
RC25560 (WAT1509-118) September 30, 2015
Computer Science

Research Division
Almaden – Austin – Beijing – Brazil – Cambridge – Dublin – Haifa – India – Kenya – Melbourne – T.J. Watson – Tokyo – Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report for
early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After
outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties). Many reports are available at http://domino.watson.ibm.com/library/CyberDig.nsf/home.

IBM Research Report

Revisiting Asynchronous Linear Solvers: Provable
Convergence Rate through Randomization

Haim Avron1, Alex Druinsky2, Anshul Gupta1

1IBM Research Division
Thomas J. Watson Research Center

P.O. Box 218
Yorktown Heights, NY 10598 USA

2Lawrence Berkeley National Laboratory

Revisiting Asynchronous Linear Solvers: Provable Convergence
Rate Through Randomization∗

Haim Avron
IBM T.J. Watson Research Center

haimav@us.ibm.com

Alex Druinsky
Lawrence Berkeley National Laboratory

adruinsky@lbl.gov

Anshul Gupta
IBM T.J. Watson Research Center

anshul@us.ibm.com

Abstract

Asynchronous methods for solving systems of linear equations have been researched since Chazan and Miranker’s
pioneering 1969 paper on chaotic relaxation. The underlying idea of asynchronous methods is to avoid processor idle
time by allowing the processors to continue to make progress even if not all progress made by other processors has
been communicated to them.

Historically, the applicability of asynchronous methods for solving linear equations was limited to certain restricted
classes of matrices, such as diagonally dominant matrices. Furthermore, analysis of these methods focused on proving
convergence in the limit. Comparison of the asynchronous convergence rate with its synchronous counterpart and its
scaling with the number of processors were seldom studied, and are still not well understood.

In this paper, we propose a randomized shared-memory asynchronous method for general symmetric positive
definite matrices. We rigorously analyze the convergence rate and prove that it is linear, and is close to that of
the method’s synchronous counterpart if the processor count is not excessive relative to the size and sparsity of the
matrix. We also present an algorithm for unsymmetric systems and overdetermined least-squares. Our work presents
a significant improvement in the applicability of asynchronous linear solvers as well as in their convergence analysis,
and suggests randomization as a key paradigm to serve as a foundation for asynchronous methods.

1 Introduction
It has long been recognized that high global synchronization costs will eventually limit the scalability of iterative
solvers. So early on, starting with the pioneering work of Chazan and Miranker on chaotic relaxation in 1969 [6] (see
review by Frommer and Szyld [8]), asynchronous methods have been researched and deployed. These methods avoid
synchronization points and their associated costs by allowing processors to continue to work even if not all progress
made by other processors has been communicated to them.

While asynchronous methods were successfully applied to many numerical problems [8], interest in them dwindled
over the years. One important reason is that until recently, concurrency was not large enough to warrant the use of asyn-
chronous methods, as asynchronous methods typically require more computation when compared to their synchronous
counterparts. Other reasons are related to the limits of existing theory on asynchronous methods. Historically, the ap-
plicability of asynchronous methods for solving linear equations was limited to restricted classes of matrices, such as
diagonally dominant matrices. This had a substantially negative impact on the relevance and interest in asynchronous

∗An extended abstract of this work appears in the proceedings of the 28th IEEE International Parallel & Distributed Processing Symposium
(IPDPS), 2014 [1].

1

methods, as most of the matrices arising in applications did not posses the required attributes. Furthermore, analysis
of asynchronous methods for solving linear equations focused on proving convergence in the limit. How the rate of
convergence compares to the rate of convergence of the synchronous counterparts, and how this rate scales when the
number of processors increase, was seldom studied and is still not well understood. It was observed experimentally
that asynchronous methods can sometimes be substantially slower than their synchronous counterparts [5].

Today, as we push towards extreme scale systems, asynchronous algorithms are becoming more and more attrac-
tive. In addition to the high synchronization costs due to massive parallelism, other hardware issues make asynchronous
methods attractive as well. Current hardware trends suggest that software running on extreme-scale parallel platforms
will be expected to encounter and be resilient to nondeterministic behavior from the underlying hardware. Asyn-
chronous methods are inherently well-suited to meet this challenge. On the other hand, it is also clear that a paradigm
shift regarding the way asynchronous methods are designed and analyzed must be made, if such methods are to be
deployed. To that end, this paper makes three significant contributions. It presents an asynchronous solver with ran-
domization as a key algorithmic component, a rigorous analysis that affirms the role of randomization as an effective
tool for improving asynchronous solvers, and an analytical methodology for asynchronous linear solvers based on a
realistic bounded-delay model.

Specifically, we present a new asynchronous shared-memory parallel solver for symmetric positive definite matri-
ces with a provable linear convergence rate under a mostly asynchronous computational model that assumes bounded
delays. A key component of our algorithm is randomization, which allows the processors to make progress indepen-
dently with only a small probability of interfering with each other. Our analysis shows a convergence rate that is linear
in the condition number of the matrix, and depends on the number of processors and the degree to which the matrix
is sparse. A slightly better bound is achieved if we occasionally synchronize the processors. In either case, as long as
the number of processors is not too large relative to the size and sparsity of the matrix, the convergence rate is close to
that of the synchronous counterpart. Unlike most asynchronous methods, the convergence rate does not depend on nu-
merical classification of the matrix (e.g., diagonal dominance). In particular, our method will converge for essentially
any large sparse symmetric positive definite matrix as long as not too many processors are used. We also present an
algorithm for unsymmetric systems and overdetermined least-squares.

Our method and its analysis do have some limitations. Adapting the algorithm to the distributed memory setting
is not straightforward. Our algorithm allows each processor to update all the entries of the solution vector, but in a
distributed memory setting it is desirable that each processor owns and be the sole updater of only a subset of the
entries. To allow this, a more limited form of randomization should be used, and this is not explored in the paper. Our
algorithm also tends to generate much more cache misses than classical asynchronous methods for structured matrices.
Again, it may be possible to circumvent this using a more restricted form of randomization. More importantly, our
algorithm’s convergence is inherently slower than that of Krylov-subspace methods, which is a feature of the underlying
synchronous algorithm. For this reason, the algorithm is most suitable when only moderate accuracy is sought, either
when we require low accuracy in the ultimate solution or when we use the algorithm as a preconditioner in a flexible
Krylov method. Our algorithm relies on some assumptions that are hard to enforce in practice, and the convergence
results have a parameter which is hard to quantify better than just a very rough upper bound. Finally, we remark that
bounds tend to be rather pessimistic (this is true also for the synchronous algorithm that is the basis for our algorithm).

Nevertheless, even with these limitations we believe our work presents a significant improvement in the appli-
cability of asynchronous linear solvers, as well as in the convergence analysis, and suggests randomization as a key
paradigm to serve as a foundation for asynchronous methods.

While the primary aim of this paper is to present analytical results, we also include some experimental results.
With our implementation, we are able to demonstrate that the proposed method can be attractive for certain types of
linear systems even in the absence of massive parallelism. Previous asynchronous methods, as well as ours, are based
on basic iteration. Those are known to convergence very slowly in the long run when compared with Krylov subspace
methods. However, big data applications typically require very low accuracy, so they are better served using basic
iterations as these tend to initially converge very quickly and scale better. Our experiments show that for a linear
system arising from analysis of social media data, our proposed algorithm scales well, pays very little to no penalty for
asynchronicity, and overall seems to present the best choice for solving the said linear system to the required accuracy.

2

We review related work in Section 2. Essential background on Randomized Gauss-Seidel is given in Section 3. In
Section 4 we propose two asynchronous models for executing Randomized Gauss-Seidel: one assumes that consistent
reads have been enforced, another does not. Section 5 analyzes the convergence when the consistent read assumption
is enforced. Section 6 shows that convergence can be improved if we control the step-size. In Section 7, we analyze
convergence rate when we allow inconsistent reads. We briefly discuss unsymmetric systems and overdetermined
least-squares in Section 8. Section 9 presents experimental results. Finally, in Section 10 we make some concluding
remarks and discuss future work.

Setup and Notation
Most of this paper is concerned with solving the linear equation Ax = b where A ∈ Rn×n is a symmetric positive
definite matrix, and b ∈ Rn. For simplicity we assume that A has a unit diagonal. This is easily accomplished using
re-scaling. Our results can be easily generalized to allow an arbitrary diagonal, but making this assumption helps keep
the presentation and notation more manageable. We denote the exact solution to this equation by x?, i.e. x? = A−1b.
We denote the largest eigenvalue of A by λmax, and the smallest eigenvalue by λmin. The condition number of A,
which is equal to λmax/λmin, is denoted by κ.

We are predominantly interested in the case where A is sparse and very large, and the number of non-zeros in
each row is between C1 and C2 � n with a small ratio between C2 and C1. This scenario frequently occurs in many
scientific computing applications. Throughout the paper we refer to this scenario as the reference scenario. We state
and prove more general results; we do not use the properties of the reference scenario in the proofs. The reference
scenario is mainly useful for the interpretation of the practical implications of the results. Note that in the reference
scenario we have λmax ≤ C2 � n, as A has a unit-diagonal (so off-diagonal entries must be smaller than or equal to
one).

We use (·, ·)A to denote the A inner product. That is, (x,y)A ≡ yTAx where x,y ∈ Rn. The fact that A is
a symmetric positive definite matrix guarantees that (·, ·)A is an inner product. The A-norm is defined by ‖x‖A ≡√

(x,x)A. We use e(1), e(2), . . . , e(n) to denote the n-dimensional identity vectors (i.e. e(i) is one at position i and
zero elsewhere). Ai denotes row i of A, and Aij denotes the i, j entry of A. We will generally use subscript indexes
on vectors for iteration counters. The notation (x)i denotes the ith entry of x.

