
RC25564 (WAT1512-016) December 9, 2015
Computer Science

Research Division
Almaden – Austin – Beijing – Brazil – Cambridge – Dublin – Haifa – India – Kenya – Melbourne – T.J. Watson – Tokyo – Zurich

IBM Research Report

Proceedings of the 9th Advanced Summer School on
Service Oriented Computing

Johanna Barzen1, Rania Khalaf2,
Frank Leymann1, Bernhard Mitschang1, Editors

1University of Stuttgart
Germany

2IBM Cloud
One Rogers Street

Cambridge, MA 02142-1203
USA

	 i	

The 9th Advanced Summer School
on Service-Oriented Computing

June 28 – July 3

Hersonissos, Crete, Greece

The 9th Advanced Summer School on Service-Oriented Computing (SummerSOC’15)
continued a successful series of summer schools that started in 2007, regularly attracting
world-class experts in Service-Oriented Computing to present state-of-the-art research during
a week-long program organized in four thematic tracks: Formal methods for SOC; Computing
in the Clouds; Elasticity in the Cloud; and Emerging Topics. The advanced summer school is
regularly attended by top researchers from academia and industry as well as by graduate
students from programs with international acclaim, such as the Erasmus Mundus International
Master in Service Engineering.

During the morning sessions at SummerSOC renowned researchers gave invited tutorials on
subjects from the themes mentioned above. The afternoon sessions were dedicated to original
research contributions in these areas: these contributions have been submitted in advance as
papers that had been peer-reviewed. Accepted papers were presented during SummerSOC.
These papers have been edited and integrated into the volume included in this Technical
Report. Furthermore, PhD students had been invited to present the progress on their theses and
discuss it during poster sessions; some of the extended abstracts of these posters are included
in this Technical Report, too.

Johanna Barzen, Rania Khalaf, Frank Leymann, Bernhard Mitschang
Editors

	 ii	

Content

Incremental Data Transformations on Wide-Column Stores with NotaQL 1
J. Schildgen and S. Dessloch

A Service-oriented Approach for Improving Quality of Health Care Transitions 16
M. Bitsaki and Y. Viniotis

C2C: An Automated Deployment Framework for Distributed Applications on
Multi-Clouds .. 23
F. Karniavoura, A. Papaioannou and K. Magoutis

The TPL Mission: We Bring Customized Cloud Technology to Your Private
Data Centers .. 30
T. Waizenegger, F. Wagner, C. Mega and B. Mitschang

Architectural Refactoring for the Cloud: a Decision-Centric View on Cloud Migration
(Extended Abstract) .. 37
O. Zimmermann

“Let’s migrate our enterprise application to BigData technology in the cloud”
- What does that mean in practice? ... 39
A. Toenne

Cloudiator: A Cross-Cloud, Multi-Tenant Deployment and Runtime Engine 53
J. Domaschka, D. Baur, D. Seybold and F. Griesinger

Design and Implementation Issues of a Secure Cloud-Based Health Data Management
System .. 68
F. Steimle, M. Wieland, B. Mitschang, S. Wagner and F. Leymann

A PaaSage to Multi-Site Security for Clouds .. 83
T. Kirkham, K. Kritikos, B. Kryza, P. Massonet and F. Vanraes

An Attribute Based Access Control Model for RESTful Services 98
M. Hüffmeyer and U. Schreier

SitRS - A Situation Recognition Service based on Modeling and Executing Situation
Templates .. 113
P. Hirmer, M.Wieland, H. Schwarz, B. Mitschang, U. Breitenbücher and
F. Leymann

	 iii	

Detecting Frequently Recurring Structures in BPMN 2.0 Process Models 128
M. Skouradaki and F. Leymann

A Cooperative Game in Urban Mobility Systems .. 141
M. Bitsaki, V. Andrikopoulos and A. Psycharaki

Poster Session: Extended Abstracts

Efficient Attribute Based Access Control ... 147
M. Hüffmeyer

Low Latency Cloud Data Management through Consistent Caching and
Polyglot Persistence ... 149
F. Gessert

An Architecture for an Internet of Things Platform for Secure Storage and
Analysis of Sensor Data .. 151
F. Steimle

Flexible Modeling and Execution of Data Integration Flows .. 153
P. Hirmer

Secure Data Erasure in Untrusted Storage Systems .. 155
T. Waizenegger

Incremental Data Transformations on

Wide-Column Stores with NotaQL

Johannes Schildgen and Stefan Deßloch

University of Kaiserslautern, Germany
{schildgen,dessloch}@cs.uni-kl.de

Abstract. Wide-column stores di↵er from relational databases in terms
of their data model, schema flexibility and query method. NotaQL is
a transformation language for wide-column stores that is powerful and
easy to use. Complex transformations are expressible in only two or three
short lines of code, and can be executed in an incremental fashion. In this
paper, we present a NotaQL transformation platform that makes each
table transformation self-maintainable. This means, a transformation can
reuse its former result and only needs to analyze the delta since the last
computation.

Keywords: NoSQL, transformation, language, wide-column stores, in-
cremental, cloud middleware, analytics

1 Motivation

ROW ID information children
born cmpny salary Susi John

Peter 1967 IBM e50000 e5 e10
born cmpny salary Susi John

Kate 1968 IBM e60000 e20 e0
born school

Susi 1989 Eton
born school

John 1991 Eton

Fig. 1. Person table with a children graph and
amounts of pocket money

The idea of storing data records
in a column-wise instead of row-
wise fashion is older than thirty
years [8]. It enables a good
compression and fast aggrega-
tion. Google BigTable [7], HBase
[3] and Cassandra [2]—which are
the most prominent examples for
wide-column stores in the NoSQL
era—di↵er from classical column-
oriented databases. They are dis-
tributed systems and add new con-
cepts like column families. When we take a look at HBase, a table is only defined
by a table name and its column families. The columns are not known at table-
creation time, so every Put operation can set arbitrary columns. This enables
new possibilities that are not possible in relational database systems, for exam-
ple storing heterogeneous rows. The table in Figure 1 has two column families.
The first holds some information of a person. Note that di↵erent rows can have
di↵erent columns in this column family. The second column family models a
graph structure. Each column can be seen as a key-value pair where the key is

1

2

the name of a person’s child and the value is the amount of pocket money they
receive.

It stands to reason that SQL is not well-suited for querying these kind of
databases. Di↵erent from relational databases, the columns are not known in
advance and column names can be seen as part of the data, not metadata. To
make complex queries and transformations on HBase, a simple CRUD (Create,
Read, Update, Delete) API or MapReduce [9] can be used. So, if a user wants
to calculate the average salary per company, one has to develop a Java program
that scans the whole table, skips rows where the salary column doesn’t exist,
collects all values per company and in the end, compute the average value per
company. With the usage of MapReduce, this task can be divided into a Map
and Reduce function and a framework handles the whole computation over a
large cluster of compute nodes.

In the given example table, there is a row-id to identify each row. Every
HBase table has such an identifier, and based on this, rows are distributed in
the cluster. There always is an index on the row-id, but other secondary indexes
are not supported. That is why many transformations need to read the whole
data. These long-running transformations, which are often executed periodically
(e.g. once per day), can be accelerated by executing them in an incremental
fashion. With this, a transformation only needs to read the result from the
former run as well as the changes in the input to compute the new result. To
build an incremental MapReduce job, the following things have to be developed
by hand: First, an input format that reads both the former result and the changes
since the former computation. Second, a component that distinguishes between
insertions, deletions, updates and a former result. And third, an output format
that updates the rows in the output table.

We developed the language NotaQL to define incremental transformations on
wide-column stores. In Section 2, we show that this language is easy to use and
powerful. Projection, Selection, Aggregation as well as complex graph and text
algorithms can be expressed in just two or three short lines of code. NotaQL is
well-suited for schema-flexible tables and allows to define transformations from
metadata into data level and vice versa. In Section 3, we present the challenges
of an incremental computation and how we made NotaQL transformations self-
maintainable. After the presentation of performance results in Section 4, there
is a discussion about related work in Section 5 and a conclusion in Section 6.

2 NotaQL Transformations

In this section, we give a brief overview of the NotaQL language. As our focus
is on the implementation and incremental maintenance of query results, a more
thorough discussion is beyond the scope of this paper, but can be found in [24].

2.1 The Language NotaQL

Apache HBase—and most other wide-columns stores as well—was designed for
simple scalability. An easy-to-use query language or a query optimizer is not

2

3

in the scope of this project. There are frameworks that can be used on top of
HBase to query and transform tables (see Section 5), but they are either based
on SQL—which is not well-suited for wide-column stores—, or they introduce
a new complex language. So, for relational-like tasks like Projection, Selection,
Aggregations and Joins, an SQL-based framework can be used, and for more
complex tasks, one either has to develop a complex transformation program by
hand, using MapReduce or another framework.

We analyzed dozens of typical MapReduce jobs for transformations on wide-
column stores and found out that they all share a common pattern. With ap-
proximately one hundred lines of code in Map and Reduce functions, a user
basically defines only one thing: How to map rows from an input table to an
output table. With the transformation language NotaQL, one can simply define
these mappings in two or three short lines of code:

IN-FILTER: ..., (optional) Which rows to filter?

OUT._r <- ..., How to compute the new row-id for the output rows?

OUT.xyz <- ...; How to compute the value of a column called xyz?

The execution of a NotaQL script works as follows: Each row which satis-
fies the row predicate given in the optional IN-FILTER clause will be split into
its cells. Each of these which satisfies an optional cell predicate can produce
new output cells. If one output cell consists of multiple values, these values are
grouped and aggregated to become the final value of that cell.

Susi
Peter €5

Susi
Peter €5

Input Cell Output Cell

OUT. r <- IN. r,
OUT.$(IN. c) <- IN. v

Fig. 2. Table copy with NotaQL

Instead of a fixed column name (xyz), one
can make use of a $-expression to derive the
column name from other values. To introduce
the syntax, Figure 2 shows the simple example
of copying a whole HBase table. The row-id
of the output row is set to the input row-id.
And for each cell in the input, a new cell is
produced that has the same column name and the same value.

In the given example, the variables IN._r, IN._c and IN._v were used to
access the row-id, column name and value of an input cell. A table can be seen
as a large set of input cells and a NotaQL script can be seen as a definition of
how to construct an output cell based on an input cell.

IN-FILTER: born>1950,
OUT._r <- IN._r,
OUT.salary <- IN.salary,
OUT.cmpny <- IN.cmpny

Fig. 3. Row predicate

OUT._r <- IN._r,
OUT.$(IN._c?(@=’e5’)) <- IN._v

Fig. 4. Cell predicate

Often, not the full input should be read,
but only those rows that satisfy a predicate.
Figure 3 shows the usage of a row predicate for
performing a selection using an IN-FILTER.
Only rows where a column born is present and
its value is greater than 1950 are read, all oth-
ers are skipped. Furthermore in this example,
a projection is made by not mapping all cells,
but only those with the column name salary
and cmpny. Figure 4 shows how one can use a cell predicate in NotaQL. It starts
with a ? and it can be placed after IN._c or IN._v. The cell is only considered

3

4

when the predicate is evaluated to true. The @ symbol can be used to access a
value if the column name is unknown. So, the transformation in Figure 4 copies
all cells from the input table into the output table which hold the value ’e5’.
These value-based projections are not possible in SQL.

pm_sum
Peter €15

Susi
Peter €5

Input Cell Output Cell

SUM()

OUT. r <- IN. r,
OUT.pm sum <- SUM(IN.children: v)

Fig. 5. Aggregation: SUM

sal_avg
IBM €55000

cmpny
Peter IBM

Input Cell Output Cell

AVG(salary)
cmpny

OUT. r <- IN.cmpny,
OUT.sal avg <- AVG(IN.salary)

Fig. 6. Aggregation: AVG

In the transformations above, the value for
an output cell (i.e. an (OUT. r, OUT. c) pair)
was unique. If more than one value is mapped
to the same cell, an aggregation function must
be used. The transformation in Figure 5 com-
putes a horizontal aggregation over all values
in the column family children. So the result
is a table with one column pm_sum that holds
the sum of all pocket-money amounts for the
person with the given row-id.

Vertical aggregations—which are well-
known from SQL—aggregate the values of a
given column over multiple rows in the input.
Figure 6 shows how to compute the average
salary per company. As the output row-id is a company name and the output
column is fixed (sal_avg), there can be multiple values in each cell. The function
AVG computes the average of these values. Other aggregate functions are SUM,

MIN, MAX, COUNT and IMPLODE (for text concatenation).
Figure 7 shows a simplified BNF of NotaQL. Example scripts for more trans-

formations as well as for graph and text-analysis algorithms can be found in
Figure 8.

hNotaQLi |= [IN-FILTER: hpredicatei,]hrowspeci, hcellspeci(, hcellspeci) ⇤ [;]
hrowspeci |= OUT. r <- hvdatai
hcellspeci |= OUT.(hcolnamei | $(hinputi)) <- (hvdatai | haggfuni(hvdatai)

hinputi |= (IN. r | IN.[hcolfamilyi :](c | v) | IN.hcolnamei)[?(hpredicatei)]
hvdatai |= hinputi | hconsti | hvdatai(+ | � | ⇤ | /)hvdatai
haggfuni |= COUNT | SUM | MIN | MAX | AVG

hconsti |= ’(A . . . Z | a . . . z | 0 . . . 9) + ’ | (0 . . . 9) +

hcolnamei |= [hcolfamilyi :](A . . . Z | a . . . z | 0 . . . 9) +

hcolfamilyi |= (A . . . Z | a . . . z | 0 . . . 9) +

hpredicatei |= (hcolnamei | @ | col count([hcolfamilyi]))[hopi(hcolnamei | hconsti]
| (NOT | !)hpredicatei | hpredicatei(AND | OR)hpredicatei

hopi |= = | ! = | < | <= | > | >=

Fig. 7. NotaQL Language Definition (simplified)

4

5

Transformation NotaQL SQL

Table copy OUT. r <- IN. r,
OUT.$(IN. c) <- IN. v

INSERT INTO out
SELECT * FROM in

Projection, Selection IN-FILTER: born > 1950,
OUT. r <- IN. r,
OUT.salary <- IN.salary

SELECT salary FROM in
WHERE born > 1950

Drop Projection OUT. r <- IN. r,
OUT.$(IN. c?(!salary))<- IN. v

—not possible—
(only with FISQL [28])

Horizontal
Aggregation

OUT. r <- IN. r,
OUT.sum <- SUM(IN. v)

—not possible—
(unknown column names)

Vertical
Aggregation

OUT. r <- IN.cmpny,
OUT.a <- AVG(salary)

SELECT cmpny,AVG(salary)
FROM in GROUP BY cmpny

Metadata $ Data e.g. Reverse Web-Link Graph:
OUT. r <- IN. c,
OUT.$(IN. r) <- IN. v

—not possible—
(unknown column names)

PageRank OUT. r <- IN.edges: c,
OUT.alg:PR <-
SUM(alg:PR/COL COUNT(’edges’)

—not possible—
(”number of columns being not

null” is impossible to express)

Breath-First Search
to compute distances
in a graph

IN-FILTER: dist,
OUT. r <- IN.edges: c,
OUT.alg:dist <-
MIN(alg:dist+1)

—hard—
(recursion needed)

Word Count OUT. r <- IN. v.split(’ ’),
OUT.count <- COUNT()

—hard—
(string table functions needed)

Term Index OUT. r <- IN. v.split(’ ’),
OUT.$(IN. r) <- COUNT()

—hard—
(string table functions needed)

TF-IDF OUT. r <- IN. r,
OUT.$(IN. v.split(’ ’)) <-
COUNT();
OUT. r <- IN. r,
OUT.max <- MAX(IN. v);
OUT. r <- IN. c?(!max),
OUT.$(IN. r) <- IN. v / max

—hard—
(string table functions needed)

Fig. 8. Some NotaQL transformation scripts

2.2 A MapReduce-based Execution Platform for NotaQL

We decided to use the Hadoop framework for our NotaQL execution platform
because of its scalability, failure handling, and its support for input and output
formats for HBase. Furthermore, a NotaQL script can easily be divided into one
Map and one Reduce function. Thus, every transformation can be executed in
one single MapReduce job.

Figure 9 shows the NotaQL Map function. The Map input is one row from
the input table. This row is skipped when a row predicate is not met. Otherwise,
each cell in the row will produce intermediate-key-value pairs if the given cell
predicate is satisfied. The map-output key consists of both the row-id of the
output cell and its column name. Figure 10 shows that in the Reduce function,

5

6

all values for an output cell are aggregated using the given aggregation function.
If there is no such function, a cell value has to be unique. Otherwise, an exception
will be thrown.

map(rowId, row)

row violates
row pred.?

has more
columns?

no

col. violates
cell pred.?

yes

map IN.{_r,_c,_v}, fetched columns
and constants to r, c and v

no

emit((r, c), v)

no

yes

Stop

yes

Fig. 9. NotaQL Map function

reduce((r,c), {v})

put(r, c, aggregateAll(v))

Stop

Fig. 10. NotaQL Reduce function

One alternative approach is the usage of
only the row-id as map-output key. In this
case, each Reduce function is responsible for
a whole row and it has to aggregate all val-
ues for each distinct column qualifier sepa-
rately. While this requires the Reduce func-
tion to group the values for each column, this
approach reduces the data transfer between
Map and Reduce nodes compared to the cell–
wise-grouping approach because each row-id
arrives only at one Reduce function. Further-
more, in the Reduce phase only complete rows
with all their columns are written to the out-
put table. This is more e�cient than cell-wise
writing. Nevertheless, we currently did not im-
plement the cell-wise writing because the in-
cremental execution is more easily compre-
hensible when cell grouping is done by the
Hadoop framework and not by the NotaQL
Reduce function.

A Combine function can accelerate the
computation by executing the aggregate func-
tion of the subset of values for an output cell
on a Mapper node. Then, the Reduce func-
tion only needs to complete the aggregation.
For most functions, the Combiner can be used
because of the associativity of the aggregate operation. This means that cell val-
ues form a Monoid. One exception is the AVG function. For example, one Map-
per node produces ten Map-output values and computes the average with the
Combine function. Another Mapper node produces only one value. The correct
average is the sum of the eleven values divided by eleven. Instead, the Reduce
function divides the sum of two already computed average values by two. To
solve this problem, a data type that stores the average value as a fraction of sum
and count can be used.

3 Self-Maintainable Transformations

One goal of NotaQL is the support for self-maintainability. When executing a
query periodically—for example once per hour—the changes since the previous
computation can be aggregated on the former result to avoid a full recompu-
tation. Nearly every block in figures 9 and 10 leads to challenges regarding an

6

7

incremental computation. In the following, we list the problems and show how
to solve them.

map(rowId, row)

A self-maintainable MapReduce job needs a special input format with sup-
port of change-data capture (CDC). Di↵erent from the non-incremental execu-
tion, the Map input is not the complete input table, but only the rows that
changed. In HBase, each cell is annotated by a timestamp of when it was writ-
ten. Our solution to support change-data capture in a wide-column store is a
timestamp-based approach. Only those rows which were added, or those which
got new columns, or those whose column values changed are used as map input.
These cells are annotated by a flag inserted. If a column value changed since the
last computation, an additional map-input cell with a deleted flag is produced
that holds the former value. HBase provides a Delete option to delete a complete
row from a table. As it is actually deleted, it does not appear in a table scan
and the former value is lost. So, instead of deleting a row, an application has to
set each column to null (an empty byte array). Then, the NotaQL framework
flags each cell with a deleted flag. Di↵erent from an update, no inserted cell is
produced because the new value is null.

Our approach uses a so-called Overwrite Installation [16, 15, 25] (see Figure
11) in which the full former result is also provided as input for the Map function.

Map Reduce

Δ

Former
Result

Fig. 11. Incremental MapReduce - Overwrite Installation

Map ReduceΔ +=

Fig. 12. Incremental MapReduce - Incremental Installation

Example: Peter’s company changes from IBM to SAP. The Map function
will be called n + 1 times. Once for each of the n rows in the former result
(for example the salary sums per company) and once with the row Peter. The

7

8

latter one consists of one inserted cell (Peter, cmpny, SAP) and one deleted
cell (Peter, cmpny, IBM).

Figure 12 shows an alternative to the Overwrite Installation, called the In-
crement Installation[16, 15, 25]. Here, the input is only the delta. The results of
a computation are written into the output table in an incrementing way. This
means, if the aggregation function SUM is used and the computed value of an
output cell (r,c) is 5, the current value of the cell (r,c) has to be read, in-
creased by 5 and written again. Experiments in [25] showed that this approach
is faster for a small number of changes in the base data. If the changes are
high, the Overwrite Installation is faster because it writes the output sequen-
tially, not randomly. We decided not to use the Increment Installation, because
it only works for NotaQL scripts that aggregate values either with a COUNT
or SUM function. Simple table transformations without an aggregation, as well
as computations of averages, minimums and maximums are only possible in
the Overwrite-Installation approach. In the future, the execution framework can
support both approaches and choose the Increment Installation if COUNT or
SUM is used, and if the number changes in the base data are below a specific
threshold (e.g. 1%).

row violates
row pred.?

In the non-incremental case, a row will be skipped as if it would not exist
when it violates the row predicate. But in the incremental case, it can happen
that the row predicate was satisfied on the former execution and—due to a
change—now it is violated. When Peter’s company changes from IBM to SAP,
a query execution ”Who works at IBM?” cannot skip Peter, but it has to delete
him from the former result.

Deletions and changes in base data, and the violation of predicates can lead
to changes in the output. This problem is well-known in the area of incremental
MapReduce and can be solved by letting the Map output values form an Abelian
group [16, 15]. This means, each Map-output value v has an inverse element v⇤
that compensates the e↵ect of an aggregation: v � v⇤ = e (e: identity element).
The incremental Map function for supporting self-maintainable NotaQL queries
inverts map-output values by setting a mode to them. There are four possible
modes: inserted, deleted, preserved, oldresult.

put(r, c, aggregateAll(v))

In the Reducer, each aggregation function treats values depending on their
mode. For example, the sum function multiplies each deleted value by minus
one. So, when there are three Reduce input values, an inserted 5, a deleted 2,
and an old result 115, the new sum is 5 + (�1) · 2 + 115 = 118.

