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Abstract

To find the optimal nonlinear separating boundary with
maximum margin in the input data space, this paper pro-
poses Contractive Rectifier Networks (CRNs), wherein the
hidden-layer transformations are restricted to be contrac-
tion mappings. The contractive constraints ensure that the
achieved separating margin in the input space is larger than
or equal to the separating margin in the output layer. The
training of the proposed CRNs is formulated as a linear sup-
port vector machine (SVM) in the output layer, combined
with two or more contractive hidden layers. Effective al-
gorithms have been proposed to address the optimization
challenges arising from contraction constraints. Experi-
mental results on MNIST, CIFAR-10, CIFAR-100 and MIT-
67 datasets demonstrate that the proposed contractive rec-
tifier networks consistently outperform their conventional
unconstrained rectifier network counterparts.

1. Introduction
Deep learning networks have achieved great successes

in recent years and have become one of the most attrac-

tive research topics in machine learning, computer vision

and speech recognition. Rectifier max{0, x} is one of the

most popular nonlinear activation functions in modern deep

learning networks. The advantages of deep rectifier net-

works are not only shown in their excellent empirical per-

formance in object recognition [18, 20, 13], face verifica-

tion [38, 37], speech recognition ([32, 14, 7] and hand-

written digit recognition [5], but also justified by a num-

ber of theoretical works on their superior expressive pow-

ers [6, 28, 27] and their metric preserving properties [1] in

transforming linearly inseparable pattern sets into linearly

separable sets. It was shown that any disjoint pattern sets

can be transformed to be linearly separable by two hidden

layers while the distance distortions are controlled within a

factor in the range [0.5, 1] [1]. This nearly isometric prop-

erty of the nonlinear transformation can be used to design

nonlinear maximum margin classifiers through the applica-

tions of linear support vector machines (SVMs) in the out-

put layer. However, in order to preserve metrics in hidden

layer transforms, [1] requires the number of neurons in the

first hidden layer to be at least twice the data dimension.

In addition, it requires the number of neurons of the higher

hidden layers to be at least twice the number of neurons

of their preceding hidden layers. This requirement is im-

practical for deep rectifier networks with deep hidden lay-

ers and/or with high dimensional data. Motivated by the fact

that the solution of an SVM is fully determined by their sup-

port vectors (usually a small subset of the training patterns),

this paper proposes Contractive Rectifier Networks (CRNs)

whose hidden layers are not designed to preserve the dis-

tances of any two arbitrary input vectors but are trained to

best preserve only the distances of the support vectors. The

proposed CRNs consists of a linear SVM in the output layer

and two or more hidden layers each restricted to be a con-

traction mapping, that is, the distance between the outputs

of the hidden layer for any two inputs (of this layer) is not

enlarged. In this paper, we show that contraction constraints

do not sacrifice the capacity of rectifier networks in achiev-

ing maximum margin classification (i.e., the optimal nonlin-

ear separating margin achievable by unconstrained rectifier

networks (URNs) can also be achieved by CRNs). Although

they have equal theoretical capacity for nonlinear maximum

classification, CRN is superior in practical training. The

training of CRNs, with a linear SVM in the output layer,

optimizes the weights to maximize the separating margin in

the output layer while ensuring that the separating margin

in the input space is larger than or equal to that in the output



layer. On the other hand, the training of URNs, with a linear

SVM in the output layer similarly, can result in a solution

with an arbitrarily small margin in the input space even the

separating margin in the output layer is infinitely large.

The major contributions of this paper include: 1) the first

mathematical formulation of nonlinear maximum margin

classification. Although maximum margin is a well-known

property of linear SVM, nonlinear maximum-margin classi-

fication is yet to be addressed to the best of our knowledge;

2) the first deep learning network which can achieve guar-

anteed larger separating margin in the input space than that

in the output layer; 3) a novel training method of rectifier

networks under contraction constraints; and 4) the superior

performance on a number of popular databases: CIFAR-10,

CIFAR-100 for object classification, and MIT-67 for scene

understanding.