Throughout the paper we describe algorithms that generate a series of approximations to x?, denoted by x0,x1, . . .
(subscript index is the iteration counter), which are actually random vectors. We denote the expected squared A-norm
of the error of xm by Em. That is,

Em ≡ E
[
‖xm − x?‖2A

]
.

2 Related Work
Asynchronous methods were first suggested by Chazan and Miranker [6] in their pioneering paper on chaotic re-
laxation. The theory and application of asynchronous iterations has since been studied and used by many authors.
Noteworthy is the seminal text by Bertsekas and Tsitsiklis [4]. A more recent review is by Frommer and Szyld [8].

Historically, work on asynchronous methods focused on proving that the methods converge in the limit, and not
on convergence rate analysis. In particular, the relation to the convergence rate of synchronous counterparts, and the
scaling of these methods, were seldom studied. We are aware of only two exceptions of work published before 2011,
but the results are unsatisfactory. Baudet [3] generalizes the Chazan-Miranker result to nonlinear mappings using
the same model of asynchronism. For the linear case, he does not extend the class of systems that can be solved in
this model (the Chazan-Miranker result is an if and only if result, so there is no possibility for improvement in that
model in that respect), but he does show that given a trace of an asynchronous iteration, if in that trace the maximum
delay on purging old information and the rate of updating all components is bounded, then convergence is linear with
the rate of convergence divided by the sum of these two bounds. The author does not analyze and show rigorous
convergence rates for a concrete algorithm for solving a linear system, nor compare the convergence rate of some
specific asynchronous algorithm to its synchronous counterpart. Bertsekas and Tsitsiklis [4, Section 7.2, Exercise 1.2]

3

prove a linear convergence rate of certain asynchronous iterations for some classes of matrices (like weakly diagonally
dominant matrices), but analyze how the rate of convergence depends on the measure of asynchronism only under very
restrictive conditions and in a hard to interpret manner [4, Section 6.3.5].

Following the influential work of Niu et al. [15], recent work has focused on analyzing the rate of convergence.
When discussing these recent results it is important to distinguish between methods that assume a consistent read
model, and models that allow inconsistent reads. Informally (we give a formal definition in Section 4), the consistent
read model assumes that the part of the state (i.e., iteration vector) that the algorithm reads in order to update the state
is consistent with a state that existed in shared memory at some point in time. Without special provisions, which might
be computationally expensive, the consistent read assumption is somewhat unsatisfactory, although the analysis of a
consistent read model is not without merit, as we explain in Section 4.

The basic model proposed by Niu et al. [15] is as follows. There is an iteration vector x that is stored in shared-
memory. All processors share this memory and update it in an asynchronous, uncoordinated fashion, without any form
of locking. This implies that the version of x that is used by a processor to update x is not the same as the version on
which this update is applied, as x has possibly been updated by other processors in the interim. It is however assumed
that write operations are atomic, and that there is a bound τ on how many updates are missed. This model matches
modern multicore architectures well. Under an additional assumption of consistent reads, Niu et al. establish a sub-
linear convergence rate of asynchronous stochastic gradient descent. Our model follows the one proposed by Niu et
al. [15], although we analyze convergence both in the consistent read and inconsistent read model. We also establish a
linear convergence rate, unlike the sublinear rate for stochastic gradient descent, with a better dependence on τ .

Liu et al. [14] propose an Asynchronous Randomized Kaczmarz algorithm for solving consistent square and overde-
termined linear systems. They use the same model as Niu et al. do, and assume consistent reads as well. A linear
convergence rate is established. An extension to inconsistent systems is discussed as well.

Later, Liu et al. [13] develop an asynchronous stochastic coordinate descent algorithm. Again, they use the same
model as Niu et al., and continue to assume consistent reads. Furthermore, they assume that the radius of the iterate set
is bounded, which is a condition that might be hard to enforce in an asynchronous linear solver. They prove a sublinear
(1/m) convergence on general convex functions and a linear convergence rate on functions that satisfy an “essential
strong convexity” property.

More recently, Liu et al. [12] suggest an asynchronous stochastic proximal coordinate-descent algorithm for com-
posite objective functions. They allow inconsistent reads, and prove linear convergence for optimally strongly convex
functions, and a sublinear rate for general smooth convex functions.

Our algorithm is closely related to the stochastic coordinate descent algorithm in the sense that in essence our algo-
rithm is an asynchronous stochastic coordinate descent method applied to the strongly convex quadratic optimization
problem minx

1
2x

TAx−bTx. However, our results are much more tuned and interpretable to the problem we consider
(Ax = b) than the convergence result for general strongly convex functions.

Hook and Dingle [10] analyze the convergence of the Jacobi iteration when it is executed asynchronously on
a distributed memory machine. They prove upper and lower bounds on the convergence rate of the iteration that
are formulated in terms of the spectral radius of A and two parameters of the asynchronous execution dynamics.
Their results indicate when convergence takes place and how fast it is, even without the help of randomization. The
dependence of the bounds on parameters of the execution dynamics makes the convergence guarantee hard to interpret.
Nevertheless, the results show that performance can suffer if an entry of the iterate is repeatedly updated using stale
data because of a slow communication link or fails to be updated at all because of a slow processor. This indicates the
potential of using randomization to obtain robust performance in the face of such single-point-of-failure vulnerabilities.

Unrelated to the previous, we also note Freris and Zouzias’s [7] work on using an asynchronous variant of ran-
domized Kaczmarz [20] to synchronize clocks in a wireless network. They analyze the convergence rate in a semi-
asynchronous model that is suitable for wireless networks, but not for shared-memory numerical computations.

4

3 Randomized Gauss-Seidel
Our asynchronous algorithm is based on the randomized variant of the Gauss-Seidel iteration, originally proposed by
Leventhal and Lewis [11]. We actually use a slight modification due to Griebel and Oswald [9] that introduces a step-
size (akin to under- and over-relaxation). The goal of this section is to describe and review the basic properties of the
randomized Gauss-Seidel iteration.

Consider the following iteration applied to some arbitrary initial vector x0 ∈ Rn, and a series of direction vectors
d0,d1, . . . :

rj = b−Axj

γj = dT
j rj

xj+1 = xj + βγjdj ,

where 0 < β < 2. In terms of the analysis it is more convenient to write the iteration in the following equivalent form:

γj = (x? − xj ,dj)A

xj+1 = xj + βγjdj .
(1)

Both iterations are listed to show that even though the unknown x? appears in (1), the iteration is computable.
In (1) the scalars γ0, γ1, . . . are selected so as to minimize ‖x?−xj+1‖A when xj+1 is obtained from xj by taking

a step in the direction dj with β = 1. There are quite a few ways to set d0,d1, Each is associated with a different
per-iteration cost, and different convergence properties. One well known method is setting di = e((i mod n)+1). In
that case, every n iterations corresponds to a single iteration of Gauss-Seidel (recall that we assume that the matrix has
unit diagonal).

Leventhal and Lewis suggested using random directions instead of deterministic ones: d0,d1, . . . are i.i.d. random
vectors, taking e(1), . . . , e(n) with equal probability1. For this distribution of direction vectors, Griebel and Oswald [9]
prove the following bound on the expected error in the A-norm (the case of β = 1 was analyzed by Leventhal and
Lewis [11]):

Em ≤
(

1− β(2− β)λmin

n

)m
‖x0 − x?‖2A . (2)

So, the randomized Gauss-Seidel iteration converges in expectation at a linear rate2. Markov’s inequality now implies
that given ε > 0 and δ ∈ (0, 1), for

m ≥ n

β(2− β)λmin
ln

(
1

δε2

)
we have

Pr(‖xm − x?‖A ≥ ε‖x0 − x?‖A) ≤ δ .

If we could compute ‖xm − x?‖A, this will imply a randomized algorithm whose probabilistic guarantees are only on
the running time, and not on the quality of approximation. In practice, we can check the residual ‖b −Axm‖2, as is
typically done in iterative methods. Similar transformations can be done to other bounds throughout this paper. These
transformations are rather technical, so we omit them. Note that the expected cost per iteration of randomized Gauss-
Seidel is Θ(nnz (A) /n), so n iterations (which we refer to as a sweep) are about as costly as a single Gauss-Seidel
iteration.

The proof of (2) relies on the following lemma, which we use extensively in our analysis as well. The upper bound
in the lemma was not proven by Leventhal and Lewis [11], but it can be proved using the same technique they used to
prove the lower bound. For completeness we include a proof.

1Leventhal and Lewis consider the more general setting where A does not have unit diagonal. For that case, they analyze non-uniform probabil-
ities. When the matrix has unit diagonal, their algorithm and the convergence analysis reduces to the ones stated here.

2Some care should be employed with terminology. Some mathematicians or computer scientists might say this is an exponential or geometric
convergence rate. However, numerical analysts refer to this rate as linear, as it is linear in O(log(ε)) where ε is the desired reduction factor of the
error.

5

Lemma 1. Let d be a random vector taking e(1), . . . , e(n) with equal probability. Suppose that x and d are indepen-
dent. Then,

λmin

n
E
[
‖x− x?‖2A

]
≤ E

[
(x− x?,d)2A

]
≤ λmax

n
E
[
‖x− x?‖2A

]
.

Proof. Let B be the unique symmetric positive matrix such that A = B2. We have

E
[
(x− x?,d)2A

]
= E

[
E
[
(x− x?,d)2A

]∣∣x]
= E

[
1

n

n∑
i=1

(x− x?, ei)
2
A

]

=
1

n
E
[
‖A(x− x?)‖22

]
=

1

n
E
[
(x− x?)TA2(x− x?)

]
=

1

n
E
[

(x− x?)TBAB(x− x?)

(x− x?)TBB(x− x?)
· (x− x?)TBB(x− x?)

]
=

1

n
E
[

(x− x?)TBAB(x− x?)

(x− x?)TBB(x− x?)
· ‖x− x?‖2A

]
.

