 = 200.0, β1 =

−35.0, γ0 = 36.0, γ1 =−12.0, γ2 = 2.1.
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G2. Y = β0 +β1p+β2p
2 + (γ0 + γ1p) ε

−+ γ2p
2 ε+, (4.2)

where ε− = min{ε,0}, ε+ = max{0, ε} and ε is N(0,1) i.e., a Normal distribution with mean

0 and standard deviation 1. Here, β0 = 215.0, β1 = −37.0, β2 = −1.5 CVaRε(0.5) = −1.1968,

γ0 = 36.0, γ1 =−4.0, γ2 = 3.

The demand functions in the generating models G1 and G2 have means that are decreasing

linear functions of price, and variances that are non-monotonic quadratic functions of price (the

mean for the generating model G2 is obtained by evaluating CVaR0[Y ]). As discussed in Section 1.2,

price-demand functions with these characteristics are of practical importance.

The parameters for the price-setting newsvendor problem are taken to be c= 1.0, s= 0.5, and

v = 1.0. The unit price p, which is the decision variable, is constrained to the interval (1.5,4.0).

These parameter values are inspired by an example in Lau and Lau (1988), although that paper

only considered a homoskedastic demand models with normal errors.

For the random variable ε in the generating model G1, we consider the following distributions:

1. Normal(0,1): Normal distribution with mean 0 and standard deviation 1.

2. Gamma(2,1): Gamma distribution with shape 2 and rate 1 (equivalently with mean 2 and

standard deviation
√

2), recentered to have mean 0.

3. Log-normal(0,1): Log-normal distribution with mean 0 and standard deviation 1 on the vari-

able’s log-scale, recentered to have mean 0.

4. Student’s t(3): Student’s t-distribution with 3 degrees of freedom, with mean 0 and and standard

deviation
√

3.

5. Mixture(-2,2): Mixture of two normal distributions, N(2,1) and N(−2,1), with equal weight

and standard deviations 1 each.

The Gamma(2) and Log-normal(0,1) distributions which are re-centered to have mean 0, are

asymmetric distributions. The Student’s t(3) distribution is symmetric but is heavy-tailed. The

Mixture(2,-2) distribution is also symmetric but is bi-modal unlike the other distributions that are

considered in this study.

The exact optimal solutions to the price-setting newsvendor problem for the price-demand func-

tions in generating model G1 and G2 are given in Table 1. The corresponding sample estimators

for the quantities in Table 1, are respectively denoted by p̂∗ for optimal price, x̂∗ for optimal order

quantity, and Π̂∗ for optimal profit.

The number of data points in each simulated data set is denoted by N and our results are

obtained for values ranging from N = 50 to N = 1500. The covariate values for p for the individual

cases in each simulated data set are obtained by uniform sampling from the allowed range in the
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Generating Distribution Optimal Solutions

Model for ε Price, p∗ Order Quantity, x∗ Profit Π∗

G1

Normal 3.32 105.57 178.74

Gamma 3.28 114.77 167.76

Lognormal 3.22 113.60 155.85

Student T 3.28 111.5 169.58

Mixture 3.34 134.18 184.41

G2 Normal 3.16 119.05 169.04

Table 1 True optima for the lost sales price-setting newsvendor problem with the stochastic demand model.

interval (1.5,4.0). The number of simulated data sets used in the Monte Carlo evaluation is denoted

by Nmc and is chosen to be 200.

4.2. Data-driven techniques used for experiments

As discussed in Section 3, any appropriate combination of the techniques for estimating the

three quantities E[D(p,z)], VaRα[D(p,z)], and CVaRα[D(p,z)] completely specify the optimization

formulation in Eq. (2.3) and Eq. (2.5) and hence can be used for testing. This leads to a profusion of

ways for implementing the computations as shown in Table 2 (just based on the methods described

in this paper). In the table, GLR refers to generalized linear regression based on Algorithm 2,

Residuals refers to the outputs of GLR combined with Eqs. (3.3–3.4), QR and MQR refer to

the formulations QR and MQR respectively while SQR refers to the decomposition approach

presented in Algorithm 4. The subscripts 0 or α represent the input quantile levels associated with

the estimation procedures.