8

9

value v is... SUM COUNT AVG=sum/count

...inserted res+=v res++ sum+=v; count++

...deleted res-=v res-- sum-=v; count--

...preserved - - -

...an old result res+=v res+=v sum+=v.sum;
count+=v.count

Fig. 13. Treating value modes in aggregate functions

Table 13 shows that for calculating an average incrementally, a special data
type is needed to store the average as a fraction sum

count

. This type—and for the
functions SUM and COUNT the real numbers—forms an Abelian group under
the given aggregation function. In contrast to that, the functions MIN and MAX
only form a monoid. Here, there is no inverse element and so it is not possible
to support deletions when these functions are used. When e60000 is the highest
salary value for people working at IBM and the salary of the person with this
value decreases, it is not possible to derive the new maximum without caching
all the other values.

map IN.{_r,_c,_v}, fetched columns
and constants to r,c and v

In typical timestamp-based change–data-capture approaches on wide-column
stores[13], unchanged cells are not part of the input. But, depending on the
NotaQL script, unchanged cells have to be read as well: First, to check row and
column predicates which are defined on those unchanged columns and second, to
fetch values of unchanged columns. When Peter’s salary did not change, but his
company a�liation does, and the query is ”salary sum per company”, the result
of his new and his old company has to be adjusted. So, our change–data-capture
implementation skips all rows without any column changes and processes the
other rows with all important columns. As mentioned before, each cell will be
flagged and now we introduce a new flag preserved for unchanged columns only
for predicate checks and fetch operations.

4 Performance

We performed experiments on a six-node cluster (Xeon Quadcore CPU at 2.53GHz,
4GB RAM, 1TB SATA-II disk, Gigabit Ethernet) running Hadoop and HBase.
Therefore, we executed two modified TPC-H queries plus one graph algorithm,
and we performed the following experiments on each of those:

1. Measure the overhead of a NotaQL transformation versus a natively coded
Hadoop job;

9

10

2. Compare a full recomputation with an incremental computation using a
primitive timestamp-based change–data-capture approach;

3. Compare the results of 2. with an optimal change–data-capture approach to
show the potential of the incremental computation.

The first experiment was to compare the runtimes between MapReduce jobs
which are natively coded in Hadoop and NotaQL jobs. A NotaQL transformation
cannot be faster than an optimally coded MapReduce job. But in our relational
and graph examples, the runtimes have not been slower, too (see Figure 16).
That means, writing a three-line NotaQL script instead of coding a complex
Hadoop job is simpler and this job is executed without a noticable overhead.

Figure 15 shows our three benchmark transformations, two modified TPC-H
[27] queries and one graph algorithm.

Transformation NotaQL SQL

TPC-H 1 OUT. r <- IN.L RETURNFLAG,
OUT.sum <- SUM(IN.L QUANTITY)

SELECT L RETURNFLAG,
SUM(L QUANTITY) FROM
LINEITEM GROUP BY
L RETURNFLAG

TPC-H 6 IN-FILTER: L QUANTITY < 24,
OUT. r <- ’all’,
OUT.sum <- SUM(L EXTENDEDPRICE)

SELECT
SUM(L EXTENDEDPRICE)
FROM LINEITEM WHERE
L QUANTITY < 24

Reverse
Web-Link Graph

OUT. r <- IN. c,
OUT.$(IN. r) <- IN. v

—not possible—

Fig. 14. Transformation scripts used in our experiments

The experiments show that incremental queries are faster than a full recom-
putation because the former result can be used. In our test dataset between two
computations 40 MB (0.1%) data changed. The non-incremental TPCH query 1
lasts 94 minutes, the incremental one is 13 minutes faster. The most expensive
part of our incremental computation was the change-data capture (CDC). For
our experiments, we used a simple timestamp-based approach. But as HBase
does not provide e�cient time-range scans, with other approaches and in other
database systems, there is a lot more optimization potential. This can be seen
from the black bar in the chart. The input of that job were three HBase tables:
one for inserted, one for deleted rows and one with old results. In our tests, the
first two tables were filled by doing change-data capture manually. But those
tables can be filled by the application which writes the base data or with the
use of database triggers as well. Then there is a small overhead for every write
in the data, but queries and transformations can be executed very quickly.

Another NotaQL job transforms a graph. For every page in the German
Wikipedia, a row in the input table exists with its title as row-id. For each
outgoing link, there is a column with the title of the linked page as column name.

10

11

Fig. 15. Runtimes of Hadoop and NotaQL jobs (in minutes)—simplified TPCH
queries7 on 40GB lineitem table, graph algorithm on the full German Wikipedia link
graph.

Our NotaQL job reverts this graph structure by computing the incoming links
for each page. In our experiment, the manual and timestamp-based change-data
capture are about the same speed because the most e↵ort is reading the complete
old result. Di↵erent from the TPCH queries, in this algorithm no aggregation
and data compaction is performed.

5 Related Work

As there is no built-in query language in HBase, di↵erent approaches exist that
allow access and transformations on HBase tables. Some of them were developed
to bring back SQL into the NoSQL database. Apache Hive [26, 12], Phoenix [4]
and Presto [22] and PostgreSQL Foreign Data Wrappers [10] work all in a similar
way. First, a user has to define a mapping between an existing HBase table and
a new SQL table using an CREATE TABLE statement. Thus, the columns of the
table have to be known in advance. After that, one can use SQL to query, modify
and transform data in the underlying HBase table. These approaches are easy
to use and the user does not need to learn a new language. JDBC can be used
on top of these frameworks to develop applications that read and write HBase.
These approaches are good for relational queries with filters and joins. But they
rely on a fixed schema and cannot transfer metadata into data and vice versa.
Horizontal aggregations over multiple columns as well as value-based column
filters are not possible in SQL, and therefore not possible in these approaches.

Google BigQuery [23] is the publicly-available version of Dremel [18]. The
authors recommend to use MapReduce to perform data transformations and use

11

12

BigQuery to access and analyze the results in the generated output. In BigQuery,
the language SQL is used. So, it can be seen as similar to the approaches in the
previous paragraph. When using BigQuery on an output table of a NotaQL
transformation, one can benefit from BigQuery’s high performance and from
NotaQL’s simplicity and self-maintainability.

Other languages for wide-column stores are more powerful but less user-
friendly. With MapReduce [9], arbitrary complex transformations can be defined.
But often, a hundred lines of code need to be written. There are frameworks
like Incoop [5] and Marimba [25] that simplify the development of incremental
MapReduce jobs. They detect changes in the input data and update the output
in an incremental fashion. A query language named Jaspersoft HBase QL [14] can
be used to query data in Java applications via a JSON API. Here, more complex
queries are possible. Di↵erent than SQL, it is well-suited for wide-column stores,
but harder to use. Even a simple query with a single column-value filter needs
about ten lines of code. In NotaQL it is only three short lines.

Pig Latin [20] is another language that allows complex transformations over
di↵erent data sources. Pig scripts consist of multiple statements and are therefore
closer to a programming language than to a query language. Nova [19] is a
workflow manager for Pig programs and allows an incremental execution of those.
Nova keeps track of deltas in the input datasets and triggers the execution of
Pig programs either when new data arrives, when a task changes its state, or
time-based. Currently, there is no support for wide-column stores. The only
supported input format is the Hadoop file system HDFS. Di↵erent from our
approach, a user has to make their workflows self-maintainable. In NotaQL,
every transformation can be executed in an incremental way. Not the user, but
the NotaQL transformation platform cares about change-data capture and the
recomputation of aggregated values.

Based on the bag relational algebra, DBToaster [1] translates SQL view def-
initions on relational database systems into triggers. After an insert, delete or
update operation in a base table, a trigger fires an update in the material-
ized view. This trigger-based approach is similar to NotaQL’s timestamp-based
change-data capture for self-maintainable views and avoids full recomputations.
But, NotaQL updates the target table batch-wise, DBToaster on every single
change. DBToaster supports higher-order incremental view maintenance, so it
does not only capture the delta but also the delta of the delta. This leads to a
high performance for queries that are based on multiple base tables. As NotaQL
transformations have only one input table, first-order deltas are su�cient here.

Sawzall [21] is a programming language used by Google to define log analytics
on large CSV files. The programs are executed as a MapReduce job. Our NotaQL
language is partially inspired by Sawzall, but Sawzall can only process files, not
tables.

With Clio [11], one can perform a schema mapping from di↵erent source
schemata into a target schema using a graphical interface. Clio creates views in
a semi-automatic way which can be used to access data from all sources. This
virtual integration di↵ers from our approach because NotaQL creates material-

12

13

ized views. Clio can only map metadata to metadata and data to data. There is
no possibility to translate attribute names into values and vice versa. There are
language extensions for SQL to allow these translations on relational databases,
like SchemaSQL [17] and FISQL [28]. In [6], a copy-and-paste model is presented
to load data from di↵erent sources into a curated database. Curated databases
are similar to data warehouses but here, it is allowed to modify data in the
target system. A tree-based model is used to support operations from SQL and
XQuery as well as copying whole subtrees. The language presented in that paper
also contains provenance functions to find out by which transaction a node was
created, modified or copied. Although the language is very powerful, it does not
support aggregations, unions and duplicate eliminations because in these cases,
the origin of a value is not uniquely defined.

6 Conclusion

In this paper, we presented NotaQL, a transformation language for wide-column
stores. The strengths of NotaQL are its expressive power and simplicity. Typical
data processing tasks with filters and aggregations can be defined in just two
or three short lines of code. Our language is well-suited for NoSQL databases
that have no fixed schema. Metadata can be transformed into data and vice
versa. This allows the definition of complex log, text, and graph algorithms. We
showed that NotaQL transformations can be executed within the MapReduce
framework in an incremental fashion. The fact that NotaQL transformation are
self-maintainable allows incremental updates whenever there are changes in the
base data. Our experiments showed that this incremental computations of No-
taQL transformation scripts have a high potential for a much faster execution
compared to a full recomputation.

References

1. Yanif Ahmad, Oliver Kennedy, Christoph Koch, and Milos Nikolic. Dbtoaster:
Higher-order delta processing for dynamic, frequently fresh views. Proceedings of
the VLDB Endowment, 5(10):968–979, 2012.

2. Apache Cassandra. http://cassandra.apache.org/.
3. Apache HBase. http://hbase.apache.org/.
4. Apache Phoenix - ”We put the SQL back to NoSQL”.

http://phoenix.incubator.apache.org/.
5. Pramod Bhatotia, Alexander Wieder, Rodrigo Rodrigues, Umut A. Acar, and

Rafael Pasquin. Incoop: Mapreduce for incremental computations. In Proceed-
ings of the 2nd ACM Symposium on Cloud Computing, SOCC ’11, pages 7:1–7:14,
New York, NY, USA, 2011. ACM.

6. Peter Buneman and James Cheney. A copy-and-paste model for provenance in
curated databases. Notes, 123:6512, 2005.

7. Fay Chang, Je↵rey Dean, Sanjay Ghemawat, Wilson C Hsieh, Deborah A Wallach,
Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E Gruber. Bigtable: A
distributed storage system for structured data. ACM Transactions on Computer
Systems (TOCS), 26(2):4, 2008.

13

14

8. George P Copeland and Setrag N Khoshafian. A decomposition storage model. In
ACM SIGMOD Record, volume 14, pages 268–279. ACM, 1985.

9. Je↵rey Dean and Sanjay Ghemawat. MapReduce: Simplified Data Processing on
Large Clusters. OSDI, pages 137–150, 2004.

10. Foreign data wrappers - PostgreSQL wiki.
https://wiki.postgresql.org/wiki/Foreign_data_wrappers.

11. Mauricio A Hernández, Renée J Miller, and Laura M Haas. Clio: A semi-automatic
tool for schema mapping. ACM SIGMOD Record, 30(2):607, 2001.

12. Hive HBase Integration.
https://cwiki.apache.org/confluence/display/Hive/HBaseIntegration.

13. Yong Hu and Stefan Dessloch. Extracting Deltas from Column Oriented NoSQL
Databases for Di↵erent Incremental Applications and Diverse Data Targets. In
Advances in Databases and Information Systems, pages 372–387. Springer Berlin
Heidelberg, 2013.

14. Jaspersoft HBase Query Language.
http://community.jaspersoft.com/wiki/jaspersoft-hbase-query-language.

15. Thomas Jörg, Roya Parvizi, Hu Yong, and Stefan Dessloch. Can MapReduce learn
form Materialized Views? In LADIS 2011, pages 1 – 5, September 2011.

16. Thomas Jörg, Roya Parvizi, Hu Yong, and Stefan Dessloch. Incremental Recom-
putations in MapReduce. In CloudDB 2011, October 2011.

17. Laks VS Lakshmanan, Fereidoon Sadri, and Iyer N Subramanian. SchemaSQL-
a language for interoperability in relational multi-database systems. In VLDB,
volume 96, pages 239–250, 1996.

18. Sergey Melnik, Andrey Gubarev, Jing Jing Long, Geo↵rey Romer, Shiva Shivaku-
mar, Matt Tolton, and Theo Vassilakis. Dremel: interactive analysis of web-scale
datasets. Communications of the ACM, 54(6):114–123, 2011.

19. Christopher Olston, Greg Chiou, Laukik Chitnis, Francis Liu, Yiping Han, Mattias
Larsson, Andreas Neumann, Vellanki BN Rao, Vijayanand Sankarasubramanian,
Siddharth Seth, et al. Nova: continuous pig/hadoop workflows. In Proceedings of
the 2011 ACM SIGMOD International Conference on Management of data, pages
1081–1090. ACM, 2011.

20. Christopher Olston, Benjamin Reed, Utkarsh Srivastava, Ravi Kumar, and Andrew
Tomkins. Pig latin: a not-so-foreign language for data processing. In Proceedings of
the 2008 ACM SIGMOD international conference on Management of data, pages
1099–1110. ACM, 2008.

21. Rob Pike, Sean Dorward, Robert Griesemer, and Sean Quinlan. Interpreting the
data: Parallel analysis with Sawzall. Scientific Programming, 13(4):277–298, 2005.

22. Presto - Distributed SQL Query Engine for Big Data.
http://prestodb.io/.

23. Kazunori Sato. An inside look at google bigquery. White paper, URL: https:
// cloud. google. com/ files/ BigQueryTechnicalWP. pdf , 2012.

24. Johannes Schildgen and Stefan Deßloch. NotaQL Is Not a Query Language! It’s for
Data Transformation on Wide-Column Stores. In British International Conference
on Databases - BICOD 2015, 2015.

25. Johannes Schildgen, Thomas Jörg, Manuel Ho↵mann, and Stefan Deßloch.
Marimba: A framework for making mapreduce jobs incremental. In 2014 IEEE
International Congress on Big Data. IEEE, 2014.

26. Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad Chakka,
Suresh Anthony, Hao Liu, Pete Wycko↵, and Raghotham Murthy. Hive: a ware-
housing solution over a map-reduce framework. Proceedings of the VLDB Endow-
ment, 2(2):1626–1629, 2009.

14

15

27. TPC-H (ad-hoc, decision support) benchmark.
http://www.tpc.org/tpch/.

28. Catharine MWyss and Edward L Robertson. Relational languages for metadata in-
tegration. ACM Transactions on Database Systems (TODS), 30(2):624–660, 2005.

15

A Service-oriented Approach for Improving Quality of
Health Care Transitions

Marina Bitsaki1, Yannis Viniotis2,

1 Computer Science Department, University of Crete, Greece
bitsaki@tsl.gr

2 Department of Electrical and Computer Engineering, North Carolina State University, North
Carolina

candice@ncsu.edu

Abstract. Current studies show that patients' readmission rate in hospital can be
significantly reduced by providing transition of care services. Offering services
supported by information technology may help to address the gaps in communi-
cation with patients and quality of patients’ transition from the hospital to an-
other healthcare setting. In this paper, we propose and analyze a service system
for managing patient transitions and investigate ways to improve its perfor-
mance in a cost-effective way.

Keywords: Care transition • e-health services • matching problem

1 Introduction

Hospital readmission rates are frequently used as a measure to evaluate the perfor-
mance of healthcare organizations. In a recent study [1], it was found that almost one
fifth of the Medicare beneficiaries in the United States who are discharged from a
hospital are re-hospitalized within 30 days, and 34% are re-hospitalized within 90
days. Inadequate health literacy, unrecognized cognitive impairment, severity of ill-
ness, lower quality of care in the initial admission are some of the factors that con-
tribute to re-hospitalization [2], [3]. Current studies show that patients' readmission
rate in hospital can be significantly reduced by providing transition of care services
based on community support programs, patients’ training, medication reconciliation,
coordination across care settings and others to improve health outcomes and achieve
cost reductions [4], [5], [6] .

In this paper, we propose a novel approach for managing patient transitions and in-
vestigate ways to improve its performance in a cost-effective way using a technology-
based system that provides a standardized communication and information exchange
between healthcare settings. We define and analyze a service system that models the
interactions between healthcare systems, patients, insurance companies, engineers
supporting technology to facilitate the transition of patients. The main objective of the
proposed approach is to improve the performance of the service system in terms of

16

cost of care, patient satisfaction, and readmission rate. In this paper, we deal with the
problem of minimizing the overall cost incurred by a transition between two health
care facilities provided that patients’ preferences and economic constraints are satis-
fied. The remainder of the paper is structured as follows: in Section 2, we define the
service network and present the research objectives. In Section 3, we provide the
mathematical framework to the problem defining the total cost and the various con-
straints facing the transferring and the receiving care facilities. In Section 4, we pro-
vide concluding remarks and steps for future work.

2 Medical Problem Definition

Transition of care refers to the transition of patients from a primary, expensive facility
to a secondary, less expensive facility that provides medical support to ensure a suc-
cessful recovery. The transferring party provides medical records and instructions to
the receiving party. The receiving party monitors predefined patient characteristics
and evaluates the health status of the patient. The communication and the coordina-
tion of services between the two health care providers are performed by an intermedi-
ary who is responsible for a successful transition. The intermediary chooses the prop-
er receiving provider based on specific criteria, and provides electronic health record
technologies to gather, share and exchange information.

We model the above situation as a service system that describes the interconnec-
tions among humans (doctors, patients, engineers), organizations (hospitals, insurance
companies, data management service companies) and technology (cloud environ-
ments, data repositories, sensors, etc.). The system aims to facilitate the transition of
patients in a cost effective way and at the same time improve their medical status.

Fig. 1. The service system of transition of care

17

The components of the proposed service system are the entities that interact with
each other and the relationships that enable the flow of information, services and rev-
enues among them. We define the following types of entities (Fig. 1):

• A number of primary, expensive facilities (PF). They provide a healthcare service
to patients.

• A number of secondary, less expensive facilities (SF). They provide a healthcare
service to patients.

• Transition of care intermediary (TCI). TCI handles the logistics of the patient
transfer from the primary to the secondary care facility. It also matches PFs to SFs.
There might be more than one competing TCIs.

• Patients. They use health services provided by PFs and SFs.
• Insurance company. It covers hospitalization costs.

The formulation of the service system and the interactions among the above enti-
ties depend on the way the intermediaries match PFs to SFs. We consider the follow-
ing variations:

• Match PFs to SFs statically, on a per facility basis. A PF may be matched to one or
multiple SFs (all patients of this PF are transferred to the chosen SFs) and an SF
may be matched to one or multiple PFs (The SF receives patients from the chosen
PFs).

• Match PFs to SFs dynamically, on a per patient basis.
• Match PFs to SFs on a per disease basis. In this case SFs are specialized with pa-

tients of a common disease.

We can use the following payment models to specify the flows of revenues over

the relationships among the entities of the service network:
• Fee-for-service model. An insurance company pays PF, SF, TCI, on a per patient

basis. There is no limit on the cost (per patient).
• Bundled payments model (ACO). The insurance company pays one provider (typi-

cally PF) to insure a population of potential patients. The PF pays the SF and TCI,
either on a per patient basis or as a bundled payment. There are cost limits on a per
patient basis as well as per disease basis.

The performance of the service system is measured through a number of Key Per-
formance Indicators (KPIs). We are interested in the total cost of care per patient, the
patient satisfaction, the readmission rate from the secondary facility back to the pri-
mary facility that reflects the quality of service provided by the secondary facility and
the market share each intermediary gains in a competitive environment. The above
KPIs are affected by a number of factors such as the matching of PFs to SFs, the ser-
vices provided by the various entities and the use of infrastructure. For example, tak-
ing into account patient preferences on the matching of PFs to SFs increases patient
satisfaction, considering geographical constraints reduces costs, providing high quali-
ty care services reduces the readmission rate.

18

IT infrastructure used by TCIs plays a significant role in the formulation of the re-
lationships among the entities within the service network. Therefore, it provides a
good solution to the way patients are transferred from primary to secondary facilities.
Indicatively, IT infrastructure provides the electronic medical records (EMR) of pa-
tients, sensors and an automated process of the transition of patients. EMR is shared
by all interested parties consistently such that everyone has an updated version any
time this is required, reducing significantly the readmission rate. Sensors are placed in
the patient rooms in order to watch and record any change in the behavior/status of
the patient or of the room conditions. This information is incorporated in the EMR of
the patient so that new instructions are given for her/his medical care, increasing their
satisfaction and reducing the readmission rate. The automation in the transition pro-
cess facilitates the transfer of patients and reduces costs or errors in handling the pa-
tients.

The main objective of the transition of care service system described above is to
provide a cost-effective way for patients’ transitions within healthcare organizations
improving their health status and reducing readmission rates. In particular, the analy-
sis of the proposed service system is meant for solving the following business prob-
lems:

• What is the optimal matching of PFs and SFs such that the overall cost is mini-
mized provided that patients’ preferences and economic constraints are satisfied?

• What are the optimal strategies of the entities within the service system such that
the performance of the service system is improved in terms of customer satisfac-
tion or readmission rate?

In the next section we formulate the optimization problem that corresponds to the
first of the above questions.

3 Mathematical Problem Formulation

In this section, we address the case in which there is one transition of care interme-
diary (TCI) aiming at statically matching primary facilities (PFs) to secondary facili-
ties (SFs) on a per facility basis. A PF may be matched to one or multiple SFs (all
patients of this PF are transferred to the chosen SFs) and an SF may be matched to
one or multiple PFs (the SF receives patients from the chosen PFs). The solution will
be implemented on a per patient basis; backup SF will be chosen by solving the same
problem with the first SF removed. We adopt the bundled payment model (see Sec-
tion 2) in which the insurance company pays each PF that in turn pays an amount per
patient to each SP it is associated with. The objective of the TCI is to choose the
matching of each PF to a set of SFs so as to minimize the total cost of PFs.

Let the set !"# of primary facilities contain ! facilities, !"# = {!"!,… ,!"!} and
the set !"# of secondary facilities contain ! facilities, !"# = {!"!,… , !"!}. Within
these two sets, facilities may be grouped into subsets (e.g., primary facilities that be-
long to a for profit organization). Care facilities have certain properties, as we de-
scribe below:

19

1. Secondary care facilities !"! , ! ∈ {1,… , !}
(a) !!!: the readmission rate; we assume that 0 ≤ !!! ≤ 1.
(b) !!: the cost per patient that !!! charges; we assume that !! > 0.
(c) !"!!: the patient satisfaction index; we assume that 0 ≤ !"#! ≤ 1.
(d) !"!!: the patient capacity; we assume that !"#! > 0.