According to the Courant-Fischer theorem, for every vector y 6= 0 we have

λmin ≤
yTAy

yTy
≤ λmax .

Applying the last inequality to the previous equality with y = B(x− x?) completes the proof.

Non-Unit Diagonal

We now explain why there is no loss in generality in assuming that A has unit diagonal.
Suppose that B does not have unit diagonal. Consider the following more general Randomized Gauss-Seidel

iteration (also due to Leventhal and Lewis [11]):

γ̃j =
(y? − yj ,dj)B

(dj ,dj)B

yj+1 = yj + βγ̃jdj .

(3)

where y? is the solution to By = z, and d0,d1, . . . are i.i.d. random vectors taking e(1), . . . , e(n) with equal proba-
bility. Let D be the diagonal matrix such A = DBD has unit diagonal, and consider the unit-diagonal Randomized
Gauss-Seidel iteration (1) for the linear system Ax = Dz using the same direction vectors d0,d1, It is not hard
to verify that yj = Dxj and that ‖xj − x?‖A = ‖yj − y?‖B. Therefore, analyzing the unit-diagonal scenario is
sufficient.

4 Asynchronous Randomized Gauss-Seidel (AsyRGS)
Algorithm 1 contains a pseudo-code description of randomized Gauss-Seidel in which we made the read and

update operations explicit. This obviously entails some details that are, in a sense, implementation specific. There are
implementations of the randomized Gauss-Seidel iteration which do not match the description in Algorithm 1.

Consider a shared memory model with P processors. Each processor follows Algorithm 1 using the same x, i.e.
all processors read and update the same x stored in a shared memory. The processors do not explicitly coordinate
or synchronize their iterations. We do, however, impose assumptions, some of which may require enforcement in an
actual implementation. The first assumption is rather simple: the update operation in each iteration is atomic.

6

Algorithm 1 Randomized Gauss-Seidel
1: Input: A ∈ Rn×n, b ∈ Rn, (pointer to) vector x (initial approximation and algorithm output), β ∈ (0, 2).
2:
3: loop
4: Pick a random r uniformly over {1, . . . , n}
5: Read the entries of x corresponding to non-zero entries in Ar

6: Using these entries, compute γ ← (b)r −Arx
7: Update: (x)r ← (x)r + βγ
8: end loop

Assumption A-1 (Atomic Write). The update operation in line 7 is atomic.

The update operation operates on a single coordinate in x. For single- or double-precision floating point numbers,
updates of the form used in line 7 have hardware support on many modern processors (e.g. compare-and-exchange on
recent Intel processors).

If atomic write is enforced, then for the sake of the analysis we can impose an order x0,x1,x2, . . . on the values
that x takes during the computation. Here xj denotes the value of x after j updates have been applied (breaking ties in
an arbitrary manner).

We now turn our attention to the read operation in line 5. Here we consider two possible models. In the first model,
we assume the following consistent read assumption is enforced.

Assumption A-2 (Consistent Read). The values of the entries of x read in line 5 appeared together in x at some time
before the update operation (line 7) is executed.

Note that Assumption A-2 does not necessarily imply that none of the entries read during the execution of line 5
are modified while that line is being executed; this is only one way of enforcing this assumption. More formally, if R
denotes the set of entries read in the execution of line 5 for a particular execution of the iteration, and M denotes the
set of entries modified during the execution of line 5 in that iteration, then Assumption A-2 holds for that iteration if
R ∩M = ∅. However, this is only a sufficient condition, not a necessary one.

With consistent read, we can denote by k(j) ≤ j the maximum iteration index such xk(j) is equal to the values
read on line 5, on the indexes read during the execution of line 5. The existence of such a k(j) is guaranteed by
Assumption A-2 (since all writes are atomic, all time intervals correspond to some iteration index). The iteration can
then be written:

γj = (x? − xk(j),dj)A

xj+1 = xj + βγjdj .
(4)

We also consider a model where we allow inconsistent reads. Since every iteration changes a single coordinate,
and we require all writes to be atomic, the value of x read in line 5 is the result of a subset of the updates that occurred
before the write operation in line 7 is executed. Let us denote by K(j) ⊆ {0, 1, . . . , j − 1} a maximal set of updates
consistent with the computation of γ in iteration j. In other words, an index i ≤ j is in K(j) if either it updates an
entry of x not read for computing γj , or it updates an entry and the update was applied before that entry was read. The
entries read are consistent with the vector

xK(j) = x0 +
∑

i∈K(j)

βγidi .

Note that the xK(j) might have never existed in memory during the execution of the algorithm. Nevertheless, the
iteration can be written as

γj = (x? − xK(j),dj)A

xj+1 = xj + βγjdj .
(5)

7

Obviously, enforcing consistent reads involves some overhead. In the analysis we consider both models, as the
bounds for the inconsistent read model are not as good as the ones obtained when assuming consistent reads. There
is clearly a trade-off here, which we present but do not attempt to quantify. It is a complex trade-off that depends on
many factors, including possible hardware features like transactional memory that may enable efficient enforcement of
consistent reads.

More importantly, in many cases even without any special provisions, the probability of an inconsistent read in an
iteration is extremely small, so much that we do not expect it to happen much (or at all) in a normal execution of the
algorithm. For the definition of consistent read to be violated in a certain iteration there must be two distinct indexes l
and c for which all of the following conditions are met:

1. Arc 6= 0 and Arl 6= 0 (r is the index picked in line 4).

2. Both (x)c and (x)l are modified by other processors during the execution of line 5 (the read operation).

3. (x)c is read before (x)l.

4. (x)c is modified (by another processor) after it is read, and (x)l is modified (by another processor) before it is
read.

Having all these condition occur at the same time is rather rare. In fact, just having the first two occur is rather rare in
the reference scenario. The reason is that each iteration reads at most C2 � n entries. Suppose there are u updates
while reading those entries. Each such update affects a single random entry. Therefore, the probability that it will
update one of the C2 entries being read is at most C2/n. The probability of getting two such updates is bounded by
the probability of getting at least two in a binomial distribution with u experiments and probability C2/n. Unless u is
very large, this is an extremely small probability (since C2/n is tiny).

The discussion above suggests that in many cases the bound we obtain for the consistent read will be rather de-
scriptive even if no special provisions are taken to enforce the consistent read assumption. That is, we expect the actual
behavior to be somewhere between the bound for the consistent read and that for the inconsistent read, but closer to the
one for consistent read.

We are mainly interested in algorithms with provable convergence rate. In a totally asynchronous model with
arbitrary delays, there can also be an arbitrary delay in convergence. Therefore, we assume that asynchronism is
bounded in the sense that delays are bounded.

Assumption A-3 (Bounded Asynchronism). There is a constant τ (measure of asynchronism) such that all updates
that are older than τ iterations participate in the computation of iteration j, for all iterations j = 1, 2,

In the consistent read model, this assumption translates to requiring that

j − τ ≤ k(j) ≤ j . (6)

In the inconsistent read model, this assumption translates to requiring that

{0, 1, . . . ,max{0, j − τ − 1}} ⊆ K(j) . (7)

Since the running time of an iteration is proportional to the number of non-zeros in the row, a reasonable upper bound
on τ is c · C2 · P/C1 for some small constant c. However, this is probably a pessimistic upper bound, and in general
when the variance in the number of non-zeros per row is not too large relative to the mean, we expect τ to be of order
of P . Regardless, it is clear that in the reference scenario τ = O(P) (recall that we assume that C2/C1 is a small
constant).

We now discuss the relation between k(0), k(1), . . . or K(0),K(1), . . . and the random variables d0,d1, If
we inspect the pseudo-code of Algorithm 1 closely we will realize that k(j) or K(j) (depending on the model) depend
on the random choices d0,d1, . . . ,dj−1 made before the write operation, and more crucially on the random choice dj .
The reason is that on line 5 we read only the relevant entries of x, so only a small set of updates can be considered for

8

inclusion. The set of relevant entries is determined by the selection of dj . However, a completely adversarial model
which allows dependence of k(j) (or K(j)) on d0,d1, . . . ,dj (for j = 1, 2, . . .) and analyzes the worst-case behavior
is not likely to be very faithful to the actual behavior of the algorithm. Therefore, we assume the delays are independent
of the random choices, but allow them to be arbitrary (as long as the bounded asynchronism assumption holds). We
acknowledge that this assumption cannot be enforced without paying a significant penalty in terms of iteration costs
(e.g., the assumption is satisfied if the algorithm reads all the entries of x in each step)

Assumption A-4 (Independent Delays). We allow an arbitrary set of delays that satisfy (6) or (7) (depending on the
context), but they do not depend on the random choices d0,d1,

Finally, we remark on the role of the various assumptions in the analysis. Assumptions A-1 and A-2 allow us to
write well defined iterations (iterations (4) and (5)) that can be analyzed mathematically. Assumption A-3 allows us to
bound the number of elements in xj − xk(j) (or xj − xK(j)) that are non-zero by τ , therefore implying that (x? −
xk(j),dj)A = (x?−xj ,dj)A (respectively, (x?−xK(j),dj)A = (x?−xj ,dj)A) with high probability (as long as τ
is small relative to n), which implies that the computed step-size is correct in most iterations. Assumption A-4 allows
us to treat k(j) and K(j), in the proofs, as deterministic even though they might be random. Since k(0), k(1), . . .
(or K(0),K(1), . . .) do not depend on d0,d1, . . . we can condition on choices for which equation (6) (respectively,
equation (7)) holds, and any bound that does not depend on k(0), k(1), . . . (respectively, K(0),K(1), . . .) will hold
for random ones as well.

For clarity, we now detail explicitly the two models we analyze in this paper.