Related Works: There are a large amount of successful

rectifier networks upon which the proposed techniques have

potentials to improve classification performance. Here, we

only review the most relevant works. Specifically, this work

is closely related to [1], which proves that any disjoint pat-

tern sets can be transformed by two hidden layers to be

linearly separable while preserving the distances within a

factor ranging between 0.5 and 1. Although the orthogo-

nal bidirectional rectified transform introduced in [1] can

be used for nonlinear maximum margin classification, the

rectifier network constructed in the proof of [1] is difficult

to learn in practice due to the orthogonal constraints and

the required large number of neurons in the hidden layers.

The proposed CRN replaces these non-convex constraints

by the convex contraction mapping constraints and the best

CRN can be learnt with any given number of neurons in hid-

den layers. Another closely related work is the deep learn-

ing network using linear SVM [39], where the output layer

uses a linear SVM instead of softmax regression in the tradi-

tional deep neural network. Without additional constraints

on the weights, Section 4.1 will show that such rectifier net-

work cannot guarantee any level of optimum for nonlinear

maximum margin classification even if the separating mar-

gin is infinitely large in the output layer. The contraction

constraint was also used to improve performance in [31] for

auto-encoders, in [4] for invariant scattering transforms, and

in [22] for structured labelling. Recently, a novel normal-

ization technique [15] on the outputs of each neuron has

been successfully applied in training deep neural networks

to speed up training and improve accuracy. This technique

can also address the scaling problem regarding the gap be-

tween the separating margin in the output layer and that in

the original data space.

Notations: Throughout the paper, we use capital let-

ters to denote matrices, lower case letters for scalar terms,

and bold lower letters for vectors. For instance, we use

wi to denote the ith column of a matrix W , and use bi

Positive Pattern

Negative Pattern

Maximum
Possible Margin

Blue Belt

Figure 1. [Best Viewed in Color] Demonstration of Nonlin-

ear Maximuum Margin Classification: Any separating boundary

within the blue belt achives the maximum margin.

to denote the ith element of a vector b. For any integer

m, we use [m] to denote the integer set from 1 to m, i.e.,

[m] � {1, 2, · · · ,m}. We use I to denote the identity ma-

trix with proper dimensions, 0 to denote a vector with all

elements being 0. A positive semidefinite matrix X is de-

noted by X � 0, and X � I is equivalent to I −X � 0.

Organization: The rest of this paper is organized as fol-

lows. In Section 2, we introduce nonlinear maximum mar-

gin classification problem and review the solution of linear

maximum margin classification through SVM. In Section 3,

we address the formulation of contractive rectifier networks

and show their equal capacity of achieving nonlinear maxi-

mum margin classification in comparison with their uncon-

strained rectifier networks counterparts. Section 4 addresses

the training of CRNs, Section 5 presents experimental re-

sults while Section 6 concludes the paper.

2. Nonlinear Maximum Margin Classification

In this section, we define the margin of a nonlinear clas-

sifier as the minimum distance of the training patterns to the

classifier’s separating boundary in the input space, and in-

troduce nonlinear max-margin classification aiming to find

the nonlinear classifier with maximum margin in the non-

linear space. This is a natural extension of maximum mar-

gin linear classifiers such as linear support vector machines

(SVMs) wherein the separating boundary is restricted be a

hyper-plane in the data space. Figure 1 illustrates an ex-

ample of nonlinear maximum margin classifiers for positive

and negative patterns in 2D space. Clearly the ideal sepa-

rating boundary is the middle line of the blue belt but it is

hard to learn from data. The proposed nonlinear maximum

margin classification aims to find a nonlinear classifier with

a separating boundary within the blue belt.

For high dimensional patterns, the learning of maximum

margin nonlinear classifiers from data is challenging due

to the complexity of the nonlinear separating boundaries.

Next, we will formulate the maximum margin classification



problem, review the maximum margin properties of linear

SVMs, and show the ways one can achieve nonlinear maxi-

mum margin classifications through linear classifiers based

on nonlinearly transformed features.