2. Primary care facilities !"! , ! ∈ {1,… , !}
(a) !!!!: the patient population size; we assume that !!"! > 0.
(b) !!!: the geographical constraints; we assume that !!! is a subset of the set

{1,… , !}.
(c) !"!!: the maximum cost per patient; we assume that !"!! > 0.
(d) !"!!: the maximum tolerable readmission rate; we assume that 0 ≤ !"!! ≤

1.
(e) !"#!! : the minimum tolerable patient satisfaction index; we assume that

0 ≤ !"#!! ≤ 1.

The variable of choice in the minimization problem is the matching of the primary
care facility !"! , ! ∈ {1,… , !} to a set of secondary care facilities !"! , ! ∈ {1,… , !}.
More specifically, let !! denote the set of !"! that will receive patients from !"!. !!
is a nonempty subset of 1,… , ! . Let ! denote the matching of all primary care facil-
ities to secondary ones. The variable of choice is defined as ! = !!,!!,… ,!! .
The objective function in the minimization problem is the total cost associated with
choice !. It is defined as follows: let !! !! denote the cost associated with primary
care facility !"! when patients from this facility are transferred to choice !! and
!(!) denote the total cost associated with choice !!,!!,… ,!! . We have:

 !! !! = !
!!

!!!∈!! , (1)

 ! ! = !! !!
!
!!! . (2)

The constraints to be satisfied are the following:

 !! ∈ !!! ,∀! ∈ 1,… , ! , (3)

 !!! ≤ !"!! , ∀! ∈ !!! ,∀! ∈ 1,… , ! , (4)

 !"#! ≥ !"#$! ,!!!∀! ∈ !"! ,∀! ∈ {1,… , !} . (5)

The set of choices satisfying the constraints is denoted as ℳ. The problem is formu-
lated as follows:

 min!∈ℳ !(!) such that (6)

 !! !! ≤ !"!! ,∀! ∈ 1,… , ! . (7)

20

3.1 A Numerical Example

In this section, we present a simple example and provide a solution to the correspond-
ing mathematical problem defined in Section 3. We consider ! = 3 primary care facil-
ities and ! = 5 secondary care facilities. The properties of primary and secondary care
facilities are given in Table 1 and Table 2 respectively.

Table 1. Properties of primary care facilities

!"! !"! !"#! !""! !"#$!
1 {1,2,3} 1100 0.8 0.8
2 {2} 1100 0.8 0.8
3 {1,2,3,4,5} 1000 0.7 0.6

Table 2. Properties of secondary care faciities

!"! !! !!! !"#!
1 1100 0.7 0.9
2 1000 0.8 0.8
3 1000 0.8 0.7
4 1000 0.7 0.8
5 900 0.6 0.8

 The set of choices ! without taking into account the constraints defined in Equa-

tions (3), (4) and (5), consists of 2! − 1 2! − 1 2! − 1 = 29791 elements. The
set ℳ of choices ! satisfying the above constraints consists of 2! − 1 2! − 1 = 9
elements (the feasible set of !"# for !"! is {1,2}, for !"! it is {2}, and for !"! it is
{4,5}). The solution to the problem defined in Equations (6) and (7) is then given by
the following matching: !"! → !"!, !"! → !"!,!"! → !"! (that is,
! = { 2 , 2 , 5 } with total cost ! ! = 2900.

Conclusions

Transition of care services are used to improve hospital quality care in order to pre-
vent readmission. In the current work, we define and analyze a service system that
models the interactions of healthcare systems, patients, insurance companies, engi-
neers supporting technology to facilitate the transition of patients. We formulate a
cost minimization problem to find the optimal matching of primary care facilities to
secondary ones. In the future we intend to use game theoretic tools to model the inter-
actions of entities within the proposed service system and calculate optimal strategies
for improving the performance of the service system in terms of patient satisfaction
and readmission rate.

21

References

 1. SF Jencks, MV Williams, and Coleman EA, "Rehospitalizations among
patients in the Medicare fee-for-servise system," N Engl J Med, vol. 360(14),
pp. 1418-1428, 2009.

] 2. A Chugh, MV Wiiliams, J Grigsby, and E Coleman, "A better transitions:
improving comprehension of discharge instructions," Front Health Serv
Manage, vol. 25(3), pp. 11-32, 2009.

3 3. NI Goldfield et al., "Identifying potentiallly preventable readmissions," Health
Care Finance Rev , vol. 30(1), pp. 75-91, 2008.

[4. M D Loguel and J Drago, "Evaluation of a modified community based care
transitions model to reduce costs and improve outcomes," BMC Geriatrics, vol.
13(94), 2013.

5 5. R Voss et al., "The care transitions intervention : translating from efficacy to
effectiveness," Arch Intern Med, vol. 171(14), pp. 1232-1237, 2011.

6 6. BW Jack et al., "A reengineered hospital discharge program to decrease
rehospitalization: a randomized trial," Ann Intern Med, vol. 150(3), pp. 178-87,
2009.

22

C2C: An Automated Deployment Framework for

Distributed Applications on Multi-Clouds

Flora Karniavoura, Antonis Papaioannou, and Kostas Magoutis

Institute of Computer Science (ICS)
Foundation for Research and Technology – Hellas (FORTH)

Heraklion 70013, Greece
{karniav,papaioan,magoutis}@ics.forth.gr

Abstract. The Cloud Application Modeling and Execution Language
(CAMEL) is a new domain-specific modeling language (DSL) targeted
to modeling applications and to supporting their lifecycle management
on multiple (heterogenous) cloud providers. Configuration management
tools that provide automated solutions to application configuration and
deployment, such as Opscode Chef, have recently met wide acceptance
by the development and operations (or DevOps) community. In this pa-
per, we describe a methodology to map CAMEL models of distributed
applications to Chef concepts for configuration and deployment on multi-
clouds. We introduce C2C, a tool that aims to automate this process and
discuss the challenges raised along the way suggesting possible solutions.

Keywords: Cloud computing, Application modeling, Configuration man-
agement

1 Introduction

In the era of cloud computing, applications are benefitting from a virtually in-
exhaustible supply of resources, a flexible economic model, and a rich choice
of available providers. Applications consisting of several software components
or services typically need to be deployed over multiple underlying technologies,
often across di↵erent cloud providers. To bridge across di↵erent cloud environ-
ments, tools based on model-driven engineering principles are recently gaining
ground among developers and operations engineers. TOSCA [1], CloudML [5]
and CAMEL [18] are three recently introduced model-driven approaches used
to express application structures and requirements, and to manage application
deployments over time.

An important tool in the hands of application developers and operations
engineers is the ability to maintain a detailed recording of software and hard-
ware components and their interdependencies in an infrastructure, in a process
known as configuration management (CM) [13]. An e↵ective CM process provides
significant benefits including reduced complexity through abstraction, greater
flexibility, faster machine deployment and disaster recovery, etc. There are nu-
merous configuration management tools from which the most widely known are:

23

2 Flora Karniavoura, Antonis Papaioannou, and Kostas Magoutis

Bcfg2 [3], CFEngine [6], Chef [7], and Puppet [17]. Each of these tools has its
strengths and weaknesses [20] [9]. A CM solution is often combined with provi-
sioning and deployment tools.

In this position paper we bridge the gap between application models (which
are typically declarative expressions of application state) and configuration man-
agement tools (imperative procedures for carrying out CM actions) using CAMEL
and Chef as specific instances of the two approaches. We introduce CAMEL-to-
Chef (or C2C for short), a new methodology for the deployment and configura-
tion of applications expressed in CAMEL across multi-cloud environments.

2 Background

2.1 CAMEL

Cloud Application Modeling and Execution Language (CAMEL) [18] is a family
of domain-specific languages (DSLs) currently under development in the PaaSage
EU project [15]. CAMEL encompasses DSLs covering a wealth of aspects of
specification and execution of multi-cloud applications. CloudML, one of the
DSLs comprising CAMEL, is used to describe the application structure and
specify the topology of virtual machines and applications components. Below we
describe key modeling elements that CAMEL shares with CloudML.

– Cloud : a collection of virtual machines (VMs) o↵ered by a cloud provider
– VM type, VM instance : a VM type refers to a generic description of a VM,

while an instance of a VM type refers to a specific instantiation of a VM,
including specific configuration information.

– Internal component : a reusable type of application component, whereas an
internal component instance represents an instance of an application com-
ponent. The description of an application component stays at a generic level
while the specification of its respective instances involves particular config-
uration information.

– Hosting, Hosting Instance : a hosting relationship between a host VM and a
component of the application, or between two application components.

– Communication, Communication Instance : a dependency relationship be-
tween two application components or component instances.

CAMEL is under development at this time and thus constantly evolving. The
changes that have been brought into CAMEL since we started the C2C project
have so far been dealt with with just minor changes at the model parsing phase
and have not resulted in drastic changes in the fundamentals of our approach.
Future changes in CAMEL could be dealt with existing technologies that address
the co-evolution of models [14].

2.2 Opscode Chef

Chef is a configuration management tool created by Opscode [7]. Following an
infrastructure-as-code approach, Chef uses Recipes, configuration files written in

24

C2C: Automated Deployment for Distributed Applications on Multi-Clouds 3

Ruby that describe the actions that should be performed on a node in order
to bring it to its desired state. Related recipes are stored in Cookbooks. Users
can store and write Cookbooks at the Chef repository in their local workstation,
from where they can also interact with the Chef server. Every machine-node
that is managed by Chef has a run-list, which is the list of recipes that will run
on it at the time of the next Chef client run. We should note that dependencies
between cookbooks are handled automatically by the Chef server, which is also
responsible for various other tasks like run-list and cookbook storing.

Chef brings in a number of benefits. It o↵ers automated and reusable solutions
for the configuration and deployment of applications and a lot of ready-to-use,
publicly available Cookbooks via the Chef repository, also known as Chef su-
permarket [8]. One of the strongest aspects of Chef is its active and constantly
evolving community. The Chef community consists of people of various back-
grounds and expertise that contributes to the creation and improvement of a
large set of Cookbooks covering a wide range of software components.

3 Related work

Application modeling is becoming increasingly popular nowadays due to the
complexity and increased needs of distributed applications. A recently intro-
duced modeling approach covering the description, deployment, and lifecycle
management of distributed applications is TOSCA [1]. Perhaps closest to our
approach is a recent paper on cloud service orchestration using TOSCA, Chef
and openstack [11] uses Chef as a deployment tool for applications defined as
TOSCA models. “Deployment artifacts” are defined at the time of model cre-
ation for each component, stating which Cookbook recipe(s) should be used
to deploy them. Deployments take place on openstack and various Chef func-
tions are triggered using the knife-openstack client [12]. The di↵erences between
this work and ours are (1) the fact that we use CAMEL instead of TOSCA
to model our applications, and (2) we automatically derive information from
CAMEL models to achieve deployment with Chef in multi-cloud environments.
The CAMEL model does not need to contain information about the recipes
needed for each component, although we describe this as an alternative tech-
nique in Section 6.

CloudML [5] also o↵ers a deployment and lifecycle management mecha-
nism [4] by associating each deployable component with a pointer code respon-
sible for its deployment. The deployment process is restricted to scripted com-
mands and does not involve the usage of Chef.

4 The C2C methodology

4.1 Architecture

Figure 1 depicts the overall architecture of our system. C2C comprises of three
major modules: i) the model parser ii) the VM manager and iii) the Chef in-
structor. The model parser analyses the input application model, extracts the

25

4 Flora Karniavoura, Antonis Papaioannou, and Kostas Magoutis

necessary information and prepares the input for the other C2C modules. In more
details, it forms a list containing the VMs that will be used for the application
deployment. In addition it prepares the input of the Chef instructor module
which is a list containing the software components that comprise the application
along with their hosting and communication relationships. The VM manager
module is responsible for the provisioning of the VMs and the installation of the
Chef client in each one. The Chef instructor manages the deployment of the ap-
plication software components on the appropriate VM, indicated by the hosting
instances. As a first step, it collects all the necessary Cookbooks by searching at
the Chef workstation or on the Chef’s community repository [8]. Next it forms
the run-list of each node in order to install the application components. The
Chef instructor derives the order in which the components should be installed
as well as the node that will host each one by analysing the communication and
hosting relationships among the components.

CAMEL
App Model

Chef Repo

VM list

VM
Provisioner

Cloud X Cloud Z

provision

provision

run-list

run-lis
t

Cookbook
List

Fig. 1. System architecture

We follow this modular approach because it allows us to split the functional-
ity of our tool and minimize the amount of e↵ort needed in case of a component
update (e.g. if we want to support more Cloud providers we just update the VM
manager component). The model parser was implemented using the Java com-
patible CAMEL API library. The multi-Cloud provisioning logic we embedded
in VM manager uses the third party library of Apache JClouds [10] and the of-
ficial Azure Java sdk [2] API to operate across the di↵erent Cloud architectures
of Openstack, Flexiant, Amazon EC2 and Microsoft Azure.

4.2 Mapping of concepts

In this section we describe the necessary CAMEL attributes that are used by
the model parser in order to prepare the input of the other C2C modules. The

26

C2C: Automated Deployment for Distributed Applications on Multi-Clouds 5

VM instance properties contain all the necessary information for the VM man-
ager to provision the required resources for the application deployment. The
Chef instructor uses the names of the Component instances in order to identify
the corresponding cookbooks. The hosting instance relationship between a (soft-
ware) component instance and an VM instance indicates that the corresponding
cookbook should be added to the run-list of the node. On the other hand if a
component instnace A is hosted in component instance B, then the cookbook
corresponding to B should also be included in the run-list of node that will host
component A. The deployment order of the components is derived based on the
the hosting instances and the communication instance between component in-
stances. For example if component X communicates with component Y then the
deployment of Y should precced the deployment of X.

5 Use case

We demostrate our systems functionality using the distributed SPEC jEnter-
prise2010 benchmark [19] as a case study. SPEC jEnterprise2010 is a full system
benchmark that allows performance measurement of Java EE servers and sup-
porting infrastructure. The SPEC jEnterprise2010 application requires a Java
EE application server and a relational database management system.

DB_VM
m3.medium

mySQL

Server_VM
A1

JBoss

specj.ear

Amazon EU Microsoft Azure EU

Hosting

Communication

Application
Component

Virtual
Machine

Fig. 2. Spec jEnterprise2010 application structure

We model the SPEC jEnterprise2010 application using three software com-
ponents corresponding to the business logic of the application, the application
.ear, the application server and the RDBMS [16]. These components are instan-
tiated as a specj.ear, a JBoss application server and a MySQL database. Figure 2
presents the application structure and the deployment scenario of SPEC jEn-
terprise2010. The solid line arrows indicate the hosting relationships between
VMs and application components as well as the communications among soft-
ware components. The dashed line arrows represent the communications between
the application components. In this scenario we demonstrate a cross-Cloud de-
ployment of the application (di↵erent application components are deployed on
di↵erent Cloud platforms).

27

6 Flora Karniavoura, Antonis Papaioannou, and Kostas Magoutis

At the first step the model parser instructs the VM manager to provision
a m3.medium VM on Amazon EC2 platform and an A1 VM on Azure. Then
the Chef instructor fetches the necessary cookbooks of MySQL and JBoss from
the Chef supermarket. On the other hand we provide our custom cookbook for
the deployment of the application logic (specj.ear) in our local workstation. The
hosting and communication relationships between software components and VMs
suggest the run-lists of Chef nodes. The run-list corresponding to the DB VM
contains the cookbook of MySQL while the run-list of Server VM contains the
cookbooks of and specj.ear. The deployment of DB node precedes the server
node according to the Chef instructor logic described in section 4.

6 Challenges

Our aim for the C2C methodology is to be as automatic as possible, however
there are challenges to achieve this that we discuss in this section along with
possible solutions.

A key challenge in the C2C methodology is to decide automatically what is
the correct Chef cookbook to use for a particular software component. In our
automatic implementation we assume that there is a match between a compo-
nent’s name and the name of the suitable cookbook for it – however this need
not always be true.

If we assume that components in CAMEL models are named using some
variation of the name of the software component that they model, C2C could map
them to cookbooks whose names most closely match the name of the software
component (e.g., exhibit minimal lexicographical distance from it). This solution
could be error-proof if the creator of a CAMEL model is aware of the Chef
cookbook it wants to map the component to and thus names the component
using the exact name of the Chef cookbook.

However even if the right cookbook for a component is discovered, the prob-
lem has not been solved. The di�culty now lies in distinguishing the right recipe
for the desired task, between all recipes in the cookbook. In most cases the
“default” recipe, present in all cookbooks, is responsible for the basic cookbook
task (in most cases, installation) but this does not apply to every cookbook.
Usually, recipe names are quite descriptive but not to an extent that could lead
to e�cient recipe selection.

A solution to this problem could be an appropriate naming scheme for cook-
book recipes. Firstly, unique keywords such as “install”, “update” or “start”
should be used for basic tasks implemented by recipes. Cookbook recipes could
simply include annotations stating which of these tasks each one of them im-
plements. Current recipes do not provide this kind of information but it could
be retrofitted or overlaid on recipe metadata based on user feedback: cookbook
users could report on the task each recipe they use performs, and this informa-
tion could later be used to help C2C automatically choose the right recipe.

Finally, a simple way to address these issues is by declaring the exact cook-
book recipes to use in each application component within the CAMEL model

28

C2C: Automated Deployment for Distributed Applications on Multi-Clouds 7

(similar to what was proposed in [11]). This solution eliminates the risk of choos-
ing the wrong recipe, albeit at the cost of reduced flexibility.

7 Conclusion

In this position paper we introduced C2C, an automated deployment framework
for distributed applications on multi-clouds. We showed that the configuration,
deployment and lifecycle management of CAMEL applications leveraging the
large base of Chef cookbooks is achievable in an automated fashion. We discussed
the challenges that stand in the way of full automation with this methodology
and proposed di↵erent ways to overcome them. Finally, we demonstrated the
usability of C2C using the SPEC jEnterprise2010 application as a case study.

References

1. Oasis: Oasis topology and orchestration specification for cloud applications (tosca)
2. Azure SDK (Accessed 1/2015), https://github.com/Azure/azure-sdk-for-java
3. Bcfg2: (Accessed 2/2015), http://www.bcfg2.org/
4. Blair, G., Bencomo, N., France, R.: Models@ run.time. Computer 42(10) (2009)
5. Brandtzg, E., Parastoo, M., Mosser, S.: Towards a Domain-Specific Language to

Deploy Applications in the Clouds. In: CLOUD COMPUTING 2012: 3rd Interna-
tional Conference on Cloud Computing, GRIDs, and Virtualization (2012)

6. CFEngine: (Accessed 2/2015), http://www.cfengine.com/
7. Chef: (Accessed 1/2015), http://www.getchef.com/
8. Chef Supermarket: (Accessed 1/2015), https://supermarket.chef.io/
9. Delaet, T., Joosen, W., Vanbrabant, B.: A survey of system configuration tools.

In: Proceedings of the 24th International Conference on Large Installation System
Administration. pp. 1–8. LISA’10 (2010)

10. JClouds: (Accessed 1/2015), https://jclouds.apache.org/
11. Katsaros, Menzel, L.: Cloud service orchestration with tosca, chef and openstack

pp. 1–8 (2014)
12. Knife-Openstack client: (Accessed 2/2015), https://docs.chef.io/plugin_

knife_openstack.html

13. Lueninghoener, C.: Getting started with configuration management. ;login: 36(2),
12–17 (2011)

14. Nikolov, N.: Integration and Co-evolution of Domain Specific Languages in Het-
erogeneous Technical Spaces. Master’s thesis, Tilburg University, University of
Stuttgart and University of Crete (Jul 2014)

15. PaaSage EU FP7 project: (Accessed 2/2015), http://www.paasage.eu/
16. Papaioannou, A., Magoutis, K.: An architecture for evaluating distributed appli-

cation deployments in multi-clouds. In: Cloud Computing Technology and Science
(CloudCom), 2013 IEEE 5th International Conference on. vol. 1 (Dec 2013)

17. Puppet: (Accessed 2/2015), http://www.puppetlabs.com/
18. Rossini, A., Nikolov, N., Romero, D., Domaschka, J., Kritikos, K., T., K., Solberg,

A.: Paasage project deliverable d2.1.2 - cloudml implementation documentation.
Public deliverable (2014)

19. SPEC jEnterprise2010: (Accessed 2/2015), https://www.spec.org/

jEnterprise2010/

20. Tsalolikhin, A.: Configuration management summit. ;login: 35(5), 104–105 (2010)

29

The TPL Mission: We Bring Customized Cloud
Technology to Your Private Data Centers

– Overview/Industry Paper –

Tim Waizenegger1, Frank Wagner2, Cataldo Mega3, and Bernhard Mitschang4

1 Technology Partnership Lab, University of Stuttgart,
Universitätsstr. 38, 70569 Stuttgart, Germany,
tim.waizenegger@ipvs.uni-stuttgart.de

2 Technologie Transfer Initiative GmbH,
Nobelstraße 15, 70569 Stuttgart, Germany,
frank.wagner@ipvs.uni-stuttgart.de

3 IBM Deutschland Research & Development GmbH,
Schönaicher Straße 220, 71032 Böblingen, Germany,

cataldo mega@de.ibm.com

4 Institute for Parallel and Distributed Systems, University of Stuttgart,
Universitätsstr. 38, 70569 Stuttgart, Germany,
bernhard.mitschang@ipvs.uni-stuttgart.de

Abstract. In order to save cost and minimize operational overhead,
enterprises seek to outsource data management to cloud providers. Due
to security concerns and performance problems, these projects often are
not successful or don’t perform as expected. The main cost factor in
these situations are the operational costs for running and maintaining
the data management infrastructure. In the Technology Partnership Lab,
we research and evaluate solutions that keep the data and infrastructure
on-premise and reduce costs by automating system management and
operations, through the use of on-premise cloud-technology. This allows
us to avoid security concerns arising from outsourced data, and still
reduces cost for the customer. In this paper we present our approach and
the underlying hardware and software architecture. We also present an
industry example, based on an enterprise content management system,
and discuss our experience in running this system as an on-premise cloud
application.

Keywords: Cloud Computing, Enterprise Content Management, Software-
Defined Environment, Service-Topology Modeling

1 Introduction

The driving force for outsourcing data management is reducing the operational
cost for running the system long-term. Cloud providers can o↵er low prices
because of the economy of scale which works in their favor in two ways. First,
they share their infrastructure between large numbers of customers. This practice

30

2 Tim Waizenegger et al.

allows them to utilize the hardware to a high degree, resulting in cost-savings
through e�ciency. And second, they use automation for provisioning and running
a large part of the services and products they o↵er to their customers. This allows
them to solve common tasks and problems only once, and then apply the method
to all their customers, resulting in cost-savings through re-use [5,4,1].