E[D(p,z)] VaRα[D(p,z)] CVaRα[D(p,z)]

GLR
GLR+Residualsα

GLR + Residualsα

MQR0
QRα

MQRα

SQR0 SQRα

Table 2 Possible statistical estimation methods to estimate the different quantities of interest

To fix ideas, we implement and compare the following techniques:

• For the generating model, G1, we use the GLR method to evaluate E[D(p,z)] and compare three

methods that differ in the way they compute CVaRα[D(p,z)] and VaRα[D(p,z)] respectively.

The first method uses the residuals of the GLR for the superquantile and quantile estimations,

the second method uses MQR and QR and the last method uses SQR and QR respectively.
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The reason we choose the same mean estimator across the three different methods is to do with

many reasons: (1) Eq. (4.1) has the same form as Eq. (3.1) and Eq. (3.2) (i.e., set µ= β0 +β1p,
√
φ= γ0 + γ1p+ γ2p

2, V (µ) = 1, with g(µ) being the identity link function, and h(φ) being the

square-root link function). (2) The mean coefficient retrieval is expected to be pretty good if

the weights are a good approximation in the weighted least squares subroutine (step 2 when

V (µ) = 1) in GLR (weighted least squares is BLUE i.e., the best linear unbiased estimator).

(3) A common mean estimator across methods also enables one to focus on the quality of the

superquantile and the quantile estimation methods.

• For the generating model, G2, we use two different mean estimation methods: GLR and MQR0

and compare these against the three different ways described above to estimate the superquantile

and quantile (GLR residuals, MQR-QR and SQR-QR).

In our implementations, we define the GLR algorithm to have successful convergence if the number

of iterations of the Algorithm 2 is less than 50. For the MQR method we use a simple uniform

discretization where ∆ = 0.01.

4.3. Performance Metrics - Perfect Hindsight

In this simulation study, our goal is to understand the performance of the data-driven techniques in

retrieving the true optimal price and the true optimal order quantity. To avoid information overload

we only focus on the effect of the estimated price and order quantity on the true realized objective

that we denote by ‘Realized Profiti,m’ for an finite sample instance i using the method m. We

compare this realized objective against the maximum realizable objective, denoted by ‘Profit∗’ had

we offered the true optimal price, p∗ and stocked the true optimal order quantity, x∗. This method

is often called the perfect hindsight method because it compares the realizable objective attained

by the estimation method using finite data against the maximum realizable profit as though in

hindsight one can achieve the latter (within some tolerance) with sufficient data.

We use the mean absolute error as a measure of error between the two objectives i.e.,

MAEi,m =
Profit∗−Realized Profiti,m

Profit∗
(4.3)

We estimate this measure of error for every finite sample Monte Carlo data set i using a variety of

methods m described in Section 4.2. We present the mean and standard error of the MAEi,m over

all the instances i for each method m.

4.4. Results

We summarize our results about the mean and standard error of MAEi,m in Table 3 and Table 4.

Table 3 focuses on generating model G1 and presents the results for various distributions of error
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N
Normal Gamma

Instances GLR SQR MQR Instances GLR SQR MQR

50 198
0.916 1.099 1.010

192
2.077 2.400 2.435

(0.101) (0.112) (0.089) (0.208) (0.220) (0.232)

100 200
0.410 0.478 0.477

200
0.752 0.875 0.847

(0.029) (0.036) (0.036) (0.064) (0.074) (0.075)

250 200
0.146 0.171 0.171

200
0.266 0.312 0.303

(0.011) (0.013) (0.013) (0.020) (0.022) (0.021)

500 200
0.081 0.095 0.095

200
0.137 0.165 0.161

(0.006) (0.007) (0.007) (0.011) (0.013) (0.013)