Let f(x; p) denote a general pattern classifier, linear or

nonlinear, where x ∈ R
n is a vector representing an in-

stance of the patterns and p denotes the parameters of the

classifier. If p = {w, b} and f(x; p) = wTx + b, then

f(x; p) is called a linear classifier and sign{wTx+ b} pre-

dicts the label of an instance x . Otherwise, if f(x; p) can-

not be described as such a formulation, it is called a non-

linear classifier. Most nonlinear classifiers, such as kernel

[33] and neural network classifiers [2], first conduct nonlin-

ear transformations φ(x), explicitly or implicitly, and then

apply linear classifiers on the transformed features.

In practical training of pattern classifiers, the parameters

p, such as the weights of the output layer and hidden layers

in neural networks, are allowed to vary within some ranges,

that is, p ∈ P for some set P . Each classification frame-

work has its own parameter structure p and its own distinct

parameter set P . In case of linear classification, p = {w, b}
and P = {p = {w, b} : w ∈ R

n, b ∈ R}.

The separating boundary margins of individual classi-

fiers and the maximum margin of a group of classifiers are

defined as follows. Suppose that a training set, namely

{xi, yi}Ni=1,xi ∈ R
n, yi ∈ {−1, 1}, is separable by f(x; p)

for some parameter p ∈ P , that is, f(xi; p) > 0 for any pos-

itive patterns xi and f(xj ; p) < 0 for any negative patterns

xj . Let

B(p) � {x : f(x; p) = 0} (1)

denote the separating boundary. The separating margin of

this classifier f(x; p) is then defined as the minimal distance

from the training patterns to the separating boundary, i.e.,

γ(p) � min
i∈[N ]

inf
x∈B(p)

‖xi − x‖ (2)

where ‖ · ‖ denotes the Euclidean norm and ‖xi − x‖ is the

Euclidean distance between x and xi.

The maximum separating margin achievable by a group

of classifiers {f(x; p) : p ∈ P} is defined as

γmax(P) � sup
p∈P

γ(p). (3)

Although the maximization of γ(p) with respect to p ∈
P is extremely challenging for nonlinear classifiers, the

maximum margin linear classifier can be obtained through

the training of a linear SVM with hard constraints. In the

linear case, the separating boundary B(p) is a hyperplane

{x : wTx + b = 0} in n dimensional space, and the sepa-

rating margin of a linear classifier is then

γ(p) = min
i∈[N ]

yi(w
Txi + b)

‖w‖ (4)

where ‖w‖ =
√
wTw is the Euclidean norm of w.

The maximum margin linear classifier can thus be ob-

tained by solving the following optimization problem

max
w,b

min
i∈[N ]

yi(w
Txi + b)

‖w‖ (5)

or equivalently by a linear SVM with hard constraints given

by
min
w,b

1
2w

Tw

s.t. yi(w
Tx+ b) ≥ 1, i ∈ [N ].

(6)

Remarks: The kernel SVMs can only achieve the max-

imum margin property in the kernel induced feature space

while the neural network methods with SVMs in the out-

put layer can only obtain a maximum margin separating

boundary in the feature space transformed by the hidden

layers. However, the separating boundaries of these nonlin-

ear classification methods do not have the maximum margin

property in the input space due to distance distortions from

the nonlinear transformations. To achieve certain levels of

optimum for nonlinear maximum margin classifications by

conducting linear SVM on a nonlinear transformed feature

space, one needs to control the distance distortions of the as-

sociated nonlinear transforms so that the separating margin

in the feature space and that in the input space are closely

related. In this paper, we propose to use contraction con-

straints to control the distance distortions of rectifier hidden

layer transformations and ensure that the maximization of

the separating margin in the output layer leads to a larger

separating margin in the input space.

3. Contractive Rectifier Networks
A rectifier network with single output and d hidden lay-

ers can be described as

f(x; p) = wT zd + b
zk = max{0,WT

k zk−1 + ck}, k = 1, 2, · · · , d
z0 = x

(7)

where x is the input, zk is the output of the kth hidden layer,

and p = {w, b,Wk, ck : k ∈ [d]}.