The Technology Partnership Lab (TPL) works in the research and develop-
ment of these cloud-technologies, but applies them to local, on-premise infras-
tructures. We want to transfer the two main advantages cloud-providers have,
infrastructure-e�ciency and solution re-use, to on-premise data-centers. With
this approach we can also transfer (some of) the cost-savings to on-premise so-
lutions. In addition, we can still keep the benefits of an on-premise solution,
compared to o↵-premise cloud solutions. Data security, privacy and low access
times are the most important ones of these benefits. They are still not achievable
with cloud-solutions, and are commonly cited as the main reasons against out-
sourcing to cloud providers. With our on-premise-cloud approach we combine
the benefits of both worlds and avoid the major problems they have.

2 The Technology Partnership Lab – TPL

The Technology Partnership Lab5 (TPL) was founded in 2012 in order to bridge
the gap between university research, teaching, and concrete industry-related ac-
tivities. In order to provide a benefit to our industry partners, we o↵er a portfolio
of knowledge, tools, and hardware, as represented by Figure 1. At the same time,
we benefit the university and students by bringing new material and knowledge
into the teaching, and most importantly by cooperating with students in our
projects.

The TPL’s concept of an on-premise cloud stands on two pillars: one, the e�-
cient and flexible use of hardware resources, and two, the application and re-use
of predefined solutions. Together with partners we evaluate how we can apply
our on-premise cloud approach to solve their challenges. We begin this evalua-
tion by setting up the desired system on our TPL test-lab hardware. We then
transform the system into an on-premise cloud solution by using the methods
described in Section 4. Finally, we test the solution together with our partners
on their local infrastructure.

3 First Pillar: The on-Premise Cloud Infrastructure

The e�cient use of the available hardware resources is one of the cornerstones of
cloud computing. Providers analyze the utilization of di↵erent customer systems
in order to determine how they should be assigned to the physical resources [3].
An optimal assignment will satisfy all the resource requirements of the customer
systems, and at the same time use a minimal amount of physical resources. This
e�cient use of resources allows the cloud providers to o↵er competitive pricing.

5
http://tpl.informatik.uni-stuttgart.de

31

http://tpl.informatik.uni-stuttgart.de

The TPL on-Premise Cloud 3

Tool Pool

Know-How

Pool

Infrastructure

Pool

Fig. 1. The three TPL-pools

Therefore, we design our on-premise cloud infrastructure to support the same
resource optimization.

The TPL operates a test-lab which we designed as a small-scale representa-
tion of a typical infrastructure found in most corporations. We use this test-lab
hardware to develop and evaluate our software solutions for the on-premise cloud
infrastructure. The test-lab consists of an IBM PureFlex high-density server
cluster with a flexible 10 GBit network and FibreChannel-attached IBM V7000
storage system (see Figure 2).

.

.

.

Server n

Server 1

V7000 Storage

Switch

FibreChannelEthernet

PureFlex
Chassis

Fig. 2. Physical hardware configuration

In order to fulfill the first requirement, e�cient use of hardware resources,
we operate this hardware according to cloud-computing paradigms and o↵er
Infrastructure-, Platform-, and Software-as-a-Service. We achieve this by running
a combination of four software-components, as details in Figure 3.

The first software-component for our on-premise cloud infrastructure is the
GPFS file system. Using the V7000 storage system, we attach a large disk-volume
to all the servers in the cluster simultaneously. The GPFS file system manages
and synchronizes access to this shared volume and creates the first Platform-as-
a-Service o↵ering, a shared file system.

In order to provide an Infrastructure-as-a-Service o↵ering, we run an Open-
Stack cluster as the second software-component on some of the servers. Open-
Stack controls hypervisors, virtual network devices and the GPFS file system.
It allows creating virtual machines with attached storage, and is able to con-

32

4 Tim Waizenegger et al.

GPFS OpenStackDB2

IBM Cloud
Manager

VM
DB

instance
Block

storage

Customer
application

controls

provides providesprovides

runs on

uses

uses

Application layer

Infrastructure layer

Fig. 3. The TPL on-premise cloud stack

nect them in arbitrary, virtualized network configurations. With these first two
components we can o↵er virtualized and isolated environments to run arbitrary
application software. The virtualized environment can be fine-tuned to fit the
requirements of the specific application, and allows the e�cient use of resources.

The third software-component is the IBM DB2 PureScale6 relational database
management system. Since we focus on customer applications for data manage-
ment, we decided to o↵er database instances as a Platform-as-a-Service in our
cloud environment. Without this database service, customer applications would
not only need to contain, but also manage and optimize their own database. With
this Database-as-a-Service approach, we can operate DB2 in a highly available
configuration and also perform optimizations regarding the underlying hardware
infrastructure.

Our fourth software-component, on the on-premise cloud infrastructure layer,
is the orchestration system IBM Cloud Manager. This orchestration system con-
trols the three other software components. It has an infrastructure pattern lan-
guage as its input, and based on these definitions, uses the services of the other
components to set up the complete application. This includes configuring the
shared file system, virtual machines and networking as well as database instances
and application-software installations within the virtual machines.

With the combination of these four components, we create a Software-Defined-
Environment (SDE) on our test-lab infrastructure. With this SDE we can pro-
grammatically create and manipulate the infrastructure for our application soft-
ware [2]. This enables us to achieve the e�cient use of resources since we can max-
imize the utilization on multiple levels: Virtual machines, storage and database
instances are all centrally managed and can be assigned to any hardware re-
source. Without interruption operations, resources can be added and removed
to maintain optimal utilization and performance. With this capability, we com-
pleted the first step towards an on-premise cloud infrastructure.

6
http://www-01.ibm.com/software/data/db2/linux-unix-windows/purescale/

33

http://www-01.ibm.com/software/data/db2/linux-unix-windows/purescale/

The TPL on-Premise Cloud 5

4 Second Pillar: Transforming Abstract Models to a
Concrete System Architecture

Cloud providers can o↵er low prices for on-boarding new customers as well as
performing regular operations and maintenance, since they develop the necessary
solutions once and re-use them many times. In our on-premise cloud infrastruc-
ture, we use the same approach in order to minimize the e↵ort for setting up
new applications and maintaining them. We achieve this in our solution by ap-
plying the following two concepts: first, abstract modelling and transformation,
and second, reusable deployment- and maintenance-artifacts. These concepts are
detailed in the following Sections 4.1 and 4.2.

4.1 Abstract Modelling and Transformation

The first concept of our second pillar, the abstract modelling and transforma-
tion, reduces the e↵ort and cost for setting up new applications. Similar to
public cloud o↵erings, with our on-premise cloud, customers can easily deploy
new applications for evaluation, testing or production. Previously, these tasks
involved the complicated installation and configuration procedures that drove
the migration to cloud o↵erings in the first place.

Our abstract modelling concept uses a domain-specific language (DSL), which
we develop for a specific application domain (here, Enterprise Content Manage-
ment Systems). This modelling language exposes only a high-level view on the
desired system to the customers. It enables them to specify functionalities and
requirements without having knowledge of the actual implementation details.
We also provide an interpreter for our DSL which contains expert knowledge
and experience from the application domain. This interpreter chooses from a set
of proven and tested system topologies, and adapts it to the specific require-
ments which the customer expressed using our domain-specific language. The
result is an infrastructure pattern for the Cloud Manager component from Sec-
tion 3. This pattern contains all the necessary information for setting up a new
instance of the application. This includes virtual machine configurations with
networking and storage as well as all the application-software components and
their installation procedures. Figure 4 details this process.

Example: An Abstract Pattern for Enterprise Content Management

Systems. The domain-specific language describes the requirements in an ab-
stract way, which is independent of products and technologies. Some require-
ments are functional, like the requirement to add and view content over the
web or to declare content as records and file them to a file plan. Other require-
ments are non-functional, like the number of users of the system, the amount
and frequency of the documents, or the required availability. The functional re-
quirements mandate the application to be used. For example IBM FileNet P8
with IBM Navigator for the basic functionalities, and FileNet Records Manager
for records and file plans. The non-functional requirements have a huge impact

34

6 Tim Waizenegger et al.

Application
Server

Database
Server

Application
Server

Database
Server

Directory
Server

Load
Balancer

WebSphere ND Cell

GPFS Cluster

DB2 pureScale

Requirements
- Manage documents
- Declare records
- 100 users, 500 GB content
- Availability 99%
- DR RPO 1 day, RTO 2 days

Requirements
- Manage documents
- Declare records
- 100 users, 500 GB content
- Availability 99%
- DR RPO 1 day, RTO 2 days

(1) Abstract model in
domain-specific language (2) Interpreter creates concrete

application topology

On-premise
cloud

(3) Cloud Manager creates
running instance

- migrate
- scale
- optimize

- migrate
- scale
- optimize

(4) Reusable artifacts manage
and operate the instance

Fig. 4. From an abstract model to a concrete system topology to a running instance

on the infrastructure and the deployment of the applications. A high-availability
requirement, or an expected growth of the user base, suggests an application
server clustered over multiple nodes, which can be easily extended or reduced.
Similarly, the database that manages the metadata can be deployed on a single
node, with an associated passive HA node, or in an active-active cluster. And
the file system that stores the content can be on a share, exported by a server,
or on a clustered file-system [7,6].

The application is then implemented using parameterizable templates for
TOSCA or the OpenStack Heat orchestration engine. This template and the
scripts it triggers are developed at the TPL and tested on the test-lab infrastruc-
ture. They perform the initial deployment of the system, from the provisioning of
the nodes, networks and storage, over the installation of application servers and
databases to the deployment and configuration of the applications. But opera-
tions does not end when the system is deployment. The ongoing maintenance of
the system, like applying fix packs and adjusting to changed requirements, must
be handled, too. This is where we apply our reusable maintenance-artifacts.

4.2 Reusable Artifacts for Maintenance

The second concept of our second pillar, reusable artifacts for maintenance,
helps to reduce the e↵ort and costs in operating and maintaining the applica-
tion. Cloud providers benefit from the economy of scale in their large customer
bases. They can o↵er cheap operations and maintenance per customer, because
the procedures only need to be developed once, and can then be applied to all
their customers. We use the same approach for our on-premise cloud applica-
tions. We develop maintenance artifacts which encapsulate common tasks like

35

The TPL on-Premise Cloud 7

data migration, import or application scaling. Such artifacts can also be used for
future software updates. We can reuse these artifacts with all customers that use
the same basic application in their on-premise cloud. This is possible because all
installations are generated from our interpreter (see Section 4.1) and the defini-
tions in the domain-specific language. Therefore, we know all possible variations
of the application, and our artifacts always run in a known, and well-defined
environment.

5 Summary & Future Work

In this paper we have presented the current focus of the TPL: the on-premise
cloud infrastructure and the interpretation of abstract application models. These
two concepts allow us to bring the e�ciency of public clouds to local, on-premise
data centers. With the first pillar, the cloud infrastructure, we provide the ba-
sis for e�cient and automated infrastructure management. At the same time,
our second pillar, the abstract modeling and interpretation, allows the e�cient
management of the application software.

Currently, we work on expanding and evaluating our domain-specific lan-
guage for ECM systems. In parallel, we are looking for new industry partners to
extend and detail our approach for other application domains.

References

1. Boerner, A., Lebutsch, D., Mega, C., Zeng, C.: Method for determining system
topology graph changes in a distributed computing system (May 1 2014), uS Patent
App. 14/054,011

2. Breiter, G., Behrendt, M., Gupta, M., Moser, S., Schulze, R., Sippli, I., Spatzier, T.:
Software defined environments based on tosca in ibm cloud implementations. IBM
Journal of Research and Development 58(2/3), 9:1–9:10 (March 2014)

3. Fehling, C., Leymann, F., Retter, R., Schupeck, W., Arbitter, P.: Cloud Computing
Patterns: Fundamentals to Design, Build, and Manage Cloud Applications. Springer
Vienna (2014)

4. Mega, C., Waizenegger, T., Lebutsch, D., Schleipen, S., Barney, J.: Dynamic cloud
service topology adaption for minimizing resources while meeting performance goals.
IBM Journal of Research and Development 58(2/3), 8:1–8:10 (March 2014)

5. Mega, C., Lange, C.: Optimizing resource topologies of workload in the cloud by
minimizing consumption and maximizing utilization while still meeting service level
agreements. In: 44. Jahrestagung der Gesellschaft für Informatik, Informatik 2014,
Big Data - Komplexität meistern, 22.-26. September 2014 in Stuttgart, Deutschland.
pp. 873–881 (2014)

6. Mega, C., Wagner, F., Mitschang, B.: From Content Management to Enterprise
Content Management. In: für Informatik, G. (ed.) Datenbanksysteme in Business,
Technologie und Web. pp. 596–613. Köllen (März 2005)

7. Wagner, F.: A virtualization approach to scalable enterprise content management.
Dissertation, Universität Stuttgart, Fakultät Informatik, Elektrotechnik und Infor-
mationstechnik, Germany (November 2011)

36

Architectural Refactoring for the Cloud:
a Decision-Centric View on Cloud Migration

Olaf Zimmermann1
1 University of Applied Sciences of Eastern Switzerland (HSR FHO),

Oberseestrasse 10, 8640 Rapperswil, Switzerland
ozimmem@hsr.ch

Abstract: Legacy systems typically have to be refactored when migrating to
the cloud; otherwise, they may run in the cloud, but cannot fully benefit from
cloud properties such as elasticity. Architectural refactoring has been suggested
as an evolution technique, but is not commonly practiced yet. One difficulty is
that many of the involved artifacts are abstract and intangible. We therefore
propose a task-centric view on architectural refactoring and introduce a templa-
te that identifies architectural smells and architectural decisions to be revisited
when refactoring a system architecturally. We also outline an initial catalog of
architectural refactorings that can be considered during cloud migration.

Keywords: Architectural Decisions, Architectural Patterns, Cloud Computing,
Knowledge Management, Reengineering, Software Evolution and Maintenance

Software-intensive systems often have to be reengineered, e.g., due to unpredicta-
ble context changes and technology innovations that occur during system lifetime.
Many reengineering activities affect the software architecture of these systems. Given
the success of code refactoring, it is rather surprising that architecture refactoring [1]
is not common yet; other cloud migration techniques have been preferred so far [2].

Our paper proposes architectural refactoring as a novel design technique to evolve
architectures and enhance cloud deployability. The paper establishes a task- and
decision-centric architectural refactoring template, identifies 30 cloud-specific archi-
tectural refactorings and outlines a future practice of architectural refactoring.

In our definition, an Architectural Refactoring (AR) is a planned and coordinated
set of deliberate architecture design activities that address an architectural smell and
improve at least one quality attribute while possibly compromising other quality
attributes but leaving the scope and functionality of the system unchanged. An AR re-
visits certain Architectural Decisions (ADs) and selects alternate solutions to a given
set of design problems [3]. Table 1 introduces an AR template that calls out these key
elements of an AR, including the ADs to be revisited and tasks to be performed:
Table 1. Decision- and task-centric Architectural Refactoring (AR) template [3].

AR Identification How can the AR be recognized and referenced easily?
Context Where (and under which circumstances) is this AR eligible?
Stakeholder
concerns

Which non-functional requirements and constraints (e.g., quality
attributes) are affected and/or impacted by this AR?

Architectural smell When and why should this AR be considered?
Architectural
decision(s)

Typically more than one solution exists for a given design problem.
Applying an AR means revisiting one or more ADs; which ones?

37

Evolution outline
(solution sketch)

Which design elements does the AR comprise of (e.g., patterns for
conceptual ARs, platforms for technology ARs)?

Affected architect-
ural elements

Which design model elements have to be changed (e.g., components and
connectors, infrastructure nodes and communication links)?

Execution tasks How can the AR be applied (i.e., executed and enacted)?

Table 2 identifies an initial catalog of candidate cloud ARs in different categories:
Table 2. Cloud Architectural Refactorings (ARs).

AR Category ARs (1/3) ARs (2/3) ARs (3/3)
IaaS Virtualize Server Virtualize Storage Virtualize Network
IaaS, PaaS Swap Cloud Provider Change Operating

System
Open Port

PaaS “De-SQL” “BASEify” (remove
”ACID”)

Replace DBMS

PaaS Change Messaging
QoS

Upgrade Queue
Endpoint(s)

Swap Messaging
Provider

SaaS/application
architecture

Increase Concurrency Add Cache Precompute Results

Scalability Change Strategy
(Scale Up vs. Out)

Replace Own Cache
with PaaS Offering

Add Cloud Resource
(xaaS)

Performance Add Lazy Loading Move State to
Database

Communication Change Message
Exchange Pattern

Replace Transport
Protocol

Change Protocol
Provider

User anagement Swap Identity and
Access Management
Provider

Replicate Credential
Store

Federate Identities

Service/deployment
model changes

Move Workload to
Cloud (use XaaS)

Privatize
Deployment,
Publicize Deployment

Merge Deployments
(Use Hybrid Cloud)

All of these ARs can be represented as instances of the task-centric template from
Table 1; e.g., the tasks to introduce a cache include deciding on a lookup key and a
cache invalidation strategy. Our current catalog does not claim to be complete; in the
future, we plan to document these and additional cloud ARs with the template.

To establish ARs as effective and efficient carriers of software architecture
evolution knowledge, guidelines (i.e., principles and practices) for AR capturing and
sharing should be developed. These principles and practices should explain how to
find good names for ARs, how to phrase architectural smells, how deeply to
document ARs, how to group and link ARs, how to reference ADs and tasks (e.g.,
when instantiating our AR template), and how to apply ARs in agile project contexts.

An open question is how to create, share, review, apply, and revise ARs – are tem-
plates and catalogs good enough as knowledge carriers or are tools more appropriate?

References
1. Stal, M., Refactoring Software Architectures, in: Babar, A., Brown, A.W., Mistrik, I.,

(eds.), Agile Software Architecture, Morgan Kaufman, 2014.
2. Höllwarth, T. (ed)., Migrating to the Cloud, http://www.cloud-migration.eu/en.html
3. Zimmermann O., Architectural Refactoring – a Task-Centric View on Software Evolution.

IEEE Software, vol. 32, no. 2, March/April 2015

38

adfa, p. 1, 2011.
© Springer-Verlag Berlin Heidelberg 2011

"Let’s migrate our enterprise application to BigData
technology in the cloud" - What Does That Mean in

Practice?

Andreas Tönne

NovaTec Consulting GmbH, Leinfelden-Echterdingen, Germany
andreas.toenne@novatec-gmbh.de

Abstract. Many enterprise applications are challenged with increasing data
quantities and rates. Enterprise 2.0, Industry 4.0 and the Internet of Things gen-
erate huge amounts of data that challenge the architecture and technology of ex-
isting enterprise applications. It seems a logical idea to move such applications
on a Big Data technology stack. In this paper, we summarize the architectural
changes and the often unanticipated consequences for the business requirements
that result from the highly distributed nature of Big Data architectures. The ex-
amples are based on an eleven man year migration project from a Java EE stack
to a cloud-native microservices architecture.

Keywords: Microservice, Big Data, Java EE, NoSQL, Consistency

1 Introduction

In this paper, we summarize the migration of a Java EE based enterprise application
to a cloud-ready Big Data architecture. We focus on the consequences of the architec-
tural change for the application requirements and thus for the business stakeholders.

Migrating existing enterprise applications to a Big Data stack is certainly not the
premiere application of Big Data. Usually Big Data is more likely to be associated
with analytics, monitoring or as a more fashionable data warehouse solution. Howev-
er with the diminishing boundaries of enterprises, driven by Enterprise 2.01, Industry
4.0 [1] or the Internet of Things2, the sheer amount of data, its rate and heterogeneity
mean that most enterprise applications do face Big Data already. The interesting ques-
tion is, what does it take to migrate an existing enterprise application architecture to a
technology stack that can handle it properly? And what are the consequences?

1 Enterprise 2.0 is the adoption of Web 2.0 tools and concepts to the enterprise to allow for

example the collaboration of employees, partners, suppliers and customers.
2 IoT is the concept of enabling everyday physical objects to have an identity (IP adress) and

communicate through the Internet. This means for instance production tools like a laser that
report their health status to the service partner but also common household appliances that
can be used or controlled over the internet.

39

1.1 The Migration Subject

This paper is based on a Big Data migration project that achieved its "operational"
milestone with an effort of eleven man years in 2014. We cannot disclose the exact
nature or name of this project as it is an ongoing product development of one of our
customers. The author was the architect and development manager for the first re-
lease. The migration discussed in this paper provides the business logic and persis-
tence layer for data integration and analysis. At this time, the product has been re-
viewed, used in prototypes and in medium size proof-of-concept implementations by
several global enterprises. It is in production in manufacturing and is planned to be
put in production for a B2C task.

The product is a semantic middleware, providing a combination of a ETL (extract,
transform, load) process, a semantic analysis of the data and a Big Data scale reposi-
tory for the results. Data from a variable number of sources is imported using agents
in the environment of the data source and converted to a common data model. This
data could be structured like a relational database record or an XML file but also un-
structured data like a PDF document or plain text, music or video is imported.
Analytics algorithms discover relations between the data records based on their con-
tent. One of the simplest of such algorithms detects keyword matches using an invert-
ed index like Elasticsearch [2]. A discovered relation could be for example "my user
matches your author". More elaborate algorithms that for instance use business
knowledge can be added as plugins. The relations together with statistical information
like the relevance of the relation are persisted alongside with the common data model.

The product is used in the general problem area of data integration and solves expen-
sive problems: data harmonization, schema discovery and contextual search. An ap-
plication example is combining the databases of insurances after a merger. Discover-
ing data commonalities like same customers is a very laborious and error prone pro-
cess that can be automated with this product.

The original middleware was developed using best practices and a common layered
monolithic architecture3 based on Java EE clustering, a relational database, a full text
index for the keyword-related analysis algorithms and a distributed cache to share
global statistical information across the cluster nodes. The solution was well received
by industry prospects but unfortunately it was not able to deliver the required scaling
both in terms of data amounts and speed. The solution has to deliver its business
value for huge data amounts (hundreds of terabytes and more) with a multitude of
sources and formats that could not be handled effectively with traditional data integra-
tion designs. In other words, our customer tried to deliver a Big Data solution on a
Java EE technology stack.

3 An architecture where the functional components like user interface, business logic and per-

sistency are part of a single self-contained application. Dependencies between the internal
components are expressed by conceptually arranging them in layers where the high layers
may use the lower layers but not vice versa.

40

Interestingly the inability of the technology stack to scale to the data rates and sizes
turned out to be the lesser problem. The more challenging problems that were re-
vealed by the Big Data paradigm change lay in the traditional atomic operations and
consistency focused requirements that effectively prohibited scalability by design. We
will discuss these in section 3.2.