1000 200
0.036 0.041 0.041

200
0.069 0.082 0.082

(0.003) (0.003) (0.003) (0.005) (0.007) (0.007)

1500 200
0.024 0.029 0.029

200
0.043 0.047 0.046

(0.002) (0.002) (0.002) (0.003) (0.003) (0.003)

N
Student t Lognormal

Instances GLR SQR MQR Instances GLR SQR MQR

50 177
2.117 1.889 1.816

157
3.160 3.282 2.989

(0.216) (0.177) (0.182) (0.472) (0.356) (0.339)

100 191
1.123 0.938 0.926

185
1.561 1.805 1.373

(0.118) (0.091) (0.094) (0.154) (0.207) (0.147)

250 198
0.430 0.334 0.336

186
0.560 0.565 0.446

(0.033) (0.023) (0.024) (0.046) (0.089) (0.035)

500 197
0.282 0.181 0.177

194
0.342 0.248 0.245

(0.024) (0.014) (0.014) (0.031) (0.023) (0.023)

1000 198
0.120 0.072 0.072

197
0.159 0.123 0.122

(0.009) (0.005) (0.005) (0.013) (0.011) (0.011)

1500 197
0.106 0.052 0.053

198
0.141 0.087 0.087

(0.014) (0.003) (0.004) (0.013) (0.007) (0.007)

N
Mixture

Instances GLR SQR MQR

50 198
5.606 5.064 4.967

(0.312) (0.301) (0.301)

100 200
3.636 3.464 3.450

(0.252) (0.233) (0.236)

250 200
2.295 2.212 2.210

(0.149) (0.128) (0.129)

500 200
1.378 1.273 1.271

(0.072) (0.067) (0.067)

1000 200
1.036 0.970 0.972

(0.055) (0.048) (0.048)

1500 200
0.748 0.687 0.685

(0.047) (0.041) (0.041)

Table 3 Mean and standard error (in brackets) for the MAE of the profit using the generating model G1
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N Instances
GLR mean MQR mean

GLR SQR MQR GLR SQR MQR

50 189
2.059 2.139 2.264 2.062 2.082 2.014

(0.238) (0.241) (0.271) (0.24) (0.253) (0.235)

100 199
0.681 0.704 0.698 0.648 0.664 0.678

(0.062) (0.056) (0.058) (0.054) (0.051) (0.053)

250 200
0.3 0.235 0.231 0.301 0.222 0.225

(0.02) (0.017) (0.017) (0.021) (0.016) (0.016)

500 200
0.235 0.141 0.138 0.237 0.136 0.14

(0.015) (0.012) (0.012) (0.015) (0.012) (0.012)

1000 200
0.144 0.059 0.058 0.143 0.056 0.058

(0.007) (0.004) (0.004) (0.007) (0.004) (0.004)

1500 200
0.131 0.037 0.037 0.131 0.036 0.038

(0.005) (0.003) (0.003) (0.005) (0.003) (0.003)

Table 4 Mean and standard error (in brackets) for the MAE of the profit using the generating model G2

discussed in Section 4.1 and three different estimation procedures discussed in Section 4.2. Table 3

focuses on generating model G2 and presents the results for six different estimation methods. In

each of the tables the first column with the title ‘N’ refers to the number of data points in each

instance of the data set. There were Nmc = 200 random instances generated for each data set. The

second column in each table that has a title ‘Instances’ denotes the number of instances, amongst

the Nmc = 200, where the GLR algorithm successfully converged. Our mean and standard error

results are presented only on the instances where the GLR algorithm successfully converged.