Consistent Read Model. Algorithm 1 executed on all processors using the same x (i.e., all processors read and
update the same x stored in a shared memory) with all four assumptions (A-1 to A-4). The governing iteration is:

j − τ ≤ k(j) ≤ j
dj ∼ U(e(1), . . . , e(n))

γj = (x? − xk(j),dj)A

xj+1 = xj + βγjdj

(8)

with the additional assumptions that d0,d1, . . . are i.i.d, and that k(0), k(1), . . . do not depend on the random choices
d0,d1, In the above, U(e(1), . . . , e(n)) denotes a uniform distribution on the n-dimensional identity vectors.

Inconsistent Read Model. Algorithm 1 executed on all processors using the same x (i.e., all processors read and
update the same x stored in a shared memory) with assumptions A-1, A-3 and A-4. The governing iteration is:

{0, . . . ,max{0, j − τ − 1}} ⊆ K(j) ⊆ {0, . . . , j}
dj ∼ U(e(1), . . . , e(n))

γj = (x? − xK(j),dj)A

xj+1 = xj + βγjdj

(9)

with the additional assumptions that d0,d1, . . . are i.i.d, and thatK(0),K(1), . . . do not depend on the random choices
d0,d1,

5 Convergence Bound with Consistent Read and Unit Step-size (β = 1)
In this section, we analyze the iteration under the consistent read model, i.e. iteration (8). For the moment, we consider
only unit step-size (β = 1).

9

Theorem 2. Consider iteration (8) with β = 1 for an arbitrary starting vector x0, that is iteration (4) where d0,d1, . . .
are i.i.d. vectors that take e(1), . . . , e(n) with equal probability, and k(0), k(1), . . . are such that (6) holds but are
independent of the random choices of d0,d1, Let ρ = 1

n‖A‖∞ = maxl
{

1
n

∑n
r=1 |Alr|

}
. Provided that 2ρτ < 1,

the following holds:

(a) For every m ≥ log(1/2)
log(1−λmax/n)

≈ 0.693n
λmax

we have

Em ≤
(

1− ντ
2κ

)
E0 ,

where
ντ = 1− 2ρτ

(b) Let T0 =
⌈

log(1/2)
log(1−λmax/n)

⌉
and T = T0 + τ . For every m ≥ rT (r = 1, 2, . . .) we have

Em ≤
(
1− ντ

2κ

)(
1− ντ (1− λmax/n)

τ

2κ
+ χ

)r−1

E0

where

χ =
ρτ2λmax(1− λmax/n)−2τ

n
.

Proof. In the proof, we use the following abbreviations:

δmin =
ντλmin

n
, δmax = 1− λmax

n
.

We begin with simple algebraic manipulations:

‖xj+1 − x?‖2A = ‖xj + γjdj − x?‖2A
= ‖xj − x?‖2A + ‖γjdj‖2A + 2(xj − x?, γjdj)A

= ‖xj − x?‖2A + γ2j + 2γj(xj − x?,dj)A

= ‖xj − x?‖2A + (xk(j) − x?,dj)
2
A − 2(xk(j) − x?,dj)A(xj − x?,dj)A

= ‖xj − x?‖2A + (xk(j) − x?,dj)
2
A

−2(xk(j) − x?,dj)A
[
(xj − xk(j),dj)A + (xk(j) − x?,dj)A

]
= ‖xj − x?‖2A − (xk(j) − x?,dj)

2
A − 2(xk(j) − x?,dj)A(xj − xk(j),dj)A (10)

In the above we use the fact that A has unit diagonal, so (di,di)A = 1 for all i. We see that the error decreases
by a positive “progress term” ((xk(j) − x?,dj)

2
A), and it changes by an additional term (2(xk(j) − x?,dj)A(xk(j) −

xj ,dj)A), which might be positive or negative. When the iterations are synchronized (k(j) = j), there is no additional
term, and the analysis reduces to the analysis of synchronous randomized Gauss-Seidel.

We first bound the additional term:

2(xk(j) − x?,dj)A(xj − xk(j),dj)A = 2(xk(j) − x?,dj)A(

j−1∑
t=k(j)

γtdt,dj)A

=

j−1∑
t=k(j)

2(xk(j) − x?,dj)A(x? − xk(t),dt)A(dt,dj)A (11)

≥ −
j−1∑
t=k(j)

[
(xk(j) − x?,dj)

2
A |(dt,dj)A|+ (xk(t) − x?,dt)

2
A |(dt,dj)A|

]
.

10

Since k(j) ≤ t < j:

E
[
(xk(j) − x?,dj)

2
A |(dt,dj)A|

]
= E

[
E
[
(xk(j) − x?,dj)

2
A |(dt,dj)A|

∣∣d0, . . . ,dt−1
]]

= E

[
1

n2

n∑
l=1

n∑
r=1

(xk(j) − x?, e(l))2A

∣∣∣(e(l), e(r))A∣∣∣]

= E

[
1

n2

n∑
l=1

n∑
r=1

(xk(j) − x?, e(l))2A |Alr|

]

≤ ρE

[
1

n

n∑
l=1

(xk(j) − x?, e(l))2A

]
= ρE

[
(xk(j) − x?,dj)

2
A

]
.

Similarly, E
[
(xk(t) − x?,dt)

2
A |(dt,dj)A|

]
≤ ρE

[
(xk(t) − x?,dt)

2
A

]
. Taking expectation of (11) and applying the

last inequality we find that

E
[
2(xk(j) − x?,dj)A(xj − xk(j),dj)A

]
≥ −ρ

j−1∑
t=k(j)

[
E
[
(xk(j) − x?,dj)

2
A

]
+ E

[
(xk(t) − x?,dt)

2
A

]]
= −ρ|j − k(j)|E

[
(xk(j) − x?,dj)

2
A

]
− ρ

j−1∑
t=k(j)

E
[
(xk(t) − x?,dt)

2
A

]
≥ −ρτE

[
(xk(j) − x?,dj)

2
A

]
− ρ

j−1∑
t=k(j)

E
[
(xk(t) − x?,dt)

2
A

]
.

Taking expectation of (10), and plugging in the last inequality, we find that

Ej+1 ≤ Ej − (1− ρτ)E
[
(xk(j) − x?,dj)

2
A

]
+ ρ

j−1∑
t=k(j)

E
[
(xk(t) − x?,dt)

2
A

]
. (12)

Unrolling the recursion, we find that for every m:

Em ≤ E0 − (1− ρτ)

m−1∑
i=0

E
[
(xk(i) − x?,di)

2
A

]
+ ρ

m−1∑
i=0

i−1∑
t=k(i)

E
[
(xk(t) − x?,dt)

2
A

]
.

In the last sum of the previous inequality (ρ
∑m−1
i=0

∑i−1
t=k(i) E

[
(xk(t) − x?,dt)

2
A

]
), each term of the form E

[
(xk(r) − x?,dr)

2
A

]
appears at most τ times, each time with a coefficient ρ. So

Em ≤ E0 − (1− 2ρτ)

m−1∑
i=0

E
[
(xk(i) − x?,di)

2
A

]
.

We now apply the bound E
[
(xk(i) − x?,di)

2
A

]
≥ (λmin/n)Ek(i) (Lemma 1), to find that

Em ≤ E0 − δmin

m−1∑
i=0

Ek(i) . (13)

Proof of (a). Lemma 1 implies that for any b ≥ a we have Eb ≥ δb−amaxEa. Indeed,

11

‖xj+1 − x?‖2A = ‖xj + γjdj − x?‖2A
= ‖xj − x?‖2A + γ2j + 2γj(xj − x?,dj)A

= ‖xj − x?‖2A + (xk(j) − x?,dj)
2
A − 2(xk(j) − x?,dj)A(xj − x?,dj)A

= ‖xj − x?‖2A + (xk(j) − xj + xj − x?,dj)
2
A − 2(xk(j) − x?,dj)A(xj − x?,dj)A

= ‖xj − x?‖2A + (xk(j) − x?,dj)
2
A + (xk(j) − xj ,dj)

2
A

+2(xj − x?,dj)A(xk(j) − xj ,dj)A

−2(xk(j) − x?,dj)A(xj − x?,dj)A

= ‖xj − x?‖2A + (xj − x?,dj)
2
A + (xk(j) − xj ,dj)

2
A

−2(xj − x?,dj)A(xj − x?,dj)A

= ‖xj − x?‖2A − (xj − x?,dj)
2
A + (xk(j) − xj ,dj)

2
A

≥ ‖xj − x?‖2A − (xj − x?,dj)
2
A ,

so by taking expectation and applying Lemma 1 (notice that xk(j) is independent of dj), we find that Ej+1 ≥ δmaxEj .
In particular since i ≥ k(i),

Ek(i) ≥ δk(i)maxE0 ≥ δimaxE0 . (14)

Plugging (14) into (13) we get the following inequality, which leads immediately to assertion (a):

Em ≤

(
1− δmin

m−1∑
i=0

δimax

)
E0 =

(
1− δmin(1− δmmax)

1− δmax

)
E0 = (1− ντκ−1(1− δmmax))E0 .

Proof of (b). Let
Ci = {rT + i− τ ≤ t ≤ rT + i− 1 : t ≥ rT}

and
Di = {rT + i− τ ≤ t ≤ rT + i− 1 : t < rT} .

Unrolling the recursion in equation (12) starting at rT , we find that for r ≥ 1 and w ≥ 0

E(r+1)T+w ≤ ErT − (1− ρτ)

T−1+w∑
i=0

E
[
(xk(rT+i) − x?,drT+i)

2
A

]
+ ρ

T−1+w∑
i=0

rT+i−1∑
t=k(rT+i)

E
[
(xk(t) − x?,dt)

2
A

]
≤ ErT − (1− ρτ)

T−1+w∑
i=0

E
[
(xk(rT+i) − x?,drT+i)

2
A

]
+ ρ

T−1+w∑
i=0

rT+i−1∑
t=rT+i−τ

E
[
(xk(t) − x?,dt)

2
A

]
≤ ErT − (1− ρτ)

T−1+w∑
i=0

E
[
(xk(rT+i) − x?,drT+i)

2
A

]
+ ρ

T−1+w∑
i=0

∑
t∈Ci

E
[
(xk(t) − x?,dt)

2
A

]
+ρ

T−1+w∑
i=0

∑
t∈Di

E
[
(xk(t) − x?,dt)

2
A

]
≤ ErT − (1− 2ρτ)

T−1+w∑
i=0

E
[
(xk(rT+i) − x?,drT+i)

2
A

]
+ ρ

τ−1∑
i=0

∑
t∈Di

E
[
(xk(t) − x?,dt)

2
A

]
.