2 Big Data to the Rescue

Big Data is commonly associated with two technology innovations: NoSQL data-
bases, e.g. Cassandra [3] and map-reduce, e.g. Apache Hadoop [4] that are designed
for massively concurrent computation. However Big Data is not just a set of technol-
ogies but a diagnosis of demanding growing application requirements. These are the
three V's in Big Data parlor:

x Volume
x Variety
x Velocity

The volume of data to handle increases rapidly for many enterprises. Modern digital
strategies embrace the Internet as the platform of the enterprise and this means the
number of data sources and thus the related data volume is growing. But the data
volume is not only growing through new data sources. Enterprises also want to utilize
already existing data that traditional enterprise applications cannot handle and that is
ignored.
If an enterprise increases the number and range of data sources, the variety of data
formats also increases. Especially weakly structured or unstructured data like office
documents, plain text, multi-media, web pages, Web 2.0 information snippets like
tweets, comments, blog posts et cetera are characteristic for a Big Data situation.
Finally the velocity of data changes and the requirement to process these more rapidly
in analytics distinguish Big Data from traditional data warehouse approaches.

Forresters definition of Big Data is "The practices and technology that close the gap
between the data available and the ability to turn that data into business insight." [5]
Big Data technologies were developed to handle one or more of these V's. The Big
Data ecosystem is rapidly changing and growing and covers a wide range of prob-
lems. Common characteristics are the focus on horizontal scalability4 and the prefer-
ence for flexibility over data schemas. Typical areas of Big Data technology are:

Batch processing: The map-reduce algorithm that is implemented by Apache Hadoop
allows to distribute batch processing tasks over an almost unlimited number of dis-
tributed computational nodes. The only requirement is that the tasks can be imple-

4 A computational system is scaled horizontally by adding resources through new appliances. It

literally means to put a new computer next to the existing computers on the table. Alterna-
tively a computational system is scaled vertically if it is replaced by a more powerful sys-
tem.

41

mented without synchronization between the concurrent executions. Otherwise the
required scalability cannot be achieved by Amdahl's law[6]. Map-reduce was original-
ly developed by Google to handle their massive data processing needs. Apart from
Hadoop there are several implementations of map-reduce with special characteristics
like Apache Spark [7] that delivers super fast in-memory map-reduce.
Streaming: Near real time processing of large data quantities can be achieved with
Apache Storm [8]. One business case for Big Data streaming is the online security
check and rating of credit card transactions.
Analytics: The task to discover business value opportunities in Big Data and its im-
plementation is called Data Science. Data Science implementations are based mostly
on statistical methods like the Bayesian statistics and other machine learning ap-
proaches. These can be fully automated like IBM Watson [9] or based on frameworks
like Apache Spark ML [10].

The Big Data business values seem to be rather comparable to the characteristics of
enterprise applications: large quantities of business data being handled concurrently
for a large number of users, integrating data sources and finally supporting the enter-
prise business goals. However Big Data is a game changer for business.

2.1 Paradigm Changes

Big Data is called disruptive for business [11, 12] with a huge transformational pow-
er. This does have substantial consequences for enterprise applications; the require-
ments aspect of this is shown in this paper. Since enterprise application are materiali-
zations of business goals and strategies and since business needs to reinvent these in
the light of Big Data, it should be obvious that enterprise applications for Big Data
scenarios cannot be the same as before.
But in our consulting experience, business stakeholders are allured by the apparent
similarities of their traditional data driven architectures and Big Data. It is a common
mistake to think of Big Data as simply the extension of their enterprise application
architectures that is able to handle more data.

One paradigm change of Big Data that needs to be implemented is the data import
itself. Enterprise applications, driven by the problem of sheer data masses, are very
selective in what information they actually import and process. Information is filtered
for the applications business functionality. Not only is a lot of information lost but a
lot of information can also be duplicated if several applications need parts of the same
data. Master data management solutions try to centralize these duplications, providing
a single source of reference to structured business data.
Big Data to the contrary yields the highest value if no processing, filtering or structur-
ing takes places in the import. The paradigm of Big Data is to offer future business
value in today's data. To achieve this, one of the best practices for Big Data is to col-
lect as much data as possible in its raw format in a data lake [13]. A data lake is the
schema free storage of original data. The database of a data lake is very often HBase
[14], the database used by Hadoop since this allows to analyze the raw data without

42

prior export. A data lake is filled with all data without any processing like filtering.
The promise of Big Data analytics is that it is possible to find valuable correlations in
this heap of data with a reasonable effort. In contrast, business intelligence based on a
data warehouse requires expensive ETL steps to extract the needed information from
the productive databases and store it in the data warehouse.

Another paradigm change that is important for this paper concerns the inherent con-
flict of consistency versus scalability.

2.2 Scalability is the New Ruling Requirement

Consistency is the holy grail of business stakeholders. Data must be accurate, at any
time. This is of course an important requirement if customer, production or legal in-
formation is concerned. The author would not approve if Amazon uses statistical
methods to compute the approximate sum of bills. On the other hand, there are plans
at Amazon to use Big Data methods to forecast the customers' needs and ship in ad-
vance. In an enterprise, especially with huge data masses and concurrent changes, not
everything can be computed 100% accurate and does not need to. Sometimes it is
admissible to achieve consistency at a later time and sometimes approximations are
good too.

Many applications of Big Data are only possible if scalability becomes the new holy
grail of requirements [15] and to that end consistency is necessarily limited. Con-
sistency in a distributed system requires a consensus between the distributed nodes.
Such consensus with for example the Paxos protocol [16] limits the horizontal scala-
bility. In practice, a compromise between scalability and consistency has to be
achieved.
In our migration example, consistency had no business value if the import and analyt-
ics ran unacceptably long. Massive concurrent computation like map-reduce with
Hadoop critically depends on horizontal scalability. This scalability can only be
achieved if the processed data has a high locality and as part of that, the processing
does not entail side effects for the other map and reduce nodes. Map-reduce does not
scale if the nodes need to synchronize in any way.

2.3 Consistency Challenges

Distributed replicated storage, which is one of the core strategies of Big Data, is often
associated with "eventual consistency" [20]. A distributed system is eventually con-
sistent when after a data change at one node there is an unbounded period of time in
which the version of the changed data at the other nodes is undefined. The system is
inconsistent until the data has been distributed to all nodes.

43

In a distributed environment, the CAP theorem [17, 18] gives us two practical choices
for storing new data5. Either we prefer consistency at the expense of scalability and
make new data only available after it has been replicated safely on all database nodes.
Or we prefer accessibility at the expense of consistency and make the new data avail-
able at the rate it is replicated between database nodes. We choose eventual con-
sistency for the paramount importance of scalability in our application. In this case, an
enterprise application may yield different (inconsistent) results depending on the time
it accesses a particular database node.

This choice of consistency or accessibility does not need to be that strict in practice.
NoSQL databases like Cassandra offer various strategies [19] to choose C or A as
needed on a per case basis. A common option is to use a quorum of replication nodes
that need to be written to before a write is considered complete. This assures data
consistency even with a limited failure of nodes. The decision for only eventual con-
sistency of many early NoSQL databases was excused with the CAP theorem but
actually it is justified by the better scalability of weaker consistency.

Eventual consistency is aggravated if multiple distributed storages are used. Rather
common is the combination of a NoSQL database like Cassandra and a full text index
like Elasticsearch. Writes to Cassandra are at least immediately visible at the node we
committed to. Data written to Elasticsearch is not immediately visible after a commit,
even at the node where the commit occurred6. We may observe inconsistencies also
between the databases at the same node.

Typical Big Data applications using NoSQL storage and map-reduce follow a write
fast, process later pattern. Once the data is written to the data lake, it is rarely
changed. An enterprise application on the other hand typically does change its data
like customer records, shipping lists, material bills or reports frequently. As we point
out below, keeping these changes consistent is the reason for a lot of synchronization
and locking. If we omit this to allow scalability at Big Data scale, the time window of
inconsistencies is getting much larger. The window of eventual consistency of a
NoSQL database replication is typically 10-100 milliseconds to replicate the data in
the cluster. With an unsynchronized enterprise application service, this window spans
a much longer period: over the concurrent execution of two conflicting service calls,
through the database replication and possibly a following correction. This may take
several seconds where the inconsistency can cause a lot of damage to business data
and decisions.
Migrating an existing enterprise application logic to Big Data has to deal with these
paradigm changes and consistency challenges.

5 In a Big Data scale distributed system we have to expect partitioning at any time. Thus ac-

cording to the CAP theorem we can only choose either consistency or accessibility in con-
junction with partition tolerance.

6 This is due to the replication strategy of Elasticsearch that involves bulk updates

44

3 Migration Strategy and Consequences

The author started to work with the software company as a consultant when the mi-
gration to Big Data technology was inevitable. We started with an in-depth perfor-
mance and architecture review. The developers had reasonable ideas how to improve
their solution and Big Data and Cloud deployment seemed to be mandatory. The
changes suggested to us were however not founded on an analysis of the problems
with performance and usage data. It appeared the changes were suggested since "the
technology looked promising". Big Data projects should never be founded on a tech-
nology choice but on business requirements and value. A key takeaway of the migra-
tion project was that Big Data is also disruptive for the way we think about require-
ments and their implementation design. We will discuss this in examples below.

The architecture review was conducted by inspection of the system documentation, a
detailed code review and several interview sessions. The review revealed a design for
the data import and analysis logic that is rather typical for Java EE. Concurrency con-
trol of the import service was delegated to stateless session beans. The import logic
was built on several steps like persistency, indexing and analysis that could be rather
complex and time consuming. A common persistency layer performed the translation
of the data model to a relational database.

The performance analysis was conducted with inspectIT [21], which records time and
trace data of Java applications. It showed that in high load situations the server was
spending a substantial part of the import time for commits and index updates. This
was a serious performance problem independently of the scaling limits of the Java EE
stack itself. The reason for this ineffective behavior lied in the business requirements
for the import logic. The holy grail of these requirements was "quality of relations"
which requires atomicity of the import services to assure consistency. Assuming such
atomicity and thereby evading difficult decisions about concurrent computation is
rather typical for the business stakeholder in enterprise applications. Java EE and
ACID databases taught the stakeholder that atomicity of operations is a reasonable
requirement.

Quality of relations could for example be compromised by

x Duplicate relations between two records that are imported in parallel. If they have
related contents, they both might write the same relation. E.g. one will write "my
author matches your user" and the other will write "my user matches your author".
Since such relations are commutative, they are considered a duplicate and an error.

x Deviations of unsynchronized statistical information (e.g. word counts) on the
nodes that lead to errors in the relation annotations

The usual ways to achieve atomicity of services are locks, synchronization, unique-
ness constraints and very short transactions to reduce commit conflicts. Each is a
scalability killer. Measures on a test cluster showed that acquiring a database lock in

45

Cassandra could take up to 40 milliseconds, due to the necessary consensus between
the database nodes. In other words, the throughput of the import was limited to 25
records per second if a database lock is required.

3.1 Architectural Changes

The new holy grail of the Big Data based solution is scalability. It does not matter
how good the results of the data import are if you cannot achieve them in any reason-
able time or if a combinatorial explosion of the computed data exceeds the capacity of
the system.

Re-architecting the solution was driven by the goal to achieve scalability in a cloud-
native architecture [22]. This means to tailor the architecture towards deployment in
the cloud, allowing dynamic changes to its topology of services as needed. Changes to
the resource allocations for the data import as well as the other APIs may be needed
for a time-of-day or season reason or simply because the mixture of data to import has
changed. This lead to a decomposition of the previously monolithic server into inde-
pendently deployable server components:

1. A database cluster using a NoSQL database together with Elasticsearch for index-
ing purposes

2. Client API services to access the data model
3. Import services to receive new or changed data records and process them

using analysis plugins
4. Content agents that are located near the data sources and push changes to the im-

port API
5. Periodic services for cleanup or consistency repairs using Hadoop

The architecture blueprint for the import services was based on the Staged Event
Driven Architecture (SEDA) [23]. SEDA is considered one of the predecessors of the
microservices architecture that is popular for implementing cloud-native applications.
One may say the import service has a microservices architecture borrowing some
elements of SEDA like the coupling of services with queues.

A microservice [24] is a standalone self contained implementation of one business
capability in one or more matching services. It is independently deployable and uses
typically lightweight communication protocols like REST. A microservices architec-
ture is built as the collaboration of several of such small services. It is the radical op-
posite to a monolithic application architecture that hides the business capability ser-
vices internally. There is some dispute about the relation of microservices and SOA as
discussed in [24]. A SOA service is implemented to break up monolithic architectures
and allow better and cheaper integration of applications. Microservices are in our
opinion more focused on the project and engineering issues, allowing very small in-
dependent projects for the services that are delivered and operated at their own pace.

46

Each microservice component in our architecture is called a Stage and stages are con-
nected in a defined order by persistent queues. The import workflow is represented by
events that carry the data records and further control information that is updated by
the stages. The routing of events is controlled by the stages themselves. In terms of
enterprise integration patterns, this is the pipes and filter pattern [25].

Fig. 1. Stage

We choose this model to reflect the fact that the import and analysis plugins do have a
defined execution order, have varying resource requirements and may be based on
different technologies. We needed a lot of flexibility to setup the import- and analysis
chain.
The plugin logic itself might need to be decomposed into steps that take place at dif-
ferent times of the import in different stages. For example, a first step early in the
import process to setup base data and statistics and a second step later in the chain of
steps to do the actual processing. For this, plugins implement one or more step func-
tions that executed in sequence form the plugin logic. The plugin steps are executed
concurrently in a stage using a thread pool. They are purely functional and delegate
the persistency of their results to an automated persistence framework of the stage.

This overall architecture allowed us to

1. Group plugin steps by their resource needs
2. Adapt the number of instances of each stage to the current needs
3. Achieve the best possible data locality
4. Use different technology in the stages
5. Have a single source of truth for transaction optimization
6. Arrange the steps in the import process such that concurrency related inconsisten-

cies are minimized

Grouping of steps in a stage allows to control the configuration of the cloud VMs
according to the CPU or memory needs. Some of the algorithms are CPU intensive,
some are I/O bound waiting for the database while others need lots of memory for

47

their computation. A one size fits all strategy (e.g. putting all plugins in one VM and
deploying multiple such VMs) is likely a waste of resources. Being able to deploy a
flexible number of such stages also helps to adjust the resource allocation and opti-
mize the throughput of the overall network of stages.

Optimizing for data locality of the database caches in the stages is an optimization
strategy that was recommended by the database vendor consultants. Steps that are
working on the same type of data should have fewer database cache misses and cache
overflows. We could not verify a measureable positive effect of this strategy for the
first release though. Our assumption was that our high change rate worked against the
database caching strategy.

Fig. 2. Simple stage / server node topology example without routing

The core stages and most plugins were developed using the same platform technology
(Spring Boot [26] on Java SE). We also wanted to be able to include sophisticated
technology from third-parties like natural-language processing libraries that could be
implemented differently. For these, stages can be also implemented in other lan-
guages. The interface contract of stages is only messages carrying events.

This new architecture has proven to be very flexible and scalable while adding only a
negligible overhead to the pure plugin execution time. This flexibility came at the
expense of a laborious and error prone configuration and deployment process. In the
end, each micro service deployment was an individual VM with its individual Spring
configuration like queue names or plugin options. A production ready version will
have to use Cloud deployment automation processes and technologies. At this time,
the product development team is using Ansible Tower [27] with good success.

48

3.2 Consistency Constrained Business Requirements

The fine granular decomposition of the import service into highly concurrent stages
and steps puts a spotlight on the consistency focused business requirements. Achiev-
ing best quality by enforcing atomicity of the import services was an illusion to start
with. Even a strictly sequential execution of the import (one stage with only one
thread) will produce different results at different times. The computation of relations
is based on global information and only altering the order of the import events in the
queue will result in slightly different relations and statistical annotations. Quantifying
the analysis quality turned out to be extremely hard. To the business stakeholders, the
best strategy for up keeping the quality was to insist on as much constraints and syn-
chronization as possible.

As outlined above, eventual consistency is an intrinsic property of concurrent distrib-
uted computing. We cannot avoid short phases of inconsistency without sacrificing
scalability. These phases of inconsistency result in noticeable quality defects as illus-
trated by the following example.

Consider a data source adding two related records, e.g. a technical specification and a
construction plan that have a relation based on mentioning the same standards name.
These two records shall be imported as updates concurrently and the import will like-
ly happen in different stages on different nodes. There are chances for the following
errors:

1. Import and analysis of each record does not see the new contents of the other rec-
ord. The relation on the commonly mentioned standards name is missed.

2. Since import and relation analysis are separate steps with separate transactions per
stage, both records analysis may see the added other record. But each analysis
might not see the relation created by the other analysis due to transaction isolation.
Without uniqueness constraints on the database, we will get duplicated relations
between the two records.

3. Other concurrent imports do not see the added records at the same time due to the
replication latency of the NoSQL storage. This will produce uncontrollable errors
to the relations created by the other concurrent imports.

4. Delays in the propagation of the full text index will introduce further errors of con-
current analysis steps since their computation may be based on a mismatch of rec-
ord contents and its outdated index entries (or vice versa, depending on which da-
tabase was faster).

Most of these inconsistencies must be allowed for some time and compensated by for
example Hadoop correction runs. These re-run the analysis of records that were im-
ported in the same time window or clean up duplicate entries. Depending on the fre-
quency of these correction runs, we have to accept longer timeframes of inconsisten-
cies.

49

Be prepared for lengthy discussions with the business stakeholders that their conven-
ient illusion of atomic operations cannot be kept up in a highly concurrent Big Data
solution. The need for scalability will not only affect the existing service algorithms
but also their functional properties if the service requirements would have a need for
locking or synchronization.

At the time of writing this paper, all of the previous analysis algorithms of the solu-
tion were replaced by fundamentally different algorithms with new properties. Some
are still based on a "select candidates, filter and persist results" pattern. Others are
using predefined index functions or stochastic algorithms.

3.3 Data Accuracy

Enterprise applications often need global aggregated information like tallies or statis-
tics. Even for a clustered Java EE server with a clustered database, this can be too
time consuming to compute.

Because of the large database sizes and the distributed topology of nodes, this is even
more expensive in our case. Consider for example the need to know the number of
occurrences of a word in all records.

The NoSQL database Cassandra provides a counter column type [28] that allows
concurrent delta changes without the need for locks. These counters are maintained as
a journal of changes until the next read access, when the journal is consolidated into
the current counter value. This is an expensive operation, especially when the counter
value changes frequently (which was the case in our application). One strategy we
evaluated was to cache the counter values locally for a duration and then refresh the
value from the counter. This requires an error approximation how long the stale coun-
ter cache is acceptable which is usually a function on the database size.

Another valid strategy that is also implemented by Elasticsearch for its cardinality
aggregation involve the HyperLogLog algorithm [29, 30]. This algorithm approxi-
mates such counts with a known precision that is dependent on the memory allocated
for its hash sets.

In our opinion, one should always prefer such approximating algorithms with a
known error rate over periods of stale data with an unknown error. Unfortunately, be
prepared that not mathematically educated stakeholders will have a preference for the
latter. They prefer the risk of eventual errors over a constant error rate, even if the
eventual errors could be much larger.

50

4 Conclusions

Given the potential disruptive changes to the business requirements, one might ques-
tion if the migration of traditional enterprise applications to a Big Data stack in the
cloud is a good idea in the first place.
However the development of data rates and the increasing demands to include larger
numbers of data sources beyond the enterprise boundaries do not give the enterprise
much of a chance.

The question is not if to move to Big Data but when and how?

The initial questions in the introduction were "What does it take to migrate to the
technology stack that can handle it (Big Data) properly? And what are the conse-
quences?". From the experience of our project we conclude that it takes a complete re-
evaluation of the application requirements about what is still possible and reasonable
and what not. And the consequence is likely a completely new application.

You should not try to migrate an existing application to Big Data by simply replacing
its persistency layer but you should modify the business capabilities backed by the
enterprise application to reflect Big Data and then implement that business' new re-
quirements.

References

1. Bundesministerium für Bildung und Forschung: Zukunftsprojekt Industrie 4.0,

http://www.bmbf.de/de/9072.php, April 9, 2015.
2. Elasticsearch BV: Elasticsearch | Search & Analyze Data in Real Time,

https://www.elastic.co/products/elasticsearch, April 9, 2015.
3. Apache: Welcome to Apache Cassandra, http://cassandra.apache.org, April 9,

2015.
4. Apache: Welcome to Apache Hadoop, https://hadoop.apache.org, April 9, 2015.
5. Khatibloo, Brian Hopkins and Fatemeh. Reset On Big Data. Report, Forrester Re-

search, Inc. (2014).
6. Amdahl, G.M., "Validity of the single-processor approach to achieving large scale

computing capabilities". In: AFIPS '67 (Spring) Proceedings of the April 18-20,
1967, spring joint computer conference, pp. 483-485. ACM, New York (1967)

7. Apache: Spark Lightning-fast Cluster Computing, https://spark.apache.org, April 9,
2015.

8. Apache Storm, https://storm.apache.org, April 9, 2015.
9. IBM: IBM Watson,

http://www.ibm.com/smarterplanet/us/en/ibmwatson/index.html, May 10, 2015.
10. Pentreath, N.: Machine Learning with Spark. Packt Publishing (2015).
11. Accenture Analystics; Big Success with Big Data. Report, Accenture (2014).
12. McKinsey Global Institute: Disruptive technologies: Advances that will transform

life, business, and the global economy. Report, McKinsey Global Institute (2013).

51

13. Fowler, M.: DataLake. http://martinfowler.com/bliki/DataLake.html, February 5,
2015.

14. Apache: Welcome to Apache HBase, http://hbase.apache.org, May 10, 2015.
15. Vogels, W.: Availability & Consistency. Presentation at QCon 2007.
16. Lamport, L.: Time, Clocks and the Ordering of Events in a Distributed System.

Communications of the ACM 21, pp. 558-565. ACM, New York (1978).
17. Brewer, E.: Towards Robust Distributed Systems. In: Proceedings of the 19th

Annual ACM Symposium on Principles of Distributed Computing (PODC '00), pp.
7- 10. ACM, New York (2000).

18. Brewer, E.: CAP Twelve Years Later: How the 'Rules' Have Changed. Computer
Vol. 45, pp. 23-29. IEEE, New York (2012).

19. DataStax: Configuring Data Consistency.
http://docs.datastax.com/en/cassandra/2.0/cassandra/dml/dml_config_consistency_
c.html , April 9, 2015.

20. Vogels, W.: Eventually Consistent. Communications of the ACM 52, pp. 40-44.
ACM, New York (2009).

21. NovaTec: inspectIT ...because performance matters!, http://www.inspectit.eu,
May 10, 2015.

22. Fehling, C., Leymann, F., Retter, R., Schupeck, W., Arbitter, P.: Cloud Compu-
ting Patterns. Springer, Wien (2014).

23. Welsh, M., Culler D., Brewer, E.: SEDA: An Architecture for Well-Conditioned,
Scalable Internet Services. In: SOSP'01 Proceedings of the eighteenth ACM sym-
posium on Operating systems principles, pp. 230-243. ACM, New York (2001).