In Table 3 and Table 4, we boldface that method that has the highest mean performance for

better (or similar) standard error levels. It can be observed from Table 3 that for generating

model G1 the GLR method tends to outperform the MQR and SQR for the Normal and Gamma

distributions especially as N becomes larger. The reverse is true, i.e., GLR tends to underperform

compared to MQR and SQR for the other distributions such as Student t, Lognormal and Mixture

for larger N. In Table 4 for generating model G2 again the SQR and MQR methods with either

mean estimation method tends to dominate over the GLR based method. This is surprising because

generating model G2 only employs a Normal distribution of error and for generating model G1

under a Normal distribution GLR method dominated over the MQR and SQR methods. The MQR

mean estimation method here performs slightly better than the GLR mean estimation method. For

smaller data sets, no method statistically dominates another method although some methods seem

to have smaller mean for the same standard errors. We also note that across all the results that

it is harder to distinguish the MQR and the SQR methods as their mean performances are very

similar with near identical standard error levels. We do see that MQR tends to slightly outperform
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SQR for smaller sized data sets in generating model G1 and SQR tends to slightly outperform in

generating model G2.

4.5. Discussion

In this section, we summarize our thoughts and lessons learnt from extensive experimentation.

Performance in Estimation: Our experimental results in the context of the price-setting

newsvendor show that SQR and MQR result in better solutions for a wide range of generating

models over GLR. GLR performs best in Normal and Gamma distributions but if the error dis-

tributions are highly asymmetric or heavy tailed or bi-modal (even though symmetric) or possess

heteroskedastic effects that cannot fully be explained by a variance predictor (i.e., quantiles that

depend differently on the different covariates aside from the effects of the noise), a mean-variance

model captured by GLR may not have the best performance. Sometimes, GLR can even fail to

converge, more so in some distributions over others.

Our observations seem different from Chun et al. (2012) who compared OLS and MQR meth-

ods for superquantile estimation in a homoskedastic setting (GLR is OLS in a homoskedastic

setting). The key in a homoskedastic setting to capture the mean accurately while the quantiles

and superquantiles capture the effect of the empirical noise distribution from the residuals. Unlike

this, in a heteroskedastic model (e.g., models G1 and G2) it is not only important to capture the

mean, but also the other quantities accurately. We believe this is where quantile based methods

like QR, MQR and SQR are powerful as highlighted in the experiments for generating model G1.

In summary, for quantile or superquantile estimations, unless one expects the error distributions

to have a unimodal, symmetric, non-heavy-tailed or homoskedastic behaviro (i.e., similar to the

Normal distribution) it is always better to work with quantile-based methods such as QR, MQR

or SQR.

For the mean estimation, the experiments for generating model G2 indicate that quantile-based

methods such as MQR and SQR are preferred to GLR whenever the quantiles have different

dependence on the covariates (aside from the effects of the noise distribution). However, when this

is not the case as in generating model G1, methods like GLR outperform MQR and SQR (even in

run-time) and we believe this stems from the BLUE property of weighted least squares.

Between MQR and SQR, SQR has some very interesting theoretical properties in terms of risk

measure and being part of the risk quadrangle but statistically it is hard to distinguish MQR and

SQR.

Based on the above discussion, we gather that it is important the user of these techniques

understands the data and uses the insights from the application area together with some of our

conclusions to gauge the best technique that suits the data.
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Run time comparisons: We focus on the run-times of the individual algorithms of GLR, QR,

MQR and SQR as opposed to the overall time for solving a data-driven price-setting newsvendor

problem. This is because the price optimization for lost sales requires a non-linear algorithm and this

can call the CVaR estimation methods multiple times. We consider the heteroskedastic generating

model G1 with a unit Normal error distribution. Fig. 5 shows the average computational time

needed to solve the different estimation methods as a function of N for two different α values (i.e.,

0.7 and 0.85). For each value of N and α, the plot shows the mean value of the run times and

the corresponding error (i.e., standard deviation) bars estimated over 200 independently generated

data sets, each of size N .

GLR as a practical technique for larger data sets is much faster and grows at a negligible rate

compared to MQR and SQR at any quantile level, and even more so at quantiles closer to 0.

Observe also that the standard deviation of this method is very small. The time taken for MQR

in comparison to SQR is in the same order and a bit higher in many cases except for α= 0.7 and

large N . The run time of MQR can be tuned up or down by decreasing or increasing ∆ which

is currently set to 0.01. This reduces the number of discretizations over which the quantiles are

estimated. The decomposition method of SQR on the other hand uses the finest discretization that

can be generated with the residual data set. Observe also that the standard deviations of MQR

and SQR to increase for larger N (and smaller α for SQR in particular).