≤ ErT − (1− 2ρτ)

T−1+w∑
i=τ

E
[
(xk(rT+i) − x?,drT+i)

2
A

]
+ ρ

τ−1∑
i=0

∑
t∈Di

E
[
(xk(t) − x?,dt)

2
A

]
. (15)

12

The second-to-last inequality follows from the fact that each term of the form E
[
(xk(l) − x?,dl)

2
A

]
appears at most τ

times in ρ
∑T−1+w
i=0

∑
t∈Ci E

[
(xk(t) − x?,dt)

2
A

]
. We also use the fact that for i ≥ τ we trivially have Di = ∅.

We first bound ErT − (1− 2ρτ)
∑T−1+w
i=τ E

[
(xk(rT+i) − x?,drT+i)

2
A

]
. Using Lemma 1,

ErT − (1− 2ρτ)

T−1+w∑
i=τ

E
[
(xk(rT+i) − x?,drT+i)

2
A

]
≤ ErT − δmin

T−1+w∑
i=τ

Ek(rT+i) .

Since i ≥ τ we have k(kT + i) ≥ kT so Ek(rT+i) ≥ δ
k(rT+i)−rT
max ErT ≥ δimaxErT . Therefore

ErT − (1− 2ρτ)

T−1+w∑
i=τ

E
[
(xk(rT+i) − x?,drT+i)

2
A

]
≤ (1− δminδ

τ
max

T−1+w−τ∑
i=0

δimax)ErT .

Noticing that T − 1 + w − τ = T0 − 1 + w and bounding the geometric sum as in assertion (a), we find that
(1− δminδ

τ
max

∑T−1+w−τ
i=0 δimax) ≤ (1− δτmaxντ

2κ), so

ErT − (1− 2ρτ)

T−1+w∑
i=τ

E
[
(xk(rT+i) − x?,drT+i)

2
A

]
≤ (1− δτmaxντ

2κ
)ErT . (16)

We now bound ρ
∑τ−1
i=0

∑
t∈Di E

[
(xk(t) − x?,dt)

2
A

]
. Recall that for every b ≥ a we have Eb ≥ δb−amaxEa, so, for

i = 0, . . . , τ − 1 and t ∈ Di we have

Ek(t) ≤ δk(t)−rTmax ErT ≤ δ−2τmaxErT .

The last inequality follows from the fact that for t ∈ Di, k(t)− rT ≥ −2τ and δmax < 1. We now bound

ρ

τ−1∑
i=0

∑
t∈Di

E
[
(xk(t) − x?,dt)

2
A

]
≤ ρ

τ−1∑
i=0

∑
t∈Di

λmaxδ
−2τ
max

n
ErT ≤

ρτ2λmaxδ
−2τ
max

n
ErT = χErT .

Combine the last inequality with (16) and assertion (a) to complete the proof of assertion (b).

Discussion:

• Assertion (a) shows that after we perform enough asynchronous iterations, we are guaranteed to reduce the
expected error by a constant factor. In order to drive the expected error down to an arbitrary fraction of the input
error, we can adopt the following scheme. We start with asynchronous iterations. After n iterations have been
completed we synchronize the threads and restart the iterations. The matrix A has unit diagonal, so λmax ≥ 1.
Therefore, by performing k ≥ n iterations, we are guaranteeing a 1 − ντ/2κ factor reduction in the expected
error. We then continue to iterate and synchronize until the expected error is guaranteed to be small enough. The
number of outer iterations until convergence (reduction of error by a predetermined factor) is O(κ/ντ). This is
also the number of synchronization points. When ντ is close to one, the number of synchronization points is
asymptotically the same as in Jacobi, but the convergence rate is that of Gauss-Seidel. Furthermore, we do not
need to really divide the iterations between processors (basically, every processor can do as many iterations as it
can, until synchronization) and it is not important to synchronize exactly after n iterations. So, from a practical
perspective, a time based scheme for synchronizing the processors should be sufficient, and will not suffer from
large wait times due to load imbalance.

• Assertion (b) shows that even if we do not occasionally synchronize the threads, we still get long-term linear
convergence, but at a slower rate. We say convergence is linear in the long term since we cannot guarantee a
diminishing bound in every iteration, but we can prove a constant factor reduction over a large enough number
of iterations.

13

• The terms δτmax and δ−2τmax that appear in assertion (b) might seem problematic as they are exponential in the
number of processors (because τ = Ω(P)). However, in our reference scenario this is not an issue because
λmax = O(1) and τ � n (since we assume that P � n), so δτmax and δ−2τmax are actually very close to 1.

• The number of iterations to guarantee a 1−ντ/2κ reduction of expected error (as in assertion (a)) in synchronous
randomized Gauss-Seidel is approximately ντn/2λmax. When ντ is close to one this is only slightly better than
the bound for AsyRGS, which is a small price to pay for the good speedups expected for the asynchronous
algorithm.

• Consider our reference scenario in a weak-scaling regime (i.e., P ≈ cn for a very small c). In this case,
ντ is bounded by a constant close to one because ρ = O(1/n) in the reference scenario. Therefore, with
occasional synchronization of the threads, the number of iterations increases by a small constant factor due
to asynchronism. That is, the asynchronous phases do not violate the weak-scaling, although the number of
iterations can increase due to λmin becoming smaller. As for the case where only asynchronous iterations are
used, we have χ ≈ c2λ2max. So, χ itself exhibits weak scaling. However, its value should be interpreted with
respect to κ−1. If λmin shrinks as n grows, as is the case in many applications, then the relative size of χ grows
and we do not have weak scaling.

• In general, if ρ = O(1/n), we have ντ = O(1) and the discussion in the previous paragraph applies. Sparsity
is not the only scenario in which ρ = O(1/n): for example, ρ ≤ 2/n if A is symmetric diagonally dominant,
regardless of sparsity. Other strong decay properties of off-diagonal entries might guarantee ρ = O(1/n) as
well.

6 Improving Scalability by Controlling Step-Size
If we inspect (2) we see that the best bound is attained for unit step-size. Griebel and Oswald introduced a step-size
since it is known that for certain applications over/under relaxations converge faster [9]. In this section, we show that
by controlling the step-size, it is possible to have a convergent method for any delay (as long as we set the step size
small enough), unlike the bound in Theorem 2 which requires 2ρτ < 1. In addition, we show that by optimizing the
step-size we can also improve the scaling (dependence on τ) in our bounds.

Our more general analysis starts with some simple algebraic manipulations:

‖xj+1 − x?‖2A = ‖xj + βγjdj − x?‖2A
= ‖xj − x?‖2A + ‖βγjdj‖2A + 2(xj − x?, βγjdj)A

= ‖xj − x?‖2A + β2γ2j + 2βγj(xj − x?,dj)A

= ‖xj − x?‖2A + β2(xk(j) − x?,dj)
2
A − 2β(xk(j) − x?,dj)A(xj − x?,dj)A

= ‖xj − x?‖2A + β2(xk(j) − x?,dj)
2
A

−2β(xk(j) − x?,dj)A
[
(xj − xk(j),dj)A + (xk(j) − x?,dj)A

]
= ‖xj − x?‖2A − β(2− β)(xk(j) − x?,dj)

2
A − 2β(xk(j) − x?,dj)A(xj − xk(j),dj)A .(17)

As before, we continue with bounding the additional term.

2β(xk(j) − x?,dj)A(xj − xk(j),dj)A = 2β(xk(j) − x?,dj)A(

j−1∑
t=k(j)

βγtdt,dj)A (18)

= β2

j−1∑
t=k(j)

2(xk(j) − x?,dj)A(x? − xk(t),dt)A(dt,dj)A

14

≥ −β2

j−1∑
t=k(j)

[
(xk(j) − x?,dj)

2
A |(dt,dj)A| +(xk(t) − x?,dt)

2
A |(dt,dj)A|

]
.

We see that the progress term is O(β), but the additional term is O(β2). In synchronous randomized Gauss-Seidel
the best bound on the expected error is achieved with β = 1, but for an asynchronous computation the best bound is
achieved with some β < 1 (depending on τ).

It is still the case that Ej+1 ≥ δmaxEj . Indeed,

xj+1 = xj + βγjdj

= xj + β(x? − xk(j),dj)Adj

= xj + (βx? − βxk(j),dj)Adj

= xj + (x? − y,dj)Adj

where y = (1− β)x? + xk(j). Denote γ̃j = (x? − y,dj)A. Now,

‖xj+1 − x?‖2A = ‖xj + γ̃jdj − x?‖2A
= ‖xj − x?‖2A + ‖γ̃jdj‖2A + 2(xj − x?, γ̃jdj)A

= ‖xj − x?‖2A + γ̃2j + 2γ̃j(xj − x?,dj)A

= ‖xj − x?‖2A + (y − x?,dj)
2
A − 2(y − x?,dj)A(xj − x?,dj)A

= ‖xj − x?‖2A + (y − xj + xj − x?,dj)
2
A − 2(y − x?,dj)A(xj − x?,dj)A

= ‖xj − x?‖2A + (xj − x?,dj)
2
A + (y − xj ,dj)

2
A

+2(xj − x?,dj)A(y − xj ,dj)A

−2(y − x?,dj)A(xj − x?,dj)A

= ‖xj − x?‖2A + (xj − x?,dj)
2
A + (y − xj ,dj)

2
A

−2(xj − x?,dj)A(xj − x?,dj)A

= ‖xj − x?‖2A − (xj − x?,dj)
2
A + (y − xj ,dj)

2
A

≥ ‖xj − x?‖2A − (xj − x?,dj)
2
A .