24. Fowler, M.: Microservices, http://martinfowler.com/articles/microservices.html,
May 10, 2015.

25. Hohpe, G., Woolf, B.: Enterprise Integration Patterns. Addison-Wesley, Indianap-
olis (2012).

26. Pivotal Software: Spring Boot, http://projects.spring.io/spring-boot/, May 10,
2015.

27. Ansible: Ansible Home, http://www.ansible.com/home, May 10, 2015.
28. DataStax: What's New in Cassdra 2.1: Better Implementation of Counters,

http://www.datastax.com/dev/blog/whats-new-in-cassandra-2-1-a-better-
implementation-of-counters, May 20, 2014.

29. Heule, S., Nunkesser, M., Hall, A.: HyperLogLog in Practice: Algorithmic Engi-
neering of a State of The Art Cardinality Estimation Algorithm. In: EDBT '13 Pro-
ceedings of the 16th International Conference on Extending Database Technology,
pp. 683-692. ACM, New York (2013).

30. Flajolet, P. et.al.: HyperLogLog: the analysis of a near-optimal cardinality estima-
tion algorithm. In: AOFA '07: Proceedings of the 2007 International Conference on
the Analysis of Algorithms. DMTCS (2007).

52

Cloudiator: A Cross-Cloud, Multi-Tenant
Deployment and Runtime Engine

Jörg Domaschka, Daniel Baur, Daniel Seybold, and Frank Griesinger

University of Ulm, Institute of Information Resource Management,
Albert-Einstein-Allee 43, 89081 Ulm, Germany

{joerg.domaschka,daniel.baur,frank.griesinger,

daniel.seybold}@uni-ulm.de

http://www.uni-ulm.de/in/omi

Abstract. In recent years cloud computing has reached tremendous at-
tention and adoption in both academia and industry. Yet, still vendor
lock-in constitutes a severe threat to the actual idea of cloud computing
which is to adapt quickly to changing requirements and conditions. This
paper addresses these shortcomings and presents Cloudiator, a cross-
cloud, multi-tenant tool to deploy applications and redeploy them using
di↵erent algorithms and heuristics.

1 Introduction

In recent years cloud computing has reached tremendous attention in both
academia and industry. This evolution has led to a state where the cloud paradigm
has reached the mainstream of software development and application operation.

Nevertheless, many issues still have to be considered as unresolved. In partic-
ular vendor lock-in and limited auto-scaling capabilities are considered the most
pressing and most limiting aspects of cloud computing today [2]. Vendor lock-
in avoids an easy migration from one cloud provider to another. It also avoids
the parallel use of multiple cloud providers and establishes a technical barrier
between operators and providers. Initiatives and standards such as TOSCA [13]
go beyond multi-cloud operation in the sense that they support cross-cloud op-

eration, i.e. running a single application across multiple cloud providers. On the
down-side, they use a deploy-and-forget approach where the deployment of an
application is not re-considered after it has been deployed once. Regarding auto-
scaling, several approaches exist. Yet, they lack the possibility to define complex

adaptation scenarios and mostly sacrifice control possibilities for simplicity [10].
This paper addresses these challenges and presents Cloudiator

1, a cross-
cloud, multi-tenant tool. In addition to a mere cross-cloud deployment, it sup-
ports the model@runtime paradigm [12] and also allows redeployment capabil-
ities as well as support for automatic as well as manual adaptations. Regard-
ing auto-scaling support, Cloudiator goes beyond basic threshold-based ap-
proaches. In sum, it is a stepping stone for higher-level functionality such as
reasoning and optimisation algorithms.

1
https://github.com/cloudiator/

53

2 Jörg Domaschka, Daniel Baur, Daniel Seybold, and Frank Griesinger

This document is structured as follows. The next section presents an overview
and introduces the terminology used in this paper, describes basic features of
Cloudiator, and presents the main system layers. Section 3 sketches the user
interactions with the platform, while Section 4 details the individual components
and gives an outlook on implementation aspects. Finally, we discuss related work,
before we conclude the document with an outlook on future work.

2 Overview

In the following, we clarify the terminology on clouds and applications that we
use in the remainder of this document. We then introduce Cloudiator’s main
features as well as the core components and their interplay. We refine the overall
architecture in Section 4.

2.1 Terminology and System Model

Cloud platform refers to a software stack and accordingly the API o↵ered by
that stack (e.g. OpenStack Juno). A cloud provider runs a cloud platform under
a dedicated endpoint/URL (e.g. RedStack). A cloud refers to a cloud platform
o↵ered by a cloud provider as seen by a tenant. That is, besides the endpoint of
the provider, a cloud (in contrast to the Cloud) is also linked to log-in credentials.

A cloud application or application for short is a possibly distributed appli-
cation consisting of multiple interlinked application components. As such, an
application is solely a description and does not represent anything enacted. An
application component or component for short is the smallest divisible element
of an application. It is the unit of scale and the unit of failure. For illustration
consider a blog application that may consist of the three components load bal-
ancer, application server together with a servlet, and a database. The lifecycle

handlers of a component define amongst others how to install, configure, and
run the application component, but also how to detect its failure, and how to
stop it. Section 3.1 discusses the handlers supported by Cloudiator.

The deployment of an application results in an application instance. An ap-
plication instance for application A is linked to at least one component instance

cijA,i for each component CA,i that belongs to the application. Component in-
stances are created through the lifecycle handlers associated with the respective
component. Each component instance is run on particular virtual machine VMk

and multiple component instances can be mapped to the same virtual machine.

Components may be connected with each other using directed channels. Con-
necting two components with a channel imposes that at least one component
instance from the source component will interact with at least one instance from
the target component. The concrete wiring between the source and target in-
stance is subject to both the deployment and the scaling.

54

Cloudiator 3

2.2 Features, Use, and Access

Cloudiator is a multi-user-capable Web-based software service. Its features
can be separated into registries, deployment functionality, automatic adaptation,
and the specification of monitoring requirements.

Registries The data stored in the registries lay the ground for the manage-
ment, access to, and comparison of cloud providers. They are essential for the
deployment and monitoring features. So far, Cloudiator contains four di↵er-
ent registries: (i) The cloud registry stores o↵erings of cloud providers. This
includes the type of cloud platform o↵ered, the data centres and availability
zones o↵ered by that provider, the virtual machine types (flavours) and oper-
ating system images available at each of these system levels. Additional geo-
graphical location information can be attached to each data centre. (ii) The
specification registry stores abstract properties of cloud providers. This includes
generic virtual machine specifications consisting of #cores and amount of RAM.
This registry, also supports an operating systems hierarchy that for instance
states that Ubuntu 14.04 belongs to the Ubuntu family which in turn belongs
to the class of Linux operating systems. The entries of the specification registry
are linked to these of the cloud registries where applicable. (iii) The credential

registry holds cloud access credentials for each user of Cloudiator needed to
access the cloud providers. The kind of credentials stored vastly depend on the
underlying cloud platform. (iv) The component registry contains components
which can be assembled to applications. These applications can then be instan-
tiated (cf. Section 3). Each of the registries is multi-tenant, meaning that its
entries are bound to a Cloudiator tenants.

Deployment The deployment part of Cloudiator features the capability to
transform applications specified in the component registry to application in-
stances by providing a deployment specification that defines which application
shall be deployed and further specifies how many instances of a particular com-
ponent shall be set up. Further, the deployment description specifies how the
component instances shall be grouped on virtual machines and how these vir-
tual machines are supposed to be configured. A deployment specification may
be either abstract by specifying hardware requirements such as #cores and an
operating system, or concrete by referencing actual flavours or images of a ded-
icated cloud provider. More detailed information on deployment specification is
subject to Section 3.2.

Adaptation Adaptation describes the capability of the application to autono-
mously evolve under changing conditions such as system load. This may be
needed when more users access the application instance than anticipated by
the deployer. In a cloud environment, the most frequent reaction to such events
will be a scale out/in of individual components or groups of components or the
scale up/down of individual virtual machines or groups of virtual machines. For

55

4 Jörg Domaschka, Daniel Baur, Daniel Seybold, and Frank Griesinger

that reason, Cloudiator supports an auto-scaling functionality based on the
Scalability Rules Language (SRL) [6, 10]. In order to realise this functionality,
Cloudiator enables the specification of (hierarchical) metrics, conditions on
these metrics, and actions to be executed when the conditions are fulfilled. It is
important to note that these rules do not have to be provided with the deploy-
ment description, but can be added and changed while an application instance
is running. The adaptation interface is described in Section 3.3.

Monitoring In addition to monitoring information that is collected and eval-
uated for the adaptation functionality, a user can specify further monitoring
requirements. Here, he defines sensors that collect the necessary data and in-
structions that define how these raw metrics shall be aggregated to higher-level
metrics. The data collected there is provided to the clients of Cloudiator via
its API. The monitoring interface is also discussed in Section 3.3.

2.3 System Components

Cloudiator not only deploys cross-cloud applications on various virtual ma-
chines on various clouds, but also installs system components on these virtual
machines. Hence, besides the Cloudiator service that is used as an access point
for clients (Cloudiator’s home domain), the platform consists of a distributed
system of components. These components are controlled and orchestrated by the
components of the home domain as sketched in the following paragraphs.

Once an application is to be deployed, the Deployment Engine is responsible
for allocating the virtual machines in the multi-cloud environment through the
cloud providers’ APIs. It also lays the ground for the installation of the compo-
nents, by installing a Lifecycle Agent on each of the allocated virtual machines.

The surveillance components are concerned with monitoring the virtual ma-
chine as well as component instances running on them, but also with storing and
post-processing the monitoring data. Monitoring data is collected on the virtual
machines; aggregation takes place partially on the individual virtual machines
and partially in the home domain (cf. Section 4.5). The adaptation functional-
ity makes use of the same monitoring and aggregation system, but additionally
comes with an evaluation mechanism that triggers adoptions of the deployment
graph of the current application instance when rules are satisfied.

The home domain also stores monitoring data requested by the user as well
as information about executed scaling actions and provides this information
through the Cloudiator API.

3 Cloudiator Interfaces

This section describes the interface of Cloudiator in a simplified manner. The
actual system is Web-based and o↵ers a fine-grained REST2 as well as a browser-

2 REST is an architecture principle, that describes the transfer of the representational
state of an object to be used as a generic interface. This is implemented in HTTP.

56

Cloudiator 5

based interface. In the following, we represent the external user input coming to
the system in coarse-grained JSON-like format. We do not intend to present the
entire interface of the platform, but rather to give an impression on what kind of
data to exchange for what purpose. The input covers applications, components
and lifecycle handlers; deployment plans; and monitoring as well as adaptation.

3.1 Applications, Components, and Lifecycle

As described in Section 2.1, deployment happens on the level of applications
which in turn consist of components. Components are connected via channels.
Deployment has two basic tasks: (i) instantiate the individual components in the
correct order. This includes the provisioning of the binaries, their configuration,
as well as running them. (ii) wire component instances.

{”name”: ”LB”,
”lifecycle” :{
”start” :..., ”configure” :..., ...

},”ports” :[
{”name” :”out”, ”type” :”out”, ”card” :”1+”}

]
}{”name” :”ghost”,

”lifecycle” :{...}
”ports” :[
{”name” :”in”, ”type” :”in”, ”card” :”⇤”},
{”name” :”out”, ”type” :”out”, ”card” :”1”}
]

}

Listing 1.1. component description

{”name” :”blog”,
”components”:[
{”name”: ”DB”, ”order” :1,},
{”name”: ”LB”, ”order” :1,},
{”name”: ”ghost”, ”order” :2,}

],
”wiring” :[

{”in” :”DB.in”, ”out” :”ghost.out”},
{”in” :”ghost.in”, ”out” :”LB.out”}

]
}

Listing 1.2. application description

Component Description A component description defines a set of lifecycle
handlers that describe how to provision the binaries of the component, how to
configure it, and how to run it. Other handlers capture the shutdown of this
application instance. The lifecycle concept of Cloudiator is heavily influenced
by Cloudify3 and CloudML [7]. The lifecycle can be specified as script files,
command line instructions, Chef scripts4, or Java commands. In addition to
that, Cloudiator supports two special handlers: The start detector serves the
purpose of detecting whether an application has started successfully. It is run
after the component instance has been started and is used to determine when
it is ready for wiring other instances. Once an application is considered run-
ning, the stop detector is invoked periodically in order to figure out whether the
application has accidentally stopped. Beside lifecycle handlers, a component de-
scription defines open ports, that other components can use. Further, it defines

3
http://getcloudify.org/

4
https://www.chef.io/chef/

57

6 Jörg Domaschka, Daniel Baur, Daniel Seybold, and Frank Griesinger

ports the component will consume from other components. For both, incoming
and outgoing ports the cardinality of connections can be defined.

Listing 1.1 shows two components of a three-tier blog application consisting
of a load balancer, the ghost blog implementation and a database. The load
balancer has a single outgoing port that can connect to several targets. The
ghost component has an incoming port that accepts connections from various
sources and an outgoing port that targets a single target, the database.

Application Description An application description builds a component graph
by connecting incoming and outgoing ports of components. Currently, Cloudi-

ator requires that the deployment order of components be specified in the
description. Listing 1.2 presents the application description of above blog appli-
cation. It wires the load balancer with ghost and ghost with the database.

Putting this example to a real set-up, e.g. with an nginx-based load balancer,
node.js as an application server running the ghost blog application, and a
mySQL database, one faces the situation that the load balancer has to be re-
configured for each new instance of the application server. This is realised by
a dedicated lifecycle handler on the load balancer component that is invoked
whenever a new down-stream component has been started.

3.2 Deployment Interface

The deployment interface is responsible for triggering the deployment of an ap-
plication within the cross-cloud environment (cf. Section 2.2). Using it, the user
specifies the number of virtual machines he wants to start and which application
component instances shall be placed on them. To allow isolation between the
components of di↵erent tenants, each virtual machine can only host component
instances of the same tenant (but of multiple applications). For the example
from Section 3.1, the user could place one instance of the nginx load-balancer
on one virtual machine, two instances of the node.js/ghost component on two
separate machines and the mysql database on yet another machine.

For each virtual machine the user has to provide a detailed deployment spec-

ification depicting which resources will be used to start the virtual machine. For
this specification the user has two possibilities: he specifies the concrete resources
used (cf. Listing 1.3), meaning that he has to provide the unique identifiers for
virtual machine type, image and location. The other possibility is to define ab-
stract resource requirements (cf. Listing 1.4) such as #cores, operating system
and constraints, e.g. should run in Ulm (geographical requirement).

3.3 Scalability Interface

Cloudiator adopts the Scalability Rules Language (SLR) [6, 10] for supporting
auto-scale. By providing the necessary modelling concepts it gives the developer
the ability to specify behavioural patterns and scaling actions. A rule-based
approach is supported because of the intuitiveness and simplicity. Yet, SRL still

58

Cloudiator 7

{
”cloud”:”openstack�ulm”,
”flavour”:1, # m1.small flavour
trusty�server�amd64
”image”:”6cba2fe...”,
”location”: {

”region” :”uni�ulm”,
”av�zone” :”campus�west”

}
”instances” :2,
”application” :”app name”,
”components” :[”comp1”, ”comp2”]

}

Listing 1.3. concrete deployment

{
”geolocation”:”ulm”
”hardeware”:{

”cores”:1,
”ram”:2048,

},
”operatingSystem”:{

”vendor”:”ubuntu”,
”version”:”14.04”,
”architecture”:”amd64”

},
...

}

Listing 1.4. generic deployment

supports the definition of complex metric-based conditions to trigger an event-
driven processing. In order to specify a scalability rule, the user has to define
metrics based on raw sensor data and aggregations on these metrics. Aggregation
happens based on mathematical functions and time. Listing 1.5 specifies that for
all instances of the ghost application server (cf. Section 3.1) CPU load shall be
monitored and that an average over a 10-minute window shall be computed. It
further computes the average on all of these 10-minute averages.

On each of the metrics (aggregated or raw) the user can then define threshold-
based conditions, and further combine conditions using Boolean operators. Any
condition or group of conditions can be linked to an action defining what shall
happen in case this (group of) condition(s) is satisfied. Possible actions are scal-
ing up/down/out/in. Listing 1.6 presents a scale out action to be triggered when
any of the 10-minute averages is above 80% and the global average is above 60%.

4 Cloudiator Realisation

This section describes the approach of Cloudiator on dealing with cross-cloud
deployment and adoption during runtime. It gives a more detailed description
on the components which were introduced in the overview section (cf. Section 2).
The entities of the home domain are also summarised in Fig. 1.

4.1 Registries

Cloudiator contains a built-in discovery mechanism that enables providing the
data for the registries (cf. Section 2.2) in an automated way: Whenever a user
registeres credentials for a cloud provider the Cloudiator discovery mechanism
will fill the cloud registry for that cloud provider. In addition, it will connect
this information to the specification registry with the abstract cloud properties.

As it may not be possible to retrieve all information via the providers’ APIs,
Cloudiator allows the manual completion of entries. In the future, we plan to
rely on using meta-information provider such as CloudHarmony5. These provide

5
https://cloudharmony.com/

59

8 Jörg Domaschka, Daniel Baur, Daniel Seybold, and Frank Griesinger

{
”sensors” :[

{”name” :”CPU”, ”type” :”system.cpu”, ”interval” :”1s”}
],

”metrics”: [
{”name” :”raw cpu”, ”scope” :”blog.ghost.EACH”, ”type” :”raw”, ”sensor” :”CPU”},
{”name” :”avg cpu”, ”scope” :”raw cpu.EACH”, ”type” :”compute”,

”params” :[”AVG”, ”10min”, ”raw cpu”]},
{”name” :”avg global”, ”scope” :”SINGLE”, ”type” :”compute”,

”params” :[”AVG”, ”avg cpu.ALL”]}
]

}

Listing 1.5. specification of sensors and aggregation

{
”rule” :{
”condition” :[”AND”,

[”avg cpu.ANY”, ”GT”, ”80%”]
[”avg global”, ”GT”, ”60%”]

}
”action” :[”SCALE OUT”,

{”scope” :”component”,
”target” :”ghost”}

]
}

}

Listing 1.6. specification of conditions and scalability

additional information such as the actual geographical locations of the cloud
provider-specific location (either region or availability zone).

4.2 Deployment Engine

In order to deploy component instances on a virtual machine, the Cloudiator

Deployment Engine uses a three-step approach: (i) It determines the deployment
configuration of the virtual machine. In case, the user has not defined a concrete
deployment, this includes to determine the cloud provider to use; the region
and availability zone; and the image. For abstract specifications (an operating
system instead of an image, a geographical location instead of a cloud provider)
the Deployment Engine tries to match this to exactly one deployment plan.
In case, multiple possible deployment plans exist, it rejects the deployment.
Sophisticated algorithms for reasoning about deployment plans can be plugged in
to our platform. Alternatively, they can be realised on top of it as all information
from the registries (cf. Section 2.2) is accessible through the Cloudiator API.

(ii) It acquires the virtual machine and installs essential Cloudiator com-
ponents on it. For that purpose it accesses the cloud provider API to start a
virtual machine with the deployment configuration, to assign a public IP ad-
dress to this machine, and to configure network and firewall rules. The imple-

60

Cloudiator 9

registries

deployment engine

Time-series database
(TSDB)

cross-cloud aggregators
cloud aggregators

home domain

SRL-
enginemonitoring and

adaptability
orchestration

dataflow
API call

Fig. 1. Components of and interactions from the home domain.

mentation makes use of the Apache jclouds library6 and only provides an own
implementation for cloud platforms and features not supported by jclouds.

(iii) Once the virtual machine has been acquired and started, the Deployment
Engine deploys and starts the lifecycle (cf. Section 4.3) and monitoring agents (cf.
Section 4.4) as well as the infrastructure for processing the monitoring data (cf.
Section 4.5). The installation of the application itself, and hence the execution of
its lifecycle actions, is then handed to the lifecycle agent. Access to the scalability
and monitoring API is relayed to the monitoring infrastructure.

4.3 Lifecycle Handling

The lifecycle agent has the primary task to read a component specification, re-
serve a separate space for it on the virtual machine, and to start the component
by running the lifecycle handlers. For each started component instance, the life-
cycle agent will run the stop detector and report a failure to the home domain
in case the instance has stopped unexpectedly. The lifecycle agent also interacts
with other lifecycle agents for informing them that an instance has been created
and ports have been wired. Currently, the agent isolates component instances
on its virtual machine only by providing an own directory to each of them. For
the future, we envison applying Docker containers7 to improve isolation.

4.4 Monitoring Agent

The monitoring agent produces raw monitoring data through a set of installed
sensors. A user can install sensors by defining monitoring requirements or scala-
bility rules through the Cloudiator interface (cf. Section 4.5). The Deployment
Engine will then forward the installation request to the Monitoring Agent of the
specific virtual machine or to all virtual machines in case multiple of them are af-
fected from a single interface access. The monitoring agent contains a set of well

6
http://jclouds.apache.org/

7
https://www.docker.com/

61

10 Jörg Domaschka, Daniel Baur, Daniel Seybold, and Frank Griesinger

known sensors for measuring system parameters such as CPU and RAM utili-
sation as well as I/O rate. Each sensor can be configured to have a dedicated
interval for which the data shall be collected as well as a measurement context
that defines whether the monitoring shall capture the entire virtual machine or
only a particular component instance on that virtual machine.

In addition, the monitoring agent o↵ers an interface which component in-
stances running on that virtual machine can access in order to report own
component-specific metrics, e.g. the number of active users connected to this
component instance. Finally, the monitoring agent forwards all monitoring data
collected to the aggregation and rule processing sub-system (cf. Section 4.5).
Cloudiator currently supports two di↵erent implementations of this sub-system:
one based on a time-series database (TSDB) [8] and one based on complex event
processing. It is the tenant that decides which sub-component to use.

4.5 Monitoring and Aggregation

As discussed throughout the document, there are two scenarios where aggrega-
tion on monitoring data is needed: (i) A user has requested that monitoring data
be collected and aggregated such that it is available outside Cloudiator. (ii)
Scalability rules require that data be aggregated to build higher level metrics on
which rules can be applied. In both cases, we use the same chain of mechanisms
to provision the requested information.

Cloudiator currently supports two approaches how to actually perform the
aggregation. One uses a time-series database to temporarily bu↵er the values and
uses the TSDB’s built-in aggregation functionality. The second approach applies
complex event processing techniques for computing the aggregations on the fly
without explicitly bu↵ering the intermediate values. This section sketches the
architecture of both realisations after having presented the general approach.

General Approach Section 4.4 clarified when and how monitoring data is
collected by the monitoring agent. For aggregating this data, it is necessary to
(i) ensure that all data needed for aggregation is available, (ii) define where the
aggregation is performed, and (iii) specify where to put the results.