The parameter set P for all such rectifier networks with

arbitrary numbers of neurons can be described as

P =
⋃
l∈L

P(l) (8)

where l = [l1, l2, · · · , ld]T is an integer vector representing

the numbers of neurons in d hidden layers,

L = {l : lk ∈ Z+, k ∈ [d]} (9)

and

P(l) �
{
p = {w, b,Wk, ck : k ∈ [d]} : w ∈ R

ld ,
b ∈ R,Wk ∈ R

lk−1×lk , ck ∈ R
lk , k ∈ [d]

}
(10)



where l0 = n.

A rectifier network f(x; p), as defined in (7), is called a

contractive rectifier network (CRN) if the transformation of

each hidden layer is a contraction mapping, that is,

‖z(2)1 − z
(1)
1 ‖ ≤ ‖x(2) − x(1)‖, ∀ x(1),x(2) ∈ R

n

(11)

and for each k = 2, 3, · · · , d,

‖z(2)k − z
(1)
k ‖ ≤ ‖z(2)k−1 − z

(1)
k−1‖, ∀ z

(1)
k−1, z

(2)
k−1 ∈ R

lk−1

(12)

where z
(1)
1 , z

(2)
1 are the outputs of the first hidden layer from

the inputs x
(1)
1 ,x

(2)
1 respectively, and z

(1)
k , z

(2)
k are the out-

puts of the kth hidden layer from the outputs z
(1)
k−1, z

(2)
k−1 of

the preceding hidden layer respectively.

Note that

‖max
{
0,WTx(1) + c

}−max
{
0,WTx(2) + c

} ‖2
≤ ‖WTx(1) −WTx(2)‖2
= (x(1) − x(2))TWWT (x(1) − x(2)).

(13)

The constraints in (11,12) can be implemented by restricting

the weight matrices Wk to satisfy the following conditions

WkW
T
k � I, ∀ k ∈ [d] (14)

or equivalently, by the well-known Schur Complement

Lemma [3], [
I WT

k

Wk I

]
� 0, ∀ k ∈ [d] (15)

which are convex constraints if the range of Wk is convex.

Correspondingly, the parameter space of all CRNs, de-

noted by Pc, can be described as

Pc =
⋃
l∈L

Pc(l)

Pc(l) �
{
p = {w, b,Wk, ck : k ∈ [d]} : w ∈ R

ld ,
b ∈ R,WkW

T
k � I, ck ∈ R

lk , k ∈ [d]
}

(16)

where l0 = n.

Next, we show that the maximal separating margin

achievable by a rectifier network, as defined in (7), can also

be achieved by a CRN.

Proposition 1 Let l = [l1, l2, · · · , ld]T denote the numbers
of hidden nodes in rectifier networks with d hidden layers,
and P,P(l),Pc,Pc(l) be defined as in (7), (10) and (16) re-
spectively. Then the maximum margin achievable by a rec-
tifier network for a given training set {xi, yi, i ∈ [N ]} can
also be obtained by a contractive rectifier network. More
precisely

γmax{P(l)} = γmax{Pc(l)}, ∀ l ∈ L;
γmax{P} = γmax{Pc} (17)

where γmax(·) is defined in (3).

Proof: Let p∗ ∈ P(l) and f(x; p∗) be the rectifier net-

work that achieves the largest margin γmax{P(l)} for a

given training set {xi, yi, i ∈ [N ]}. By scaling the weights

Wk to satisfy the contraction constraints (11,12), one can

obtain a CRN, namely f(x; p̂∗), which can also separate

the training set. Furthermore, the separating boundaries

of f(x; p̂∗) and f(x; p∗) are identical. Hence, these two

classifiers have the same separating margin and therefore

γmax{P(l)} = γmax{Pc(l)} for any l ∈ L. Similarly, one

can prove γmax{P} = γmax{Pc} to complete the proof.

�

4. Training of Contractive Rectifier Networks
Due to the complexity of the separating boundaries of

RNs and CRNs, there is no efficient way to optimize the

separating margin among all the possible RNs or CRNs.

However, the maximum margin in the output layer can be

achieved by a linear SVM, and we propose to optimise the

nonlinear separating margin by training a linear SVM in the

output layer of CRN. Next, we first show the necessity of

enforcing contraction constraints on the rectifier hidden lay-

ers and then address the formulation and training of the pro-

posed CRN with linear SVM in the output layer.