Ej+1 ≥ δmaxEj now follows by taking expectation and applying Lemma 1 (notice that y is independent of dj),
Continuing along the lines of the proof of Theorem 2 (we omit the details), we have the following generalization

of Theorem 2.

Theorem 3. Consider iteration (8) with β ≤ 1 for an arbitrary starting vector x0, that is iteration (4) where d0,d1, . . .
are i.i.d. vectors that take e(1), . . . , e(n) with equal probability, and k(0), k(1), . . . are such that (6) holds but are
independent of the random choices of d0,d1, Let ρ = 1

n‖A‖∞ = maxl
{

1
n

∑n
r=1 |Alr|

}
. Provided that 2β −

β2 − 2ρτβ2 > 0, the following holds:

(a) For every m ≥ log(1/2)
log(1−λmax/n)

≈ 0.693n
λmax

we have

Em ≤
(

1− ντ (β)

2κ

)
E0 ,

where
ντ (β) = 2β − β2 − 2ρτβ2

(b) Let T0 =
⌈

log(1/2)
log(1−λmax/n)

⌉
and T = T0 + τ . For every m ≥ rT (r = 1, 2, . . .) we have

Em ≤
(

1− ντ (β)

2κ

)(
1− ντ (β)(1− λmax/n)τ

2κ
+ χ(β)

)r−1
E0

15

where

χ(β) =
ρτ2β2λmax(1− λmax/n)−2τ

n
.

Discussion:

• We see that for a sufficiently small β both bounds are useful, but the computation of the optimal β for assertion
(b) (in terms of the bound) requires some approximation of the condition number.

• Alternatively, we can optimize only the value of ντ (β). The optimum of that term is achieved at β̃ = 1/(1+2ρτ)
and yields ντ (β̃) = 1/(1 + 2ρτ). It is also the case that χ(β̃) < χ(1), so both bounds are improved. From a
practical perspective, the challenge of setting the step size to β̃ is that τ might not be known. However, under
normal circumstances (and in the reference scenario) we have τ = O(P), which can provide a general guideline
for setting the step-size.

7 Convergence Bound with Inconsistent Reads
We now analyze the iteration under the inconsistent read model, i.e. iteration (9).

Theorem 4. Consider iteration (9) for some 0 ≤ β < 1 and an arbitrary starting vector x0, where d0,d1, . . . are i.i.d.
vectors that take e(1), . . . , e(n) with equal probability, and K(0),K(1), . . . are such that equation (7) holds but are
independent of the random choices of d0,d1, Let ρ2 = maxl

{
1
n

∑n
r=1 A

2
lr

}
. Provided that β(1−β−ρ2τ2β/2) >

0, the following holds:

(a) For every m ≥ log(1/2)
log(1−λmax/n)

≈ 0.693n
λmax

we have

Em ≤
(

1− ωτ (β)

2κ

)
E0

where
ωτ (β) = 2β(1− β − ρ2τ2β/2) .

(b) Let T0 =
⌈

log(1/2)
log(1−λmax/n)

⌉
and T = T0 + τ . For every m ≥ rT (r = 1, 2, . . .) we have

Em ≤
(

1− ωτ (β)

2κ

)(
1− ωτ (β)(1− λmax/n)τ

2κ
+ ψ(β)

)r−1
E0

where

ψ(β) =
ρ2τ

3β2λmax(1− λmax/n)−2τ

n
.

Most of the proof is analogous to the proof of Theorem 2, so we give only a sketch that focuses on the unique parts.

Proof. (Sketch) As before:

‖xj+1 − x?‖2A = ‖xj − x?‖2A − β(2− β)(xK(j) − x?,dj)
2
A − 2β(xK(j) − x?,dj)A(xj − xK(j),dj)A .

We now bound the additional term:

16

2β(xK(j) − x?,dj)A(xj − xK(j),dj)A = 2β(xK(j) − x?,dj)A(
∑

t∈K−(j)

βγtdt,dj)A

= 2β2(xK(j) − x?,dj)A(
∑

t∈K−(j)

γtdt,dj)A

≥ −β2

(xK(j) − x?,dj)
2
A + (

∑
t∈K−(j)

γtdt,dj)
2
A

 (19)

≥ −β2
[
(xK(j) − x?,dj)

2
A+

|K−(j)|
∑

t∈K−(j)

(xK(t) − x?,dt)
2
A(dt,dj)

2
A

≥ −β2

(xK(j) − x?,dj)
2
A + τ

∑
t∈K−(j)

(xK(t) − x?,dt)
2
A(dt,dj)

2
A

where K−(j) = {0, . . . , j − 1} −K(j). Since xK(t) does not depend on dt or dj , we can bound as before,

E
[
(xK(t) − x?,dt)

2
A(dt,dj)

2
A

]
≤ ρ2E

[
(xK(t) − x?,dt)

2
A

]
.

Therefore,

Ej+1 ≤ Ej − 2β(1− β)E
[
(xK(j) − x?,dj)

2
A

]
+ ρ2τβ

2
∑

t∈K−(j)

E
[
(xK(t) − x?,dt)

2
A

]
.

After we unroll the recursion, we find that

Ek ≤ E0 − 2β(1− β − ρ2τ2β/2)

k−1∑
i=0

E
[
(xK(i) − x?,di)

2
A

]
.

We can now continue to bound as in the proof of Theorem 2. The crucial observation is that xK(i) is the result of
|K(i)| random single coordinate steps. So

E
[
‖xK(i) − x?‖2A

]
≥ δ|K(i)|

max E0 ≥ δimaxE0 .

Discussion:

• Unlike the bounds for the consistent read model, the theorem guarantees convergence only for values of β strictly
smaller than 1.

• The bound has a worse dependence on τ , so scalability is worse. The bound for consistent read has also a better
dependence on the step-size (β) in the sense that large step-sizes are allowed. In contrast, due to the unit diagonal
assumption, we always have ρ2 ≤ ρ, so the bound enjoys a more favorable dependence in that respect. However,
we note that ρ2 ≥ 1/n, so if ρ = O(1/n) then the ratio between ρ and ρ2 is bounded by a constant, so the better
dependence on τ makes the bound for consistent read more favorable (as we expect).

• The reason why we develop equation (19) instead of simply adapting equation (18) for the inconsistent read
iteration is that the latter equation leads to expressions of the form (xK(j) − x?,dj)

2
A |(dt,dj)A| for t ∈

{0, . . . , j − 1} − K(j). Such an expression is hard to analyze since xK(j) can depend of dt. An example
is K(j) = {0, . . . , j − 3, j − 1} and t = j − 2 (for some j ≥ 3).

17

8 Unsymmetric Systems and Overdetermined Least-Squares
In this section, we consider the more general problem of finding the solution to minx ‖Ax − b‖2 where A ∈ Rm×n
has at least as many rows as columns and is full rank. Note that this problem includes the solution of Ax = b for a
general (possibly unsymmetric) non singular A. For simplicity, we will assume that the columns of A have unit norm.

Lewis and Leventhal [11] analyzed this case as well, and suggest the following iteration

rj = b−Axj

γj = dT
jA

Trj

xj+1 = xj + γjdj

(20)

where d0,d1, . . . are i.i.d. random vectors, taking e(1), . . . , e(n) with equal probability. One can show that this is a
stochastic coordinate descent method on f(x) = ‖Ax− b‖2. Lewis and Leventhal prove that

E
[
‖Axm − b‖22

]
≤
(

1− λmin(ATA)

n

)m
‖Ax0 − b‖22 ,

where in the above λmin(ATA) is the minimum eigenvalue of ATA.
It is rather straightforward to devise an asynchronous version of the algorithm, following the same strategy we

used for AsyRGS. We only note that traditional presentations of (20) favor keeping a residual vector r in memory,
and updating after each update on x. However, updates to r cannot be atomic, so in an asynchronous version of the
iteration, the necessary entries of the residual have to be computed in each iteration (based on the columns that is
selected as Adj is a column of A). Introducing a step-size β as well, leads to the following iteration that describes the
asynchronous algorithm (inconsistent read):

γj = dT
jA

T(b−AxK(j))

xj+1 = xj + βγjdj
(21)

We remark that each iteration of the asynchronous algorithm that implements (21) is more expensive then the best
implementation of (20). The main cost per step of the asynchronous algorithm is in computing γj . Suppose that the
row vector dT

jA
T (which is simply a transposed column of A) has lj non-zeros, and that the rows corresponding the

non-zero indexes in dT
jA

T have mj,1, . . . ,mj,lj non-zeros. The cost of iteration j of (21) is then O(
∑lj
i=1mj,i). As

explained, for (20), we can have cheaper steps by keeping both x and r in memory. Each iteration then updates both x
and r leading to a cost per iteration of O(lj). Since all rows have at least one non-zeros, this is obviously superior. It
is important to note that while for some matrices the additional cost might be disastrous, it is not necessarily the case.
For example, if the number of non-zeros in each column and row is bounded between C1 and C2, each iteration is at
most O(C2

2/C1) more expensive. If both C2 and C2/C1 are small, this ratio might be small enough to be overcome by
a sufficient amount of processors (in particular, if C1 = O(1) and C2 = O(1) then the asymptotic cost per iteration is
unaffected).

We also remark that for (21) to be a valid description of the behavior of the algorithm, care has to be taken that in
each iteration each entry of x that is read, is read only once.

Notice that (21) is identical to the iteration of AsyRGS on ATAx = ATb. This leads immediately to the following
theorem.