The basic approach that we use for both sub-systems is that the monitor
agent forwards the data to a collection component running on the same vir-
tual machine. This is responsible for making the monitoring data available to
the aggregation functionality including relaying the data to multiple locations if
necessary. The aggregation itself is implemented by aggregation processors. The
exact way how the aggregators are implemented depends on the underlying strat-
egy. Yet, the requirements with respect to the location where the aggregation is
actually executed can be considered independent from the implementation:

We distinguish between three scopes that define where the aggregator shall
be run: The host scope considers aggregation tasks that take into account only
values from a single virtual machine. In that case, the collector will forward the
data to a virtual machine-local aggregator to do the aggregation. Afterwards,

62

Cloudiator 11

the aggregator will relay the resulting data to the collector again. The cloud

scope deals with data from multiple component instances or virtual machines
from within one cloud. Finally, the cross-cloud scope defines aggregation on data
from di↵erent clouds. For that scope, aggregation happens in the home domain.
We use a dedicated collector for each of the scopes.

(Aggregated) monitoring data whose collection was requested by the user is
always stored in a TSDB in the home domain. It is accessible via the Cloudi-

ator API. Improvements on aggregator locations are subject to ongoing work.

TSDBTSDB

TSDB

VM AWS_3

TSDB

VM AWS_2

TSDB

VM AWS_1

home domain

TSDB
clustering

calls

OpenStack cloud Amazon Web Services

TSDB

VM OS_3

VM OS_1 VM OS_2

calls

Fig. 2. TSDB-based architecture of Cloudiator with the local areas marked orange

Time Series Database In the TSDB-based approach for aggregation, we re-
serve a small fraction of each virtual machine (e.g. 10%) for bu↵ering monitoring
data. This strategy assumes that the amount of monitoring data increases lin-
early with the number of virtual machines. At the same time using a cluster
avoids that the TSDB becomes a bottleneck when scaling the application. The
reserved area is split into a local storage area and a shared area for replicas of
data items created on other virtual machines on the same cloud. The current
implementation uses KairosDB8 to access the two storage areas.

Each data element added to KairosDB is stored in a local Couchbase9 in-
stance using the in-memory memcached option representing the local area and
in a distributed Cassandra datastore [11] representing the shared area. Fig. 2
shows the set-up of the underlying storage systems. It is noteworthy that each
cloud uses its own distributed storage. This set-up avoids that the storage su↵ers
from large latencies and that additional costs incur for inter-cloud tra�c.

With respect to aggregation, KairosDB plays the role of the collection compo-
nent. Each virtual machine runs an aggregator that processes Host aggregations

8
https://github.com/kairosdb/kairosdb/

9
http://www.couchbase.com/

63

12 Jörg Domaschka, Daniel Baur, Daniel Seybold, and Frank Griesinger

and stores the results back into KairosDB using both the local and the shared
areas. Aggregations with a cloud scope are triggered from the home domain. Yet,
as the aggregation takes place using the Cassandra store, only the results are
sent to the home domain. The results of such a process are stored back to the
cloud using any KairosDB instance and the shared area. In case this data has
to be made available to the user, a further aggregator is running that pulls this
data from any of the cloud’s KairosDB instances and stores it in the KairosDB
instance running in the home domain. Finally, aggregations in the cross-cloud
scope are also run through an aggregator in the home domain, but then stored
in the KairosDB in the home domain. Higher-level metrics working on this data
will read from the home domains KairosDB and store results back there.

Event Processing The second approach is based on the usage of the event pro-
cessing framework Riemann10. Here, no datastore is used, but monitoring data
is aggregated on the fly. Data needed for processing, e.g. for computing average
values, are kept in memory on the machines actually performing the aggregation.
For this implementation, the collector component splits the monitoring data as
follows: (i) Data to be processed in the host scope, is processed locally according
to the aggregation function. (ii) Data to be processed in one of the other scopes
is relayed to the home domain. (iii) Other data is dropped.

In contrast to the TSDB-based approach, data in a cloud scope has to be
transmitted to the home domain; at the same time, the results of this com-
putation will not be sent back to the cloud, but kept in the home domain for
computing higher-level metrics. They may also be stored in the KairosDB in-
stance, in case they have been requested from the users.

4.6 Enacting Auto-Scale

Cloudiator’s auto-scaling capabilities (cf. Section 2) for individual components
of an application instance require the aggregation of metrics and the evaluation
of conditions on these metrics. The generation of monitoring data and their
aggregation has be discussed in Section 4.4 and Section 4.5.

In order to evaluate the conditions on the metrics, we apply the strategy to
consider conditions on metrics as binary metrics by themselves. These metrics
take values in {0, 1} and their value is computed as a function that compares
the values of the source metric against the threshold of the condition. Composite
conditions are computed from their source conditions.

The SRL-engine is an aggregator-like component that runs in the home do-
main. Its sole task is to check for all conditions that causes an SRL-related action
whether the conditions are satisfied. In case it is, the SRL-engine triggers the
actual actions at the Deployment Engine. In addition, it stores the fact that this
action has taken place as a separate metric value in the KairosDB instance in the
home domain so that it can be queried by higher-level components. Whenever

10
http://riemann.io/

64

Cloudiator 13

the application instance has changed either by manual intervention or by run-
ning a scaling action, the SRL-engine adapts the scalability-related configuration
if necessary. This is for instance the case whenever the abstract rule description
requires conditions to take into account all instances of a particular component.

4.7 Intended Use

Cloudiator can be used in two ways by the end users (cf. Section 3). First, re-
quirements regarding the virtual machines can be specified in a cloud-independent
way relying on Cloudiator’s simple reasoning functionality.

The second approach is to specify in a fine-grained way which virtual machine
flavours shall be used on what cloud and with what image. In this case, it is de-
sirable to combine Cloudiator with a more powerful reasoning mechanism and
even together with a modelling approach. This is the way Cloudiator is inte-
grated in the overall system architecture of the PaaSage11 platform that applies a
CAMEL model to a multi-step reasoning process that eventually yields a deploy-
ment plan; monitoring and aggregation rules; and scalability rules. CAMEL itself
is a combination of several Domain Specific Languages, including CloudML [7],
Saloon [16], CERIF [9], and SRL [6, 10].

5 Related Work

Multi-cloud libraries such as Apache libcloud12 and Apache jclouds aim at har-
monising the di↵erent cloud APIs by providing a programming library o↵ering
a common interface. A slightly di↵erent approach is used by Apache �-cloud13

and rOCCI[15] which o↵er a standardised web interface for calling multiple cloud
APIs. Both approaches lay the foundation for using multiple cloud providers, but
do not help to fully utilise this environment. Cloud API standards like CIMI[5]
or OCCI[14], define a common interface for the provisioning and handling of
cloud provider o↵ers, but lack widespread support.

Multiple DevOps tools such as Chef, Puppet14 and Ansible15 use a pro-
prietary low-level Domain Specific Language for describing the deployment of
applications and also support the provisioning of virtual machines on clouds.
Cloud modelling approaches and their execution engines such as CloudMF[7]
and TOSCA (OpenTOSCA)[4] use a modelling language for describing the ap-
plication as well as the dependencies between application components and deploy
the model to the cloud environment. Yet, these tools mainly target provision-
ing and initial deployment and lack features for e�cient runtime adoption like
monitoring and scaling.

11
http://www.paasage.eu/

12
https://libcloud.apache.org/

13
https://deltacloud.apache.org/

14
http://puppetlabs.com/

15
http://www.ansible.com/home

65

14 Jörg Domaschka, Daniel Baur, Daniel Seybold, and Frank Griesinger

PaaS tools wrapping IaaS functionality such as Cloudify, Apache Stratos16,
Apache Brooklyn17, and SeaClouds18 additionally support basic runtime adap-
tation by using load-balancers and auto-scaling. However their scaling is limited
to specific metrics and thresholds. The same holds true for provider specific auto
scaling solutions like Amazon’s CloudWatch19.

In earlier work [3], we presented a preliminary version of Cloudiator lacking
monitoring and adaptation aspects.

6 Conclusions and Future Work

In this paper, we have introduced a system architecture for dealing with the
challenges given by a cross-cloud environment. We have implemented this archi-
tecture with our Cloudiator platform, that particularly addresses the demands
imposed on adaptability and reconfigurability of cross-cloud applications. The
first prototypical implementation of our tool is an initial step towards a platform
that enables the deployment and runtime adaptation of application instances
across multiple clouds.

Future work targets an evaluation of our current approach. Furthermore, in
order to ease access to our platform by third-party tools, we target the imple-
mentation of adapters that map other APIs, e.g. for TOSCA [13] or CloudML [7],
to the Cloudiator interfaces. Regarding the specification of applications, the
lifecycle we proposed for applications and application components needs to be
validated and evaluated for its practicability. Regarding the deployment, the
additional usage of PaaS o↵erings needs to be considered. Concerning the ag-
gregation functionality, extensive performance evaluations between our two sub-
systems are required in order to figure out when to use which implementation.
With respect to the TSDB-based implementation of the aggregation and scaling
mechanism, the performance of the underlying storage backends needs to be fur-
ther evaluated and our choice of a mixed storage system be validated. We also
target a comparative analyses of InfluxDB20, once a stable version has been re-
leased. We also envision using the monitoring data in order to better understand
the needs of the application and heterogeneity of the cloud o↵erings. This leads
to better fitting deployments.

Acknowledgements The research leading to these results has received funding
from the European Community’s Seventh Framework Programme (FP7/2007-
2013) under grant agreement number 317715 (PaaSage).

16
http://stratos.apache.org/

17
https://brooklyn.incubator.apache.org/

18
http://www.seaclouds-project.eu/

19
http://aws.amazon.com/de/cloudformation/

20
http://influxdb.com/

66

Cloudiator 15

References

1. Andrieux, A., Czajkowski, K., Dan, A., Keahey, K., Ludwig, H., Nakata, T.,
Pruyne, J., Rofrano, J., Tuecke, S., Xu, M.: Web Services Agreement Specifica-
tion (WS-Agreement). Tech. rep., Open Grid Forum (March 2007)

2. Armbrust, M., Fox, A., Gri�th, R., Joseph, A.D., Katz, R.H., Konwinski, A.,
Lee, G., Patterson, D.A., Rabkin, A., Stoica, I., Zaharia, M.: Above the Clouds:
A Berkeley View of Cloud Computing. Tech. Rep. UCB/EECS-2009-28, EECS
Department, University of California, Berkeley (Feb 2009)

3. Baur, D., Wesner, S., Domaschka, J.: Towards a Model-based Execution Ware
for Deploying Multi-Cloud Applications. In: Proceedings of the 2nd International
Workshop on Cloud Service Brokerage September 2014 (2014)

4. Binz, T., Breitenbücher, U., Haupt, F., Kopp, O., Leymann, F., Nowak, A., Wag-
ner, S.: OpenTOSCA - A runtime for TOSCA-based cloud applications. In: Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial Intelli-
gence and Lecture Notes in Bioinformatics). vol. 8274 LNCS, pp. 692–695 (2013)

5. DMTF: Cloud Infrastructure Management Interface (CIMI) Model and RESTful
HTTP-based Protocol (2013)

6. Domaschka, J., Kritikos, K., Rossini, A.: Towards a Generic Language for Scala-
bility Rules. In: Proceedings of CSB 2014: 2nd International Workshop on Cloud
Service Brokerage (2014 (To Appear))

7. Ferry, N., Chauvel, F., Rossini, A., Morin, B., Solberg, A.: Managing multi-cloud
systems with CloudMF. In: Solberg, A., Babar, M.A., Dumas, M., Cuesta, C.E.
(eds.) NordiCloud 2013: 2nd Nordic Symposium on Cloud Computing and Internet
Technologies. pp. 38–45. ACM (2013)

8. Goldschmidt, T., Jansen, A., Koziolek, H., Doppelhamer, J., Breivold, H.P.: Scal-
ability and Robustness of Time-Series Databases for Cloud-Native Monitoring of
Industrial Processes. In: 2014 IEEE 7th International Conference on Cloud Com-
puting, Anchorage, AK, USA, June 27 - July 2, 2014. pp. 602–609 (2014)

9. Je↵ery, K., Houssos, N., Jörg, B., Asserson, A.: Research information management:
the CERIF approach. IJMSO 9(1), 5–14 (2014)

10. Kritikos, K., Domaschka, J., Rossini, A.: SRL: A Scalability Rule Language for
Multi-cloud Environments. In: Cloud Computing Technology and Science (Cloud-
Com), 2014 IEEE 6th International Conference on. pp. 1–9 (Dec 2014)

11. Lakshman, A., Malik, P.: Cassandra: A Decentralized Structured Storage System.
SIGOPS Oper. Syst. Rev. 44(2), 35–40 (Apr 2010)

12. Morin, B., Barais, O., Jezequel, J.M., Fleurey, F., Solberg, A.: Models@ Run.time
to Support Dynamic Adaptation. Computer, IEEE 42(10), 44–51 (2009)

13. OASIS: Topology and Orchestration Specification for Cloud Applications Version
1.0 Committee Specification Draft 08 (2013)

14. Open Grid Forum: Open Cloud Computing Interface - Core (2011)
15. Parák, B., Šustr, Z.: Challenges in Achieving IaaS Cloud Interoperability across

Multiple Cloud Management Frameworks. In: UCC 2014: 2014 IEEE/ACM 7th
International Conference on Utility and Cloud Computing. pp. 404–411 (2014)

16. Quinton, C., Haderer, N., Rouvoy, R., Duchien, L.: Towards multi-cloud configura-
tions using feature models and ontologies. In: Proceedings of the 2013 International
Workshop on Multi-cloud Applications and Federated Clouds. pp. 21–26. Multi-
Cloud ’13, ACM, New York, NY, USA (2013)

67

Design and Implementation Issues of a Secure
Cloud-Based Health Data Management System

Frank Steimle1, Matthias Wieland1, Bernhard Mitschang1, Sebastian Wagner2,
and Frank Leymann2

1 Universität Stuttgart, Institute of Parallel and Distributed Systems,
70569 Stuttgart, Germany

firstname.lastname@ipvs.uni-stuttgart.de

http://www.ipvs.uni-stuttgart.de/

2 Universität Stuttgart, Institute of Architecture of Application Systems,
70569 Stuttgart, Germany

firstname.lastname@iaas.uni-stuttgart.de

http://www.iaas.uni-stuttgart.de/

Abstract. eHealth gains more and more interest since a lot of end-user
devices which support health data capturing are available. The captured
data has to be managed and securely stored, in order to access it from
di↵erent devices and to share it with other users such as physicians.
The aim of the German-Greek research project ECHO is to support the
treatment of patients, who su↵er from Chronic Obstructive Pulmonary
Disease (COPD), a chronic respiratory disease. Usually the patients
need to be examined by their physicians on a regular basis due to their
chronic condition. Since this is very time consuming and expensive, we
develop an eHealth system which allows the physician to monitor patients
conditions remotely, e.g., via smart phones. Therefore, a secure data
processing and sharing eHealth platform is required. In this paper we
introduce a health data model and a corresponding platform-architecture
for the management and analysis of the data provided by the patients.
Furthermore, we show how the security of the data is ensured and we
explain how the platform can be hosted in a cloud-based environment
using the OASIS standard TOSCA, which enables a self-contained and
portable description and management of cloud-services.

Keywords: eHealth, mHealth, cloud data, data analysis, security

1 Introduction

The usage of eHealth (electronic health) technologies for improving the health
care gains more and more attention in recent years. Providing health applications
on mobile phones, is often referred to as mHealth (mobile health) and builds
on top of eHealth infrastructures. As more and more mobile health applications
running on devices like smart watches, fitness bands or smart phones get available,
the need for processing and storing the produced health data increases. Here

68

2 Design Issues in Health Data Management

specialized systems have to be developed for eHealth solutions that provide
advanced data security and consider regulations given in the health care domain.

In the ECHO project we develop an eHealth system that is used to monitor
patients, who su↵er from Chronic Obstructive Pulmonary Disease (COPD).
COPD is an obstructive lung disease characterized by chronically poor airflow
worsening over time. The most noticeable symptoms are shortness of breath,
cough, and sputum production. Tobacco smoking and air pollution are the major
causes. The purpose of the health services delivered by the ECHO-Platform
is to improve quality of life and reduce exacerbations of COPD patients. The
methodology applied for COPD is described as follows: The patient provides
answers to predefined questions on a daily basis, such as: Did your shortness of
breath increase? or Did your cough increase? The answers to these questions
are stored in the ECHO-Platform and are made available to the physician.
The condition of the patient is automatically analyzed and notifications are
generated for the patient and the physician. Furthermore, the physician can send
recommendations or treatment advises to the patient. For further imformation,
please refer to [4].

To enable such an eHealth system an underlying active Health Data Manage-
ment System (aHDMS) is needed that securely stores the health data, analyses
them and provides the notifications. We derived design and implementation
requirements for an aHDMS and considered them during the realization of the
ECHO-Platform.

1. Data privacy and security: Health data are sensitive data and have to be
protected well. Hence, security is a key issue in an aHDMS. The aHDMS has
to secure the data with technologies like encryption, secure authentication
and access control, SQL injection prevention, data input verification, and
fine grained access control based on tuples (see Section 3 and Section 4).

2. Support of various user roles: Di↵erent roles of users have to be supported
to separate patients from physicians (see Section 4).

3. Di↵erent access channels: The users have to be enabled to access the
aHDMS with an end-device of their choice. Hence, both native applications
for mobile devices and web-based applications have to be supported by the
aHDMS (see Section 3). The data presentation has to be tailored for each
end-device accordingly. Furthermore, the aHDMS has to support the parallel
access of multiple users at the same time without side e↵ects.

4. Support of multiple hospitals: In order to adapt the aHDMS to di↵erent
hospitals the aHDMS has to support multi-tenancy, that is it is easy and fast
to configure (see Section 5).

5. Cloud readiness: For a fast operational readiness of the aHDMS automatic
management and deployment of the aHDMS has to be provided with cloud
tooling (see Section 5).

6. Easy development of applications: To support the development of new
applications using the aHDMS a central interface that aggregates the access
to all components in a uniform API, e.g., by o↵ering REST operations, should
be provided. Furthermore, tool support is needed for providing a good API

69

Design Issues in Health Data Management 3

documentation, a test bed for query execution, input verification and test sets.
This is needed to ensure a good code quality with less bugs and vulnerabilities
(see Section 3).

7. Scalability: The aHDMS has to be scalable in order to provide a good user
experience even if many users access the aHDMS at the same time. In the
long run, the data managed by the aHDMS is constantly growing. Hence,
also scalability regarding the data size has to be ensured (see Section 3).

8. Automatic health data analysis and active behavior: The data pro-
vided by the patient has to be analyzed in order to generate notifications
about changes or issues that could lead to exacerbations (see Section 4).

9. Data quality: The data quality has to be managed in the aHDMS and has
to be considered in the applications. Issues in this area have been described
in [16] and have to be implemented by the aHDMS (see Section 4).

10. Extensible service-based architecture: The definition of new complex
services in the aHDMS should be supported based on orchestration of existing
services like Health Services, which manages the patients’ data, or Analytic
Services, which analyze the patients’ data (see Section 5). These orchestrations
could be realized with BPEL flows.

All these issues have to be considered in an implementation of an aHDMS.
The main contribution of this paper is to exemplary show how to deal with these
issues by describing how our prototype–the ECHO-Platform–meets these issues.
The focus of this paper is the data management and the implementation of the
platform. The frontend applications to access the ECHO-Platform as end user,
e.g., as patient or physician, are not described in further detail. The paper is
structured as follows: In Section 2 the related work is presented. Then, we show
the overall architecture of the ECHO-Platform in Section 3. Here, we show how
the ten requirements introduced above are solved. Furthermore, we explain the
secure API for accessing the ECHO-Platform. In Section 4 the database model
and methods to secure the data are presented. Section 5 shows how to make the
ECHO-Platform cloud-ready. Finally, Section 6 gives a summary of the paper.

2 Related Work

Several studies have shown that mobile technologies can be used to monitor
patients in a cost-e�cient manner. In [9] a mobile assisted home care model
is developed in order to monitor and manage COPD conditions of patients at
home. The system is a mobile application that allows patients to report their
COPD symptoms. Furthermore, a web portal allows physicians to manage and
analyze patients data and give feedback when necessary. A probabilistic model to
automatically assess the risk of COPD aggravation based on collected symptoms
is presented in [10]. The ECHO system has a similar goal but di↵ers considerably
in the system architecture. Our system architecture is clearly separated into a
platform for health data management and the frontends for the patients and
physicians. The advantage is that the frontend and backend can be separately

70

4 Design Issues in Health Data Management

designed, implemented, used, secured, and deployed. This provides a higher degree
of flexibility. Another capability of the ECHO-Platform is to support analytic
data processing combined with active behavior by means of cloud computing
technologies.

There are many cloud-based systems available for storing electronic medical
records in health data models which can be accessed trough the Internet. Open-
MRS [15] is a web-based, open source electronic health platform. It is developed
and supported by a worldwide community and based on Java. OpenMRS provides
a good look and feel and is easy to use [5]. It is focused on documentation of
consultations and hence only supports accounts for physicians and is not supposed
to be used by patients or users themselves. The aim of the ECHO-Platform is to
provide access to di↵erent user roles and for multiple purposes, where the first
application domain is COPD. Casisis [1] is similar to OpenMRS–an open source,
web-based, patient data management system–which focuses on management of
cancer data. Nosh [8] is another open source system, web-based system and pro-
vides the look and feel of a desktop application in the web-browser. It supports
accounts for patients and physicians and it supports communication between the
actors, e.g., by providing an online calendar where patients can arrange their
appointments with the physician. None of these open-source systems do support
all issues we identified, but they could be extended since the source code is
available. However, they are tightly coupled to a certain use case and provide
frontends exclusively for that use case. Furthermore, they do not provide a unified
API and therefore no third-party vendors can implement additional applications
using their existing patient data. Last but not least the related systems do not
provide support for automatic provisioning as a cloud-service in di↵erent cloud
environments. The systems have to be installed manually. Only the Nosh “In The
Cloud” o↵ering provides an Amazon EC2 cloud image that can be instantiated
in the Amazon Cloud but not in a local cloud environment.

Commercial cloud-based health data systems like Microsofts HealthVault [2]
allow end users to create accounts to store health and fitness data for themselves
and their family. This data can be shared with others (e.g., a physician). Being
closed source and installed in a public cloud system the patients and physicians
have no control over their health data. In contrast, the ECHO-Platform can be de-
ployed as a cloud service in private cloud environments, e.g., in the infrastructure
of a hospital. This is important for data security reasons and flexibility.

3 Active Health Data Management System Architecture

In the following we describe the overall architecture of the ECHO-System
(see Fig. 1) first. Hereby we detail on the Health Data Management Layer
(ECHO-Platform) which implements an active Health Data Management System
(aHDMS). Then we focus on how to interface the Health Data Management Layer
via RESTful API techniques.