To estimate a single quantile QR is a fast practical routine with similar performance guarantees

like GLR but if GLR is already used for the mean evaluation (say as in the context of the price

setting newsvendor problem), estimating quantiles or superquantiles from the residual distribution

after the main GLR routine is just a few additional algebraic operations.
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Figure 5 Computational run times for GLR, QR, MQR and SQR-Decomposition as a function of N for α= 0.85

and 0.7 respectively. Note the difference in scales in the two plots.
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5. Extensions and enhancements for the operational use of the data-driven
price setting newsvendor

Statistical Consistency: There are other statistical performance measures that are often used

to gauge the performance of an estimation technique in a Monte Carlo setting such as consistency,

bias, mean square error and relative efficiency of estimators as the size of the dataset N becomes

large (see Keeping (1962) for definitions). These metrics are important to compare the statisti-

cal properties different estimators, and fore example, the consistency of CVAR estimation using

quantile regression has previously been studied by Leorato et al. (2012) and Chun et al. (2012).

The data-driven price setting newsvendor problem as highlighted in Fig. 3, is seen in this paper

to comprise of multiple estimation methods as well as price optimization step. Therefore the

consistency (and any other related metrics) depends on the individual estimators, and on their

combination in the algorithms. Although this is an interesting direction to pursue both theoreti-

cally and empirically, in order to limit the scope of this paper, we just provide one example of the

experimental evaluation of the statistical consistency in Fig. 6. The concentration of the density

plots for the Monte Carlo estimates of Π̂∗ for large N (here, for the case when GLR is used for

mean, quantile and the superquantile regression) indicates that this approach leads to statistically

consistent estimates for the optimal solutions.
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Figure 6 Consistency results for the estimated optimal profit using Heteroscedastic Regression. The distribution

of the estimated optimal profit from the Monte Carlo data sets from the generating model G1 is shown

a function of the sample size N .

Bootstrap Confidence Intervals: An important aspect of a practical data-driven methodology

for the price-setting newsvendor problem is obtaining confidence intervals for the estimated optimal

solutions. We propose to use the non-parametric bootstrap (Efron and Tibshirani 1994) to obtain

the desired confidence intervals. The overall approach is similar to that used for heteroskedastic



Harsha, Natarajan and Subramanian: A data-driven approach for the price-setting newsvendor problem
35

quantile regression (Koenker 2005), and in particular, we use the “paired bootstrap” whereby the

bootstrap data sets are generated by sampling entire individual cases with replacement from the

original data set.

The coverage and accuracy of the resulting bootstrap confidence intervals can be evaluated

through a Monte Carlo simulation study for an explicitly-known stochastic price-demand function.

Fig. 7 shows the results of the Monte Carlo evaluation of the 95% bootstrap confidence intervals

of the estimated optimal profit Π̂∗ over Nmc = 100 instances using GLR based estimators for

mean, quantile and superquantile respectively. For each of the Monte Carlo instance, the 95%

bootstrap confidence intervals are presented. The coverage of the bootstrap method is evaluated

as the fraction of simulated Monte Carlo data sets for which the exact optimal profit is within the

95% bootstrap confidence intervals for the corresponding estimated optimal profit. Fig. 7 shows

that these bootstrap confidence intervals are quite adequate.
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Figure 7 Coverage results for the 95% bootstrap confidence intervals for the estimated optimal profit obtained

using heteroscedastic regression for the sample size N = 50. The confidence intervals are shown along

with the exact optimal profit in each case for Nmc = 100 Monte Carlo simulations (the intervals shown

marked in red do not contain the exact optimal profit).