4.1. The Necessity of Contraction Constraints

Let {xi ∈ R
n, yi ∈ {−1, 1}, i ∈ [N ]} be a given train-

ing pattern set, and l = [l1, l2, · · · , ld]T be an integer vector

representing the numbers of neurons in d hidden layers, the

training of RN, with hard margin linear SVM in the out-

put layer but without contraction constraints on the hidden

layers, can be formulated as

min
p∈P(l)

1
2w

Tw

s.t. yi(w
T zd(i) + b) ≥ 1, i ∈ [N ]

zk(i) = max{0,WT
k zk−1(i) + ck},

2 ≤ k ≤ d, i ∈ [N ]
z1(i) = max{0,WT

1 xi + c1}, i ∈ [N ]

.

(18)

However, this optimization may result in a rectifier net-

work with an arbitrarily small separating margin in the input

space even the separating margin is very large in the output

layer. Let ε > 0 be any small number and f(x; p) be an

error-free classifier of a training pattern set with a separat-

ing margin γ(p) = ε for some p = {w, b,Wk, ck : k ∈ [d]}
satisfying the constraints of (18). Then f(x; p̂) is also an

error-free classifier with p̂ = {ηw, ηb, η−
1
dWk, η

− 1
d ck :

k ∈ [d]} satisfying the constraints of (18) as well. The

cost 1
2η

2wTw can be made arbitrarily small by choosing

a sufficiently small η, and thus the cost tends to zero as η
approaches to zero. Though the separating boundary mar-

gin in the output layer tends to be infinitely large when η
approaches to zero, the margin in the original input space



remains ε. Hence, the optimization problem of (18) is not

well defined and some constraints on the weights Wk are in

need. In the next subsection, we will show that the proposed

contraction constraints on the hidden layers in CRN ensure

that the separating margin in the input space is larger than

or equal to that in the output layer.

4.2. Hard Margin Formulation of CRN

The training of CRN with linear SVM in the output layer

is formulated as:

min
p∈Pc(l)

1
2w

Tw

s.t. yi(w
T zd(i) + b) ≥ 1, i ∈ [N ]

zk(i) = max{0,WT
k zk−1(i) + ck},

2 ≤ k ≤ d, i ∈ [N ]
z1(i) = max{0,WT

1 xi + c1}, i ∈ [N ]
WkW

T
k � I, ∀ k ∈ [d]

(19)

where zk(i) denotes the output of the kth hidden layer for

input xi.

Regarding the above optimization problem and its solu-

tion, we have the following result:

Proposition 2 If the number of hidden layers is more than
1, i.e., d ≥ 2, the constraints of (19) are feasible for any
pattern set {(xi, yi) : yi = ±1, i ∈ [N ]}. Furthermore, let
p∗ be the optimal solution of the hard margin optimization
problem (19), then the separating margin of f(x; popt) in
the input space is larger or equal to the separating margin
in the output layer, i.e.,

γ{p∗} ≥ 1

‖w∗‖ (20)

where γ(·) is defined in (2).

Proof: In [1], it is shown that any two disjoint pattern

sets can be transformed to be linear separable through two

hidden layers of rectifier networks. By scaling, one can

always restrict the weight matrix to satisfy the contraction

constrains while the resulted contraction hidden layers can

still transform the patterns to be linearly separable in the

output layer. Hence the constraints of (19) are feasible for

any training set.

Note that the transformation of each hidden layer is con-

tractive, the distance of any training pattern to the separating

boundary in the output layer must be smaller than the dis-

tance of this training pattern to the separating boundary in

the input space. Hence the separating margin (i.e.,γ{p∗})

of f(x; p∗) in the input space must be larger than or equal

to the separating margin ((i.e. 1
‖w‖ )) in the output layer.