71

Design Issues in Health Data Management 5

Push%
No(fica(on%
(&%SMS)%

Smartphone%

Health%Server%(Cloud%Service)%

Applica'on*
Layer:*

ECHO*Frontend*

Health*Data*
Management*

Layer:*
ECHO*

Pla=orm*

Orchestra(ons%

Health%API%(RESTful)%

Management%&%Provisioning%Engine%

Health%
Data%

Analy(cs%Analy(cs%Analy(cs%

Pa(ents‘%
App%

Health%
Status%

Enquiries%

Health%
Risk%

(&%SMS)%
Enquiries%

Recommenda(ons%

Gesund
heitsK%
Dienste%

Gesund
heitsK%
Dienste%

Health%
Services%

Doctors‘%
App%

Doctors‘%
Portal%

Pa(ents‘%
Portal%

Smartphone% Browser% Browser%

Enquiries% Enquiries%

Fig. 1. Architecture of the ECHO-System Prototype

3.1 Overall Architecture

In this section, the architecture of an aHDMS that satisfies the issues described in
Section 1 is presented. Regarding Issue 5 the architecture has to be separated into
a cloud-based platform that stores the health data and an easy to install frontend.
Our prototypical implementation of the aHDMS–the ECHO-Platform–is shown
in Fig. 1 and is based on our previous work [4]. As mentioned above, it consists
of two layers: an “Application Layer” and a “Health Data Management Layer”.

The “Health Data Management Layer” represents the “Health Server”, which
consists of di↵erent components. The “Health Server” can be modeled as a
TOSCA [14] cloud service. TOSCA stands for Topology and Orchestration Spec-
ification for Cloud Applications and is an OASIS standard that enables a self-
contained and portable description of applications and their management func-
tions. Using the OpenTOSCA platform this cloud service can be automatically
deployed in any supported cloud environment (e.g., OpenStack or Amazon EC2).
This is needed because of Issue 4 and 5, since this enables the automatic configu-
ration and deployment of the “Health Server” for multiple hospitals. The “Health
API” provides a unified access for the “Application Layer”. This is important
for Issue 5. This API follows the Representational State Transfer (REST) archi-
tectural style and simplifies the development of new applications by providing
a HTTP based REST interface. Furthermore, the REST-style API enables the
scalability of the aHDMS by using self-contained and stateless messages that
can be load-balanced between di↵erent servers. Therefore, using REST for im-

72

6 Design Issues in Health Data Management

plementing the Health API supports Issues 5 and 7. “Health Data” stores both,
the patients’ health data (like insurances, prescriptions, or examination results)
and physicians’ recommendations. Since data quality is vital concerning health
data, Issue 9 has to be followed. Furthermore, since health data are very sensitive
the system has to prevent unauthorized data access and has to be encrypted.
Therefore, the user roles doctor and patient are introduced. Users with the
role doctor can only access patients data if the patient is assigned to them.
Furthermore, users with the role patient can only access their own data. This
supports Issue 2. “Health Services” manage patients’ data and are made available
to the “Application Layer” via the “Health API”. Since the system should notify
the patient and the physician if the condition of the patient declines, “Analytic
Functions” are needed. These “Analytic Functions” should automatically analyze
the data that is passed to the “Health Services”. Existing Analytic Functions are
implemented using event-based function calls. In future work, we may integrate
data mining tools for advanced analytic functions. Hence, the “Analytics Func-
tions” support autonomic and active behavior, i.e., Issue 8. Both “Health Services”
and “Analytics Functions” can be composed by “Orchestrations”. Therefore,
it is easy to build new complex services just by combining existing ones. This
leads to an easily extendable service-based architecture that supports Issue 10.
All mentioned components are managed by the “Management and Provisioning
Engine” OpenTOSCA.

The “Application Layer” includes mobile applications for patients and physi-
cians as well as web portals which can be used to access and edit data.

3.2 RESTful Interfacing the Health Data Management Layer

The Health API is the interface between application layer and cloud environment.
It can be used to store data and query the system. To simplify application
development the Health API follows the REST architectural style. In contrast
to e.g., SOAP, RESTful APIs can be easily integrated because of their unified
interface. The use of REST helps solving Issue 6.

The resources used by the Health API are depicted in Fig. 2. There are so-
called collection resources such as accounts or patients which pool all resources of
this type. Using the collection resources one can receive all items of this collection
via HTTP GET, whereas a new element can be created by using HTTP POST.
An item can be retrieved using HTTP GET, updated by HTTP PUT and deleted
by HTTP DELETE command.

The following resources need to be exchanged between the application layer
and the health data management layer:

Accounts: This resource holds all account-specific information. This includes
username, password, and notification settings, like notification mode and
notification time. The user roles (and therewith the access rights) are also
associated with an account.

Notifications: The notifications resource holds the history of notifications for
the current user. Please note that there is no single notification resource, as
no altering of notifications is intended.

73

Design Issues in Health Data Management 7

Notifications PatientsAccounts

Account Patient
1

1

111

* *

Questions

Question

1

* 0..11

Subresources of Patient

CATs CCQs ReadingsDaily Reports Charlsons Treatments Death

Daily Report CAT CCQ Charlson Reading Treatment

1 1 1 1 1 1

* * * * * *

11 1 1 1 1 1

Fig. 2. Resources of the Health API

Patients: The basic patient data like name, sex, birthdate, or address and the
responsible physician is stored in the patients resource.

Subresources of a Patient-Instance: Besides basic patient data physicians
also need data like prescriptions or examination results. This data could
be also saved in the patients resource, but this leads to a patients resource
which gets bigger over time and this would be very tra�c intensive at some
point in time. Another possibility is to introduce stand-alone resources for
prescriptions or examination results. But since we think of a resource as a
document, which should contain only the needed information, this would
also not be feasible. A physician does not want to see all the prescriptions
of all patients he did in the last weeks but of a specific patient. To support
this requirement, we decided to introduce subresources. This means that
a collection of a subresource can only be used in the context of a specific
patient. The following subresources are available:

– “Daily Reports” contains all reports a specific patient has given. A single
resource contains the answers to the questionnaire and some measure-
ments like temperature or heart rate, if the patient submitted these
values.

– To treat patients physicians often need access to illness-specific data. In
case of COPD physicians need access to data like the COPD Assessment
Test (“CAT”) and the COPD clinical questionnaire (“CCQ”). CAT and
CCQ are standardized questionnaires, which describe how the patient is
influenced by the disease in his daily life. They consist of several questions
and the result is computed based on the answers given.

– The “Charlson” Index describes how likely it is that the patient dies
because of other diseases.

– The “Readings” subresource contains all measurements a physician has
determined in one examination.

– Physicians can also use the system to track all “Treatments” a specific
patient has received.

74

8 Design Issues in Health Data Management

– If a patient dies, his physician can save the cause of his “Death” for
analytic purposes.

Questions: In order to easily adapt the mobile applications to a new Health
Data Management Layer, the questions resource provides the daily questions
which are valid for this instance.

To support Issue 6 the Health API uses Swagger1. Swagger is a project that aims
on describing RESTful APIs with JSON objects to support easier discovery of
the API through machines and humans. Swagger also enables the developer to
define models of the used resources, which can be used for input validation or
documentation. In combination with Swagger-UI the Swagger data can be used
to interactively test and use the API.

Authen'ca'on+

Input+Parser+

Health+Service+ Response+

Error+Handling+

Request+

Er
ro
r+

Error+Message+

Fig. 3. Stack for calling a Health Service through the Health API

The Health API in the ECHO-Platform is implemented using node.js2 with the
express framework3. The express framework allows to dispatch incoming requests
through a stack of processing functions. Fig. 3 shows the stack for calling a
“Health Service” through the “Health API”. In the first step the “Authentication”
checks if the user can be authenticated. To use the “Health API” an access token
is required, which has to be passed via the HTTP Authorization header field.
It can be obtained by POSTing username and password to the token endpoint.
The token endpoint checks the credentials and issues an access token and a
refresh token, if the user provided valid credentials. The token itself is a JSON
Web-Token (JWT). This means it is a Base64 representation of a digitally signed
JSON Object. The token contains the account id of the user, his role and a
timestamp, which describes when the token expires. If the token has expired,
it can easily be renewed by sending the one-time refresh token to the token
endpoint. Hence, the “Authentication” has to check if the token is still valid or if
it was altered. In the next step the request body is parsed into a JSON Object
by an “Input Parser”. The “Health Service” eventually processes the request

1 http://swagger.io/ 2 http://www.nodejs.org/ 3 http://expressjs.com/

75

Design Issues in Health Data Management 9

and sends the response. The “Health Service” also does input validation and
authorization checks using the database. If an error occurs in one of these steps,
it is thrown and handled by the error handler. This interrupts the processing of
the stack.

4 Health Data Management

In this section, we describe the Health Data Model and how the security of this
data is ensured. For the Health Data Management we need a mature relational
database system, like MySQL, which supports security features like views and
which enforces data integrity.

4.1 Health Data Model

The Health Data Model is shown in Fig. 4. The key symbol stands for a primary
key, red symbols represent foreign keys, and blue diamonds represent NOT NULL
columns. The “accounts” table represents all users of the system. For every user
the login information and the notification settings are saved. Furthermore, every
user has a role (patient, doctor, or admin) which determines his access rights
in the system. Accounts with the role admin are supervisor accounts which can
e.g., transfer a patient to another physician or create a new doctor-account. But
an admin-account has no access to any medical data.

Notifications are saved in the “notifications” table. A notification basically
consists of a recipient and a type. Type is an integer value (in order to reduce
the data volume), where e.g., 0 means Call your physician!. For every created
patient notification there is also a notification for the physician, e.g., Your patient
X should call you!.

In the “patients” table basic patient data like name, address, birthday, and
sex are saved. Triggers make sure that new entries in the patient table can only
be created when they are linked to a valid patient-account. They also take
care that a patient can only be assigned to a valid doctor, i.e., a user having a
doctor-account.

The remaining tables hold patient specific results. The table “cats” stores
the results of the COPD Assessment Tests and “ccqs” the results of the COPD
Clinical Questionnaire. These are standardized questionnaires which consist of a
number of questions, which can be answered with an integer value. Using these
values the total results of the questionnaires can be computed. The “charlsons”
table contains the Charlsons Index for each patient. This index tracks if the
patient su↵ers from common severe illnesses and expresses the risk that the
patient dies because of these illnesses. Each illness is mapped to an integer value
and the index represents the aggregation of these values. In the table “deaths”
the cause of death and the date are saved. This data can be used later on for
analytics. The tables “readings” and “treatments” save the examination results
and the medication a physician prescribes. Readings is not fully shown in Fig. 4
in order to keep the figure neat. The daily data input is stored in “dailyreports”.

76

10 Design Issues in Health Data Management

Fig. 4. Detailed Health Data Model (modeled with MySQL Workbench)

77

Design Issues in Health Data Management 11

This table stores the answers to the questionnaire, which the patients get on
their mobile phone. Furthermore, we store measures like temperature and heart
rate, if the patient supplied them.

This data can be used to run simple analytics. If the health state of a patient
aggravates, his physician is notified and can react appropriately. The analytics of
the daily data input is rule-based. Daily input is given based on the following
questions:

Q1: Did your shortness of breath increase?
a: Can you do the daily work you did before?
b: Can you support yourself (go to toilet, shower)?
c: Can you walk?

Q2: Did your cough increase?
Q3: Did your sputum change?

a: Is your sputum yellow?, b: Is it green?, c: Or bloody?
Q4: Did you have chest pain or discomfort?
Q5: Did you take the same medications? Or increased them?

Questions labeled with a, b or c should only be answered when the corre-
sponding main question was answered with ”yes”. With these answers given and
the following rules, the system can create notifications to inform the patient and
his physician (Issue 8).

1. Two days in a row Q1 answered “yes” ! Notification “Call your physician!”
2. Q1, Q2 and Q3 answered with “yes” ! Notification “Call your physician!”
3. Q3a or Q3b answered with “yes” ! Notification “Call your physician!”
4. Q3c answered with “yes” ! Notification “Go to the hospital!”
5. Two days in a row Q5 “yes” ! Notification “Call your physician!”
6. Questions not answered for 2 or 10 days ! Notification “Fill in your Report!”

4.2 Health Data Security

To secure the Health Data, we use the access management of the database
combined with the role system introduced above. Every time a new account is
created, the Health Data Management Layer creates a new database user. This
user can be used by the Health Services when they connect to the database to
query data. Based on the role of the new account, the new database user gets
access rights on tables and views. Since the used MySQL does not support user
roles, the rights are granted by a stored procedure which loads the permissions
from the database.

Instead of creating a set of views for every user, we use dynamic views which
filter data based on the currently logged in database user. This is done by naming
the database accounts according to the id assigned to the newly created account.
This means if a new account gets the id 5, the corresponding database user
would also have the name 5. With this technique one can easily create views that
compare the username of the currently logged in database user with e.g., the

78

12 Design Issues in Health Data Management

physician’s account id in the patients table to filter only those patients who are
assigned to this physician. The role based technique and the usage of multiple
database users support Issues 1 and 2. Indirectly, Issue 3 is supported, too, since
the developers of the web/mobile applications have not to take care of filtering
unwanted data.

To prevent SQL injections and since node.js doesn’t support prepared state-
ments, we use MySQL’s stored procedures, which use the prepared statements
provided by MySQL. Hence, we implemented a stored procedure for every avail-
able Health Service. These procedures are also used to bundle several SQL
statements into one call. That is to support the asychronous node.js program-
ming model, which would ”jump” back into the Health Service after every issued
statement, just to issue the next statement.

5 Automated Provisioning and Management of the
Health Data Management Layer

The ECHO-Platform must be automatically deployable in a variety of IT environ-
ments of di↵erent hospitals (Issue 4). Typically IT environments in hospitals are
IaaS-based private clouds based on virtualization technologies. Deployment in
such environments is possible with our approach using OpenTOSCA. PaaS-based
provisioning could be supported too. However, PaaS platforms are usually not
available in hospital environments. Furthermore, management tasks, such as
backup creation or workload-dependent scaling of the ECHO-Platform (Issue
5) must be also facilitated in an automatic manner. To enable automatic provi-
sioning and management of the ECHO-Platform the TOSCA standard is used
to describe the platform and their management functions in a machine-readable
and self-contained (portable) manner. The TOSCA runtime environment can
process this description and perform the management operations in a fully or
semi-automatic way.

The main artifact of a TOSCA description is the application topology. The
topology is a directed graph where the nodes represent the components re-
quired to run the application and the edges the relationships between these
components. Figure 5 shows the topology of the ECHO-Platform (modeled using
Vino4TOSCA [6]). There each node has a name and a type (in brackets). The
relationships define dependencies between the components. The relationship
“hostedOn” specifies for instance that the “Health API” and the “Health Service”
are deployed on a “node.js 10.2” platform, which is, in turn, hosted on an Ubuntu
server that runs on an OpenStack virtual machine. On the same Ubuntu server
also a WSO2 BPEL engine is installed that provides the execution environment
for the “Service Orchestration”. This service orchestration is implemented as
BPEL process [12] orchestrating the execution of the “Health Service”, the “An-
alytics Service”, and other external Services. The “calls” relations between this
process and the two services specifies that the process executes the functions
provided by the services. Accordingly, the service functions are called from the
“Health API”. The “Analytics Service” is hosted on a separate stack to scale it

79

Design Issues in Health Data Management 13

out individually if sophisticated analytics tasks have to be performed that result
in heavy workload. The services access the “Health Data DB” that contains the
actual health data. Note that the components in the stack can be exchanged by
other components to meet the infrastructure requirements of each hospital where
the aHDMS has to be provisioned on. The OpenStack virtual machines could
be for instance replaced by VMware machines if the designated hospital is using
VMWare instead of OpenStack.

Depending on its type, a component within the topology provides di↵erent
properties and management operations. The node type “Operating System”
provides for instance management operations to install software, to perform
backups etc. The “Apache Tomcat” node type, on the other hand, provides
operations to start or stop services deployed on it. This node type also defines a
property “port” that can be set to the port number where the Tomcat listens
for connections (e.g., port 8080). The implementation of management operations
is realized by implementation artifacts, which can be for instance Web services
or scripts. Deployment artifacts present the actual piece of software that is
being managed, e.g., the Ubuntu operating system, the MySQL database or the
JavaScript code of the “Health API”. The actual provisioning and management
tasks are implemented by BPEL processes (Issue 10). The provisioning plan
orchestrates the execution of management operations provided by the nodes to
set up the complete aHDMS in an automatic manner. The plan sets up the three
required virtual machines along with the operating systems. Then it installs the

(SQLConnec*on),

OpenStack,VM,
(Server),

OpenStack,VM,
(Server),

OpenStack,VM,
(Server),

Ubuntu,14.04,
(Opera*ng,
System),

Ubuntu,14.04,
(Opera*ng,
System),

Ubuntu,14.04,
(Opera*ng,
System),

Node.JS,0.10.25,
(Node.JS),

Tomcat,7.0,
(ApacheTomcat),

MySQL,5.5,
(DBMS),

Analy*cs,Service,
(Axis2,Web,
Service),

Health,Data,DB,
(Database),

WSO2,
(BPEL,Engine),

Service,
Orchestra*on,
(BPEL,Process),

Health,API,
(JavaScript),

Health,Service,
(JavaScript),

(SQLConnec*on),

(calls),

(calls),

(calls),

(hostedOn), (hostedOn),

(hostedOn),(hostedOn),
(hostedOn),

(hostedOn), (hostedOn),

(hostedOn),

(calls),

(hostedOn),

(calls),

(hostedOn), (hostedOn),(hostedOn),

Fig. 5. TOSCA Topology of the ECHO-Platform

80

14 Design Issues in Health Data Management

software (node.JS, WSO2, etc.) components and configures them according to the
property values of the respective nodes. In the future, management plans will be
added that implement watchdog and scalability functionality in order to improve
the stability and resiliency of the aHDMS. The topology, the implementation
and deployment artifacts (or the references to these artifacts [13]) and the plans
are bundled into a Cloud Service Archive (CSAR).

As management environment for the aHDMS the OpenTOSCA container is
used which provides the runtime environment for the implementation artifacts
and plans bundled in the CSAR. It also manages configuration data such as
the installation status of components, which ports are used and so on. A more
detailed description about the architecture of the OpenTOSCA container can be
found in [3]. The container is part of the OpenTOSCA ecosystem4 that provides
also the modeling tool Winery [11] for creating TOSCA topologies such as the
one shown in Fig. 5. Winery also assists the user in bundling the topology, along
with it plans and artifacts to a CSAR. Furthermore, in future work policies could
be attached to the CSAR or single topology nodes. This can be used to encrypt
the database using the encryption policy [17]. The service archives can be directly
deployed on the OpenTOSCA container and the provisioning and management
plans can be instantiated by the user with the self-service portal Vinothek [7].

6 Summary and Future Work

While implementing the ECHO-Platform—a secure and cloud-enabled active
Health Data Management System (aHDMS)—we identified a set of design and
implementation issues. This paper first describes these issues and furthermore
explains how we solved them in our prototypical implementation. The ECHO-
Platform is an open-source aHDMS that can be automatically deployed in di↵erent
cloud environments, but is still under control of the authority that deployed the
system, e.g., a hospital. In contrast to existing cloud-based health systems, e.g,
Microsoft Health Vault [2], the control on the health data is given away to the
external system.

Our health data model was designed to support data exchange from/to the
HL7 (Health level 7) standard. Hence, future work deals with building adapters
for this data exchange as a proof of concept. In the future, it is also planned to
conduct data mining on the stored health data in order to find new knowledge
about diseases and their courses and treatments in general, as well as on an
individual patient-aware level. However, this can only be done with the consent
of the patient and in an anonymized way. Afterwards, the new general knowledge
can than be applied individually for each patient, in order to improve the health
care by giving hints to the physician.

Acknowledgment: This research and development project is funded by
the German Federal Ministry of Education and Research (BMBF) within the
Framework Concept “Innovationen mit Dienstleistungen” (01XZ13023G) and is

4 http://www.iaas.uni-stuttgart.de/OpenTOSCA/

81

Design Issues in Health Data Management 15

managed by the Project Management Agency at the German Aerospace Center
(PT-DLR) Unit “Work Design and Services” (PT-AD).

References

1. Caisis: An Open Source, Web-based, Patient Data Management System to Integrate
High Quality Research with Patient Care, http://www.caisis.org/

2. Microsoft HealthVault, https://www.healthvault.com
3. Binz, T., et al.: OpenTOSCA – A Runtime for TOSCA-based Cloud Applications.

In: Proceedings of 11th International Conference on Service-Oriented Computing
(ICSOC’13). LNCS, vol. 8274, pp. 692–695. Springer Berlin Heidelberg (Dec 2013)

4. Bitsaki, M., et al.: An Integrated mHealth Solution for Enhancing Patients Health
Online. In: Lackovi, I., Vasic, D. (eds.) 6th European Conference of the International
Federation for Medical and Biological Engineering, IFMBE Proceedings, vol. 45,
pp. 695–698. Springer International Publishing (2015)

5. Borner, T., Balatzis, G., Röhrdanz, O.: Vergleich von Gesundheitsdatenmod-
ellen. Fachstudie Softwaretechnik: Universität Stuttgart, Institut für Parallele
und Verteilte Systeme, Anwendersoftware (Sept 2014)

6. Breitenbücher, U., et al.: Vino4TOSCA: A Visual Notation for Application Topolo-
gies based on TOSCA. In: Proceedings of the 20th International Conference on
Cooperative Information Systems (CoopIS 2012). Lecture Notes in Computer
Science, Springer-Verlag (September 2012)

7. Breitenbücher, U., et al.: Vinothek – A Self-Service Portal for TOSCA. In: ZEUS
2014. CEUR Workshop Proceedings, vol. 1140, pp. 69–72. CEUR-WS.org (Mar
2014)

8. Chen, M.: NOSH (New Open Source Health) ChartingSystem, http://www.

noshchartingsystem.com/

9. Ding, H., et al.: A Mobile-Health System to Manage Chronic Obstructive Pulmonary
Disease Patients at Home. In: Engineering in Medicine and Biology Society (EMBC),
2012 Annual International Conference of the IEEE. pp. 2178–2181 (Aug 2012)

10. van der Heijden, M., et al.: An autonomous mobile system for the management of
COPD. Journal of Biomedical Informatics 46(3), 458 – 469 (2013)

11. Kopp, O., et al.: Winery – A Modeling Tool for TOSCA-based Cloud Applications.
In: Proceedings of 11th International Conference on Service-Oriented Computing
(ICSOC’13). LNCS, vol. 8274, pp. 700–704. Springer Berlin Heidelberg (Dec 2013)

12. OASIS: Web Services Business Process Execution Language Version 2.0 – OASIS
Standard