Regularization and Feature Selection: Standard techniques for as regularization and feature

selection can also be used for each individual estimation method within our framework. These

techniques are particularly useful in the big data setting for high-dimensional covariate spaces, since
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they lead to stable regression estimates with better predictive power. The regression formulation

can be generalized to include use regularization terms such as the Lasso L1 norm, Ridge L2 norm,

etc., or to even include explicit constraints on the number of features in the estimated regression

model. For example, Rudin and Vahn (2014) describe several regularization approaches for quantile

regression in the context of the standard newsvendor problem. They also use regularization in

the context of multiple items to ensure some features have similar role on predicting demand for

multiple items or for the cold start demand estimation problem in new items using other items.

Similar regularization terms can be included in each of our statistical estimation methods in these

respective settings. Bertsimas and Mazumder (2014) consider the subset selection problem for

obtaining the best feature subsets using mixed-integer optimization in the case of linear regression;

they provide constraints that can incorporated into the estimation methods considered in this

paper.

6. Concluding Remarks

In this paper, we described a practical framework for data-driven, distribution-free, multivariate

modeling of the price-setting newsvendor problem. It includes statistical estimation and price

optimization methods for estimating the optimal solutions conditional on a broad set of covariates

(other than price) and associated confidence intervals. In contrast to the current state of the art

for solving the data-driven, price-sensitive newsvendor problem, our framework does not require

the complete price-dependent demand distribution prior to the optimization. Relevant statistical

estimation methods are carried out only for quantities that are necessary to solve the decision

problem, spanning a broad set of covariates including auxiliary measurements (like weather related

variables, for e.g.) in addition to primary covariates (like price). These include the following three

aspects of the demand distribution, namely the mean, quantile and superquantile (CVaR). We

also investigated different statistical estimators which are broadly based on GLR, MQR, and SQR

respectively. Our detailed simulations and computational experiments indicate that quantile-based

methods such as MQR and SQR provide better solutions for a wide range of demand distributions,

although for certain location-scale demand distributions that are similar to the Normal distribution,

GLR may be preferable.

In this paper, we also presented a novel large-scale decomposition method that is exact and

computationally efficient for SQR. We also extended the MQR estimation formulation to allow

conditional homoskedasticity and conditional heteroskedasticity over respectively desired subsets

of covariates. These CVaR estimation extensions may be of independent interest, e.g., in financial

applications.
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We expect that many ideas proposed in this paper will useful for developing a data-driven

framework for similar or other advanced types of operations models such as multi-item, multi-

period and more general risk-aware objectives in the context of the coordination of pricing and

inventory.

References

Agrawal, V., S. Seshadri. 2000. Impact of uncertainty and risk aversion on price and order quantity in the

newsvendor problem. Manufacturing & Service Operations Management 2(4) 410–423.

Andreev, A., A. Kanto, P. Malo. 2005. On closed-form calculation of CVaR .

Arikan, E., J. Fichtinger, W. Jammernegg. 2007. Single period combined inventory and pricing models.

Management Logistischer Netzwerke 179–199.

Arikan, E., W. Jammernegg. 2009. The newsvendor problem with a general price dependent demand distri-

bution. Available at SSRN 1523303 .

Aydin, G., E. L. Porteus. 2008. Joint inventory and pricing decisions for an assortment. Operations Research

56(5) 1247–1255.

Bertsimas, D., R. Mazumder. 2014. Exact subset selection in regression via a modern optimization lens.

Based on the 2014-2015 Philip McCord Morse Lecture.

Besbes, O., A. Muharremoglu. 2013. On implications of demand censoring in the newsvendor problem.

Management Science 59(6) 1407–1424.

Beutel, A., S. Minner. 2012. Safety stock planning under causal demand forecasting. International Journal

of Production Economics 140(2) 637–645.

Billinton, R., R. N. Allan. 1996. Reliability evaluation of power systems. Plenum Press.

Bookbinder, J. H., A. E. Lordahl. 1989. Estimation of inventory re-order levels using the bootstrap statistical

procedure. IIE transactions 21(4) 302–312.

Brent, R. P. 1973. Algorithms for minimization without derivatives. Courier Dover Publications.