Theorem 5. Consider iteration (21) for some 0 ≤ β < 1 and an arbitrary starting vector x0, where d0,d1, . . . are
i.i.d. vectors that take e(1), . . . , e(n) with equal probability, and K(0),K(1), . . . are such that equation (7) holds
but are independent of the random choices of d0,d1, Let X = ATA and let ρ2 = maxl

{
1
n

∑n
r=1 X

2
lr

}
. Let

x? = arg minx ‖Ax − b‖2. Denote by κ the condition number of A (ratio between largest and smallest singular
values of A) and by σmax the maximum singular value of A. Provided that β(1 − β − ρ2τ2β/2) > 0, the following
holds:

18

(a) For every m ≥ log(1/2)
log(1−σ2

max/n)
≈ 0.693n

σ2
max

we have

E
[
‖xm − x?‖2X

]
≤
(

1− ωτ (β)

2κ2

)
‖x0 − x?‖2X

where
ωτ (β) = 2β(1− β − ρ2τ2β/2)

(b) Let T0 =
⌈

log(1/2)
log(1−σ2

max/n)

⌉
and T = T0 + τ . For every m ≥ rT (r = 1, 2, . . .) we have

E
[
‖xm − x?‖2X

]
≤
(

1− ωτ (β)

2κ2

)(
1− ωτ (β)(1− σ2

max/n)τ

2κ2
+ χ(β)

)r−1
‖x0 − x?‖2X

where

χ(β) =
ρ2τ

3β2σ2
max(1− σ2

max/n)−2τ

n
.

Note that when Ax? = b we have ‖xm − x?‖2X = ‖Axm − b‖22 and ‖x0 − x?‖2X = ‖Ax0 − b‖22.

9 Experiments
The main goals of this section are threefold. First, we show that the proposed algorithm can be advantageous for certain
types of linear systems, such as those arising in the analysis of big data, even in the absence of massive parallelism.
Secondly, we explore the behavior of the algorithm in terms of scalability and the penalty paid for asynchronicity for
these type of matrices. Finally, we demonstrate that our algorithm can serve as an effective preconditioner for a flexible
Krylov method.

It is not the goal of this section to show that the suggested algorithm converges faster than standard algorithms like
CG for all, or many, matrices. The synchronous method on which our algorithm is based requires O(κ · n) iterations
for convergence, which are equivalent to about O(κ) CG iterations. In comparison, CG converges at a much better rate
of O(

√
κ). Therefore, for a general purpose solver, our algorithm might be advantageous only as a preconditioner in

a Krylov subspace method that can handle a preconditioner that changes from one step to another. Such methods are
known as flexible Krylov subspace methods [17, 16, 19]. While we explore this combination, it is not the purpose of this
paper to present a general purpose production-grade linear solver. For such a solver, sophisticated rules for setting the
preconditioner parameters, and various heuristics will be needed to avoid a completely random access pattern which
is likely to cause poor performance due to extensive cache misses, just to name a few of the issues that need to be
resolved for a production-grade linear solver. Exploration of these issues is slated for continued future research, and is
outside the scope of this paper.

We experiment with a linear system arising from performing linear regression to analyze social media data. The
system arises from a real-life data analysis task performed on real data. The matrix A is 120,147 × 120,147 (after
removing rows and columns that were identically zero) and it has 172,892,749 non-zeros. The maximum number
of non-zeros in a row is 117,182, so some rows are almost full. However, the row sizes are highly skewed as the
average number of non-zeros in a row is 1439, and the minimum is 1. The right-hand side B has 51 columns. For
both CG and our algorithm, the 120,147 × 51 right-hand side and solution matrices are stored in a row-major fashion
to improve locality. All 51 systems are solved together. The matrix does not have unit-diagonal, so for Randomized
Gauss-Seidel and AysRGS we use iteration (3). The coefficient matrix has very little to no structure. This implies
that reordering A in order to reduce cache misses in the matrix-vector multiplications has very little effect. Luckily,
the downstream application requires very low accuracy. In particular, running Randomized Gauss-Seidel beyond 10
sweeps has negligible improvement in the downstream use (as measured in the application specific metric), even though
the residual continues to drop.

19

0 50 100 150 200
10

−4

10
−3

10
−2

10
−1

10
0

Iteration/Sweep

R
e

la
ti
v
e

 R
e

s
id

u
a

l

Randomized G−S
CG

Figure 1: Residual of Randomized Gauss-Seidel and CG on the test matrix.

For this matrix ρ ≈ 231/n and ρ2 ≈ 8.9/n, so the parameters ντ and ωτ that govern the slowdown with oc-
casional synchronization are not too bad (e.g., ν200(1.0) = 0.618 and ω200(0.25) = 0.1906). However matrix is
highly ill-conditioned (as verified using an iterative condition-number estimator [2]) so the bounds without occasional
synchronization do not apply unless we set the step size extremely small. In that respect, we note that the theoretical
bounds for the synchronous algorithm are already far from being descriptive of the behavior of that algorithm, at least
for a small amount of sweeps.

We remark that we chose to experiment with this matrix even though it does not fit the reference scenario, which
was the main focus of our theoretical analysis. We wanted to experiment with an application for which our algorithm
makes sense as a standalone algorithm, instead of the case where it is applied as a building block in a larger solver,
which is the case for most matrices from scientific computing applications. In addition, we note that the high imbalance
in the row size only makes this matrix more challenging for an asynchronous solver (the maximum delay τ might be
large). The analysis presented in this paper is not able to cover effectively such high variance in row sizes, but we
conjecture that the results can be strengthened to cover it, and propose a strategy in the conclusions. Finally, by
choosing this test case, we are able to show that in practice, the algorithm can be suitable even for situations outside
the scope of our analysis.

Figure 1 plots the residual (‖AX −B‖F /‖B‖F) of Randomized Gauss-Seidel and CG as the iterations progress.
We see that Randomized Gauss-Seidel initially progresses faster than CG. This suggests that Randomized Gauss-
Seidel, and its asynchronous variants, might be well suited as a preconditioner in a flexible Krylov method. We remark
that the behavior of CG can be improved with preconditioning.

We tested parallel performance on a single BlueGene/Q node. The compute node has 16 compute cores (and an
additional one for services) running at 1.6 GHz, each capable of 4-way multithreading. We experimented with the
inconsistent read variant only. In Figure 2 (left), we plot the running time of 10 iterations (sweeps) of AsyRGS and
CG. We use a SIMD variant of CG where the indexes are assigned to threads in a round-robin manner. The use of
round-robin is due to the fact that the coefficient matrix has very little to no structure, so other distribution methods
give very little benefit while incurring a large overhead. We see that AsyRGS shows almost linear scalability, and
attains a speedup of almost 48 on 64 threads. CG initially shows good speedups as well, but strays from linear speedup
as the thread count grows. In the serial run, Randomized Gauss-Seidel was about 10% faster (1220 seconds versus
1330 seconds for CG). With 64 threads the gap is substantial: 25.7 seconds versus 46.5 seconds for CG. The speedup
of CG on 64 threads is less than 29.

Next, we explore whether there is a price, in terms of the final residual, for using an asynchronous version. To that
end, we made sure that the set of directions d0,d1, . . . is fixed using the library Random123 [18] which allows random
access to the pseudo-random numbers, as opposed to the conventional streamed approach. Here we also try a variant

20

1 2 4 8 16 32 64
15

30

60

120

240

480

960

1920

Number of Threads

T
im

e
 (

s
e

c
o

n
d

s
)

Asynchronous Randomized G−S
CG

2 4 8 16 32 64
10

−4

10
−3

10
−2

Number of Threads

R
e

s
id

u
a

l
A

ft
e

r
1

0
 S

w
e

e
p

s

Asynchronous Randomized G−S
Asynchronous Randomized G−S (non atomic)
Randomized G−S

2 4 8 16 32 64
10

−3

10
−2

10
−1

10
0

Number of Threads

A
−

N
o

rm
 o

f
E

rr
o

r
A

ft
e

r
1

0
 S

w
e

e
p

s

Asynchronous Randomized G−S
Asynchronous Randomized G−S (non atomic)
Randomized G−S

Figure 2: Performance of AsyRGS (inconsistent read) on the test matrix. Left: Running time of both AsyRGS and
CG on the test matrix. Center: Relative residual after 10 sweeps of Randomized Gauss-Seidel and AsyRGS. Right:
Relative A-norm of the error.

Table 1: Performance of Flexible-CG with AsyRGS (inconsistent read) serving as a preconditoner. We explore the
performance when varying the number of inner (preconditioner) sweeps. 64 threads are used. As runs are not deter-
ministic, we report the median of five different runs.

Inner sweeps Outer iterations Outer × (Inner + 1) Time Mat-ops / sec
30 38 1178 234 sec 5.03
20 48 1008 203 sec 4.97
10 69 759 159 sec 4.77
5 100 600 132 sec 4.55
3 151 604 134 sec 4.51
2 184 552 125 sec 4.42
1 356 712 162 sec 4.39

of AsyRGS which does not perform atomic writes, in order to test experimentally whether atomic writes are necessary
(from a theoretical point-of-view, so far we have not been able to analyze the convergence rate without atomic writes).
In Figure 2 (center), we plot the residual after 10 sweeps of a single run on each thread count. We see that the residual
of the asynchronous algorithm is slightly worse than that of the synchronous method, although it is of the same order
of magnitude. There does not seem to be a consistent advantage to using atomic writes. There is also variation in the
residual due to different scheduling of the threads, so we conducted 5 additional trials with 64 threads. The minimum
residual of AsyRGS was 1.44× 10−3 and the maximum was 2.88× 10−3. With the non-atomic variant, the minimum
was 1.39 × 10−3 and the maximum was 2.96 × 10−3. There is no noticeable difference between the running time of
the two variants.