�

4.3. Soft Margin Formulation of CRN

Similar to the formulation of linear SVMs, the soft mar-

gin version of the proposed maximum margin contractive

rectifier network with hinge loss can be described as

min
p∈Pc(l)

1
2w

Tw + C
N

∑
i∈[N ]

ξi

s.t. yi(w
T zd(i) + b) ≥ 1− ξi, i ∈ [N ]

ξi ≥ 0; i ∈ [N ]
zk(i) = max{0,WT

k zk−1(i) + ck},
2 ≤ k ≤ d, i ∈ [N ]

z1(i) = max{0,WT
1 xi + c1}, i ∈ [N ]

WkW
T
k � I, ∀ k ∈ [d]

(21)

Remarks: The soft version can also be formulated us-

ing squared hinge loss by replacing ξi with ξ2i , which gives

more penalty on the larger instance training errors. The

extension to multi-category classification is straightforward

by summing up the costs and combining the constraints of

the soft-margin formulations for all the one-versus-the-rest

binary classifications.

4.4. The Updating Rule

For training of CRN, we need to ensure that the con-

straints are satisfied in each iteration. At iteration t, let

Wk(t) denote the value of Wk, Wk(t)Wk(t)
T � I , and

Δk(t) denote the gradient, Wk(t+1) is updated as follows.

Let

Q = Wk(t) + ηΔk(t), (22)

and conduct singular value decomposition (SVD) on Q, i.e.,

Q = UΛV T . Then Wk is updated as

Wk(t+ 1) = U min{1,Λ}V T . (23)

which implies Wk(t+1)Wk(t+1)T � I , and thus Wk(t+
1) satisfies the contraction constraints.

The operation of SVD to ensure contraction constraint

is computationally expensive. The SVDs of 4096 × 2048
and 2048 × 1024 matrices on an Intel core i7 machine

for CIFAR-10 dataset take 4.96 and 0.54 seconds respec-

tively. Performing SVD for every forward pass of the train-

ing therefore makes the method computationally expensive.

In our experiments, we however observed that performing

SVD only at the initialization step and after every epoch

generates 8.8 % error rate for CIFAR-10 dataset while per-

forming SVD in every forward pass of the training achieves

8.75% error rate (a slight improvement of 0.05%). For

the consideration of computational advantages, we there-

fore performed SVD at the initialization step and then af-

ter every epoch (instead of every forward pass) for all the

experiments. This achieves a good trade-off between the

performance and the required computational resources.



5. Experiments

The efficacy of the proposed method is demonstrated

through extensive experiments on a number of datasets for

numerous classification tasks. Specifically, these include

MNIST dataset for handwritten digit recognition, CIFAR-

10 and CIFAR-100 datasets for generic object recogni-

tion and MIT-67 dataset for indoor scene classification.

In the followings, we first provide a brief description of

each dataset and the experimental configurations (Sec. 5.1).

We then describe the architectures of the baseline network

(Sec. 5.2) and our proposed Contractive Rectifier Network

(Sec. 5.3). We finally present our method for the selection

of optimal hyper-parameters (Sec. 5.4) followed by a dis-

cussion and analysis of the achieved experimental perfor-

mance (Sec. 5.5).

5.1. Datasets

MNIST[19]: This dataset consists of 28×28 grey scale im-

ages of handwritten digits. The total number of images in

the dataset is 70, 000, of which 60, 000 are used for training

while the remaining 10, 000 are used for testing. These im-

ages belong to 10 different classes (corresponding to digits

from 0 to 9).

CIFAR-10 and CIFAR-100 [17]: CIFAR-10 dataset com-

prises 60, 000 color images of 10 different object categories.

The resolution of the images in the dataset is 32 × 32.

50, 000 of these images are allocated for training while the

remaining 10, 000 are used for testing. Similar to CIFAR-

10, CIFAR-100 dataset also has a total of 60, 000 color im-

ages (50, 000 for training and the other 10, 000 for testing)

of resolution 32 × 32. However, the number of object cat-

egories in CIFAR-100 is much larger than CIFAR-10 (100
compared to 10) which makes the classification on CIFAR-

100 a far more challenging task.

MIT-67 Dataset[29]: The MIT-67 Dataset contains 15, 620
color images of 67 indoor scene categories (e.g., kitchen,

bedroom, dining room, library and bookstore). For perfor-

mance evaluation and comparison, we followed the stan-

dard evaluation protocol [29] in which a subset of data is

used (100 images per class) and the train-test split is defined

to be 80%− 20% for each class.