Chan, L. M. A., Z. J. M. Shen, D. Simchi-Levi, J. L. Swann. 2004. Coordination of pricing and inventory

decisions: A survey and classification. International Series in Operations Research and Management

Science 335–392.

Chen, X., D. Simchi-Levi. 2010. Pricing and inventory management. The Handbook of Pricing Management,

Oxford University Press, Oxford, UK .

Chen, Y., M. Xu, Z. G. Zhang. 2009. Technical notea risk-averse newsvendor model under the cvar criterion.

Operations Research 57(4) 1040–1044.

Chernozhukov, V., I. Fernández-Val, A. Galichon. 2010. Quantile and probability curves without crossing.

Econometrica 78(3) 1093–1125.



Harsha, Natarajan and Subramanian: A data-driven approach for the price-setting newsvendor problem
38

Chu, L. Y., J. G. Shanthikumar, Z. M. Shen. 2008. Solving operational statistics via a bayesian analysis.

Operations Research Letters 36(1) 110–116.

Chun, S. Y., A. Shapiro, S. Uryasev. 2012. Conditional value-at-risk and average value-at-risk: Estimation

and asymptotics. Operations Research 60(4) 739–756.

Davidian, M., R. J Carroll. 1987. Variance function estimation. Journal of the American Statistical Associ-

ation 82(400) 1079–1091.

Davidian, M., R. J. Carroll. 1988. A note on extended quasi-likelihood. Journal of the Royal Statistical

Society. Series B (Methodological) 74–82.

Efron, B., R. J. Tibshirani. 1994. An introduction to the bootstrap, vol. 57. CRC press.

Elmaghraby, W., P. Keskinocak. 2003. Dynamic pricing in the presence of inventory considerations: Research

overview, current practices, and future directions. Management Science 49(10) 1287–1309.

Federgruen, A., A. Heching. 1999. Combined pricing and inventory control under uncertainty. Operations

Research 47(3) 454–475.

Gallego, G., I. Moon. 1993. The distribution free newsboy problem: review and extensions. Journal of the

Operational Research Society 825–834.

Godfrey, G. A., W. B. Powell. 2001. An adaptive, distribution-free algorithm for the newsvendor problem

with censored demands, with applications to inventory and distribution. Management Science 47(8)

1101–1112.

Hammerstrom, D. J., R. Ambrosio, J. Brous, T. A. Carlon, D. P. Chassin, J. G. DeSteese, R. T. Guttromson,

G. R. Horst, O. M. Järvegren, R. Kajfasz, et al. 2007. Pacific northwest gridwise testbed demonstration

projects. Part I. Olympic Peninsula Project .

Hanssens, D. M., L. J. Parsons, R. L. Schultz. 2003. Market response models: Econometric and time series

analysis. Kluwer Academic.

Harsha, P., M. Sharma, R. Natarajan, S. Ghosh. 2013. An inventory theory framework for the analysis of

probabilistic demand response schemes. IEEE Transactions on Smart Grid 4(4) 2274–2284.

Hastie, T., R. Tibshirani, J. Friedman. 2001. The elements of statistical learning theory.

Huh, W. T., R. Levi, P. Rusmevichientong, J. B. Orlin. 2008. Adaptive data-driven inventory control policies

based on kaplan-meier estimator. Book of Abstracts. 42.

Huh, W. T., P. Rusmevichientong. 2009. A nonparametric asymptotic analysis of inventory planning with

censored demand. Mathematics of Operations Research 34(1) 103–123.

Karlin, S., C. R. Carr. 1962. Prices and optimal inventory policy. Studies in Applied Probability and

Management Science 159–172.

Keeping, E. S. 1962. Introduction to statistical inference, vol. 26. Courier Dover Publications.



Harsha, Natarajan and Subramanian: A data-driven approach for the price-setting newsvendor problem
39

Khouja, M. 1999. The single-period newsvendor problem: literature review and suggestions for future

research. Omega 27(5) 537–553.
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