In Figure 2 (right) we examine the relative A-norm of the error (‖x− x?‖A/‖x?‖A) after 10 sweeps for different
thread counts. In this experiment, we use a single right hand side that is generated as follows: we took one of the
right hand sides of the original problem, solved to very low residual (using Flexible-CG, as explained in the following
paragraphs) to form x?, and then used b = Ax?. We see that the A-norm of the error for AsyRGS is very close to the
A-norm of the error of the synchronous method, and is sometimes better (we caution that we did a single experiment,
and there is variation in the error produced by the asynchronous method). Both the synchronous and the asynchronous
method produce errors that are well below the theoretical bounds for the synchronous method.

Our final set of experiments explore the use of AsyRGS as a preconditioner for a flexible Krylov method. We
implemented Notay’s Flexible-CG algorithm [16]. In our implementation we do not use truncation or restarts, although
we acknowledge that a general purpose production-grade solver might require these. We compute the norm of the
residual after every iteration of Flexible-CG, and declare convergence once the relative residual has dropped below
some predefined threshold. In our experiments we use 10−8. Iteration counts and running time are reported based

21

1 2 4 8 16 32 64
100

200

400

800

1600

3200

Number of Threads

T
im

e
 (

s
e

c
o

n
d

s
)

2 Precond Sweeps
10 Precond Sweeps

1 2 4 8 16 32 64
0

20

40

60

80

100

120

140

160

180

200

Number of Threads

O
u

te
r

It
e

ra
ti
o

n
s

2 Precond Sweeps
10 Precond Sweeps

Figure 3: Parallel performance of Flexible-CG preconditioned using AsyRGS (inconsistent read) on the test matrix.
Left: Running time of the algorithm, with 2 or 10 sweeps per preconditioner application, on the test matrix. Right:
Number of outer (Flexible-CG) iterations.

on convergence. We use AsyRGS as the preconditioner, with the number of sweeps set as a parameter. As AsyRGS
introduces non-determinism, we repeat every experiment five times, and report the median (we note that the random
choices are fixed in these five runs, and non-determinism is only due to asynchronism). We use only a single right-hand
side vector in this set of experiments.

There is a trade-off in setting the number of AsyRGS sweeps to use as a preconditiner. As we increase the number
of preconditioner sweeps, the preconditioner improves so we expect the number of outer (Flexible-CG) iterations
to decrease. On the other hand, AsyRGS is not as effective on utilizing residual information as CG, which enjoys a
superior converge rate compared to Randomized Gauss-Seidel, so we expect the number of times the matrix is operated
on, which is equal to OuterIterations × (InnerSweeps + 1), to increase as we increase the number of preconditioner
sweeps. On the flip side, as we increase the number of preconditioner sweeps, we expect parallel efficiency to increase
as well since we are diverting work to AsyRGS, which enjoys better parallel efficiency. Table 1 explores this trade-
off. In this experiment we vary the number of inner preconditioner sweeps, and run Flexible-CG to convergence. 64
threads are used. As we expect, the number of outer iterations decreases as the number of inner sweeps increases,
but the overall times the matrix is operated on increases (with the notable exception of using a single inner sweep).
Improved efficiency is demonstrated in the “Mat-ops / sec” columns (which is equal to OuterIterations× (InnerSweeps
+ 1) / Time): we see that as the number of inner sweeps increase, we operate on the matrix at a higher rate. Nevertheless,
the optimal number of sweeps (in terms of running time) is obtained with only two inner sweeps.

Parallel performance is explored in Figure 3. In the left graph we plot the running time as a function of the number
of threads, for two configuration: 2 inner sweeps and 10 inner sweeps. We see the method exhibits good speedups,
with speedup of more than 32 for 2 inner sweeps, and 30 for 10 inner sweeps. On the surface it appears that the two
inner sweeps configuration enjoys better scalability, which is counter to our intuition that diverting more work to the
asynchronous iterations should improve parallel efficiency. However, the running time is measured until convergence,
and the number of (outer) iterations is also a function of the number of threads. This is explored in the right graph
of Figure 3. While intuitively the number of iterations should grow with the number of threads, as the quality of
the preconditioner should degrade due to increased asynchronism, that is not observed in practice. We do see higher
variability in the number of iterations with 2 inner sweeps. Possibly the reason for these observations is that the random
choices made by the algorithm are more dominant than asynchronism in determining convergence. We now note that
the speedup in terms of mat-ops / sec for 10 inner sweeps is almost 34, versus only 28 for 2 inner sweeps, which is
consistent with the intuition that diverting more work to the asynchronous iterations should improve parallel efficiency.

22

10 Conclusions and Future Work
As we push forward toward exascale systems, it is becoming imperative to revisit asynchronous linear solvers as a
means of addressing the limitations foreseen by current hardware trends. This paper serves as a starting point for this
revisit. Our main observation is that the limitations of previous asynchronous linear solvers can be addressed by a new
class of asynchronous methods based on randomization. Our analytical results clearly show the advantage of using
randomization as a building block for asynchronous solvers.

While we do present experimental results that show the usefulness of our algorithm for certain types of linear
systems, it is also clear that much needs to be done for a general purpose solver. One clear path, which we only started
to explore, is the use of our algorithm as a preconditioner in a flexible Krylov method. Another, is to extend our
algorithm from a shared memory system with limited parallelism to massively parallel systems.

There are some theoretical questions that need to be explored too. Is that gap in the bound for consistent and
inconsistent reads inherent, or an improved analysis can remove or narrow it? Is it possible to obtain comparable
bounds when we allow k(j) or K(j) to depend on d0, . . . ,dj? In our reference scenario, we show weak-scaling only
if we periodically synchronize the threads. It is worth investigating whether the periodic synchronization essential, or
if it is an artifact of the analysis. In addition, in our analysis the convergence rate depends on the maximum age of data
used during the algorithm. The maximum can be rather large in some setups (e.g., high ratio between maximum and
minimum amount of non-zeros per row), but the use of the maximum is also rather pessimistic (the analysis assumes
that the maximum delay is almost achieved). Perhaps a probabilistic modeling of the delays might lead to a convergence
result that will be more descriptive for matrices with imbalanced row sizes.

Acknowledgments
Thanks to Vikas Sindhwani for providing the matrix used in the experiments. Haim Avron acknowledges the support
from the XDATA program of the Defense Advanced Research Projects Agency (DARPA), administered through Air
Force Research Laboratory contract FA8750-12-C-0323.

References
[1] H. Avron, A. Druinsky, and A. Gupta. Revisiting asynchronous linear solvers: Provable convergence rate through

randomization. In Proceeding of the 28th IEEE International Parallel & Distributed Processing Symposium
(IPDPS), 2014.

[2] Haim Avron, Alex Druinsky, and Sivan Toledo. Reliable iterative condition-number estimation. CoRR,
abs/1301.1107, 2013.

[3] G. M. Baudet. Asynchronous iterative methods for multiprocessors. J. ACM, 25(2):226–244, April 1978.

[4] D. P. Bertsekas and J. N. Tsitsiklis. Parallel and distributed computation. Prentice Hall, 1989.

[5] I. Bethune, J. M. Bull, N. J. Dingle, and N. J. Higham. Performance analysis of asynchronous Jacobi’s method
implemented in MPI, SHMEM and OpenMP. MIMS EPrint 2012.62, University of Manchester, UK, June 2012.

[6] D. Chazan and W. Miranker. Chaotic relaxation. Linear Algebra and its Applications, 2(2):199 – 222, 1969.

[7] N .M. Freris and A. Zouzias. Fast distributed smoothing for network clock synchronization. In IEEE Conference
on Decision and Control, 2012.

[8] A. Frommer and D. B. Szyld. On asynchronous iterations. Journal of Computational and Applied Mathematics,
123:201 – 216, 2000.

23

[9] M. Griebel and P. Oswald. Greedy and randomized versions of the multiplicative Schwarz method. Linear
Algebra and its Applications, 437(7):1596 – 1610, 2012.

[10] J. Hook and N. J. Dingle. Performance analysis of asynchronous parallel Jacobi. MIMS EPrint 2013.52, Univer-
sity of Manchester, UK, October 2013.

[11] D. Leventhal and A. S. Lewis. Randomized methods for linear constraints: Convergence rates and conditioning.
Math. Oper. Res., 35(3):641–654, 2010.

[12] J. Liu and S. J. Wright. Asynchronous Stochastic Coordinate Descent: Parallelism and Convergence Properties.
SIAM Journal of Optimization, to Appear, 2014.

[13] J. Liu, S. J. Wright, C. Re, V. Bittorf, and S. Sridhar. An asynchronous parallel stochastic coordinate descent
algorithm. In International Conference in Machine Learning (ICML), 2014.

[14] J. Liu, S. J. Wright, and S. Sridhar. An Asynchronous Parallel Randomized Kaczmarz Algorithm. ArXiv e-prints,
January 2014.

[15] F. Niu, B. Recht, C. Re, and S. J. Wright. Hogwild: A lock-free approach to parallelizing stochastic gradient
descent. In Advances in Neural Information Processing Systems (NIPS) 24, pages 693–701, 2011.

[16] Y. Notay. Flexible conjugate gradients. SIAM Journal on Scientific Computing, 22(4):1444–1460, 2000.

[17] Y. Saad. A flexible inner-outer preconditioned GMRES algorithm. SIAM Journal on Scientific Computing,
14(2):461–469, 1993.

[18] J. K. Salmon, M. A. Moraes, R. O. Dror, and D. E. Shaw. Parallel random numbers: as easy as 1, 2, 3. In
Proceedings of SC’11, pages 16:1–16:12. ACM, 2011.

[19] V. Simoncini and D. B. Szyld. Flexible inner-outer Krylov subspace methods. SIAM Journal on Numerical
Analysis, 40(6):2219–2239, 2003.

[20] T. Strohmer and R. Vershynin. A randomized Kaczmarz algorithm with exponential convergence. Journal of
Fourier Analysis and Applications, 15:262–278, 2009.

24