5.2. Baseline Network Architecture

We train our contractive rectifier network (Sec 5.3) on

top of the learned feature representations from a baseline

Convolutional Neural Network (CNN). For MNIST dataset,

our baseline CNN comprises of two alternating convolu-

tional (filter size: 5 × 5, number of channels are 32 and 64
respectively) and max-pooling (size: 2 × 2, stride: 2) lay-

ers and one fully connected layer (number of neurons: 500)

with a dropout rate of 0.5. Non-linear activations i.e., Recti-

Baseline CNN
Architecture

FC Layer
(@2048)

FC Layer
(@1024)

ReLU ReLU

W1 W2

Trained with Contractive Mapping
Constraints

SVM loss
output layer

Max-margin
classification

Figure 2. The architecture of the proposed Contractive Rectifier

Network

fied Linear Units (ReLUs) are used after each convolutional

and fully connected layer.

For the other evaluated datasets, we trained our contrac-

tive rectifier network on top of the learned feature repre-

sentations from a deep CNN architecture [34] which com-

prises 16 learnable weight layers (13 convolutional layers

and 3 fully connected layers). The network takes a fixed

size input (224× 224) color image, subtracts a mean image

(computed on the training set) and then feeds the resulting

image to the layers of the network. All convolution filters

in the network have a relatively smaller size of 3× 3, which

helps decreasing the number of parameters in the network

and provides an effective larger receptive field due to the

consecutive convolution layers. For spatial pooling of fea-

ture representations, the network contains five max-pooling

layers (size: 2 × 2, stride: 2) after the 2nd, 4th, 7th, 10th

and 13th convolutional layers, respectively. ReLU activa-

tion function is applied after every layer in the deep CNN.

Pairs of convolutional layers with 64 and 128 filters respec-

tively appear at the start of the network. Afterwards, three

triplets of convolutional layers with filters 256, 512 and 512
respectively appear before the final three fully connected

layers. For our feature representations, we re-scale our in-

put images to 224× 224 and take 4096 dimensional output

from the first fully connected layer of the trained deep net-

work.

5.3. Proposed CRN Architecture

Our Contractive Rectifier Network (CRN) comprises of

two hidden layers and one output layer. The training of the

contractive rectifier network is performed through stochas-

tic gradient descent in which the learned feature represen-

tations from the deep network are fed as an input while a

binary vector with class label information is used as the

output. With an annealed learning rate being used (ini-

tialized at 10−2, and decreased by a factor of 10 after ev-

ery 20 epoches), the network is trained for a total of 80
epoches. The network parameters including the total num-

ber of neurons in the hidden layers and the value of the reg-

ularization constant ‘C’ are selected after performing ex-

periments on a held-out cross validation set (see Table. 1,

Fig 3 and Sec. 5.5) on one of the evaluated datasets (CIFAR-
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10 dataset). They are then consistently used across other

datasets. Our experimental results show that the perfor-

mance of the proposed CRN is not very sensitive to the val-

ues of the hyper-parameters.

5.4. Optimal Hyper-parameters

The optimal value for the parameter ‘C’ is achieved by

performing grid search over a range of values (from 10−4

to 104) and evaluating the performance of the method on

a held out cross validation set on CIFAR-10 dataset. As

shown in Fig 3, C = 1 achieves the best performance and

was thus selected. In order to select the number of hid-

den nodes for the two layered network, we performed ex-

periments for different combination of number of nodes.

The experimental results on CIFAR-10 dataset for different

number of hidden nodes are summarized in Table 1. Based

upon these results, the number of neurons in the two hid-

den layers is selected as 2048 and 1024. Furthermore, two

conclusions can be drawn from these experimental results:

1) having a significantly large number of hidden nodes only

results in a slight performance drop, and 2) the best perfor-

mance is achieved when the number of hidden nodes in the

second layer is less than the first. Note that these hyper-

parameters (the value of the regularization constant ‘C’ and

the number of neurons in the hidden layers) are consis-

tent across all datasets. Further, experiments performed for

the selection of optimal hyper-parameters (see Table. 1 and

Fig 3) show that the performance of the proposed method

is quite robust and does not degrade much as the values of

these hyper-parameters change.

Configuration Performance

8192− 8192 9.0%
8192− 4096 8.9%
4096− 4096 9.1%
4096− 2048 9.0%
2048− 2048 8.9%
2048− 1024 8.8%
1024− 1024 9.0%

Table 1. Cross validation performance for different numbers of

hidden nodes.

Methods Error(%)

Alex Net[18] 13.0%
Sum-product Networks [9] 16.31%
Multi-colomn Nets [5] 11.21%
Deeply Supervised Nets [20] 9.69%
Probabilistic Maxout Network [35] 11.35%
Maxout-Networks [11] 11.68%
Network in Network [25] 10.41%
Stochastic Pooling [41] 15.13%
Deep Learning + SVM [39] 11.9%

This paper (URN+Softmax) 10.8%
This paper (URN+SVM) 10.4%
This paper (CRN+SVM) 8.8%

Table 2. Performance comparisons on CIFAR-10 dataset.

5.5. Performance Analysis

The experimental results for the task of generic ob-

ject recognition on CIFAR-10 and CIFAR-100 datasets are

given in Table. 2 and 3. The results show that the proposed

method achieves the lowest error rates with 8.8% and 34.4%
on CIFAR-10 and CIFAR-100 datasets respectively.

The experimental performance for different methods in

terms of average classification accuracy for the task of in-

door scene classification on MIT-67 data is given in Table 4.

The results suggest superior performance of the proposed

method compared with existing techniques.

The experimental results for all datasets demonstrate

that the learnt CRNs outperform their conventional uncon-

strained rectifier network (URN) counterparts, with linear

SVM or softmax in the output layer.

Remarks: A recent work [12] has reported significant

progresses on CIFAR-10 and CIFAR-100. The performance

improvement of this work is due to the introduction of frac-

tional max pooling to improve the quality of learnt CNN

features, which can serve as a new baseline CNN architec-

ture for the proposed CRN. The combination of fractional

max-pooling techniques and CRN has potential to further

improve the performance on CIFAR-10 and CIFAR-100.

6. Concluding Remarks
A novel rectifier neural network, termed contractive rec-

tifier network, has been proposed by restricting the hidden

layer transformations to be contraction mappings. Com-

pared with unconstrained rectifier networks, the proposed

network has the advantage, in practical training through lin-

ear SVM in the output layer, to achieve nonlinear max-

imum margin classification with guaranteed larger sepa-

rating margin in the input space than that in the output



Methods Error(%)

Deeply Supervised Nets [20] 34.57%
Network in Network [25] 35.68%
Tree based Priors [36] 36.85%
Probablistic Maxout Network [35] 38.14%
Maxout-Networks [11] 38.57%
Stochastic Pooling [41] 42.51%
Representation Learning [26] 39.2%

This paper (URN+Softmax) 35.8%
This paper (URN+SVM) 35.4%
This paper (CRN+SVM) 34.4%

Table 3. Performance comparisons on CIFAR-100 dataset.

Methods Accuracy(%)

Spatial Pooling Regions [24] 50.1%
VC + VQ [23] 52.3%
CNN-SVM [30] 58.4%
Improved Fisher Vectors [16] 60.8%
Mid Level Representation [8] 64.0%
Multiscale Orderless Pooling [10] 68.9%

This paper (URN+Softmax) 68.6%
This paper (URN+Softmax) 68.5%
This paper (CRN+SVM) 70.2%

Table 4. Performance comparisons on MIT-67 dataset.

Methods Error(%)

Deep learning via embedding [40] 1.5%
Convolutional Deep Belief Nets [21] 0.82%
Deep Learning + SVM [39] 0.87%

This paper (URN+Softmax) 0.86%
This paper (URN+SVM) 0.83%
This paper (CRN+SVM) 0.73%

Table 5. Performance comparisons on MNIST dataset.

layer. Experimental results demonstrate that the proposed

contractive rectifier networks consistently outperform the

conventional rectifier networks in a number of databases,

namely, MNIST for handwritten digit recognition, CIFAR-

10, CIFAR-100 for object classification, and MIT-67 for

scene understanding.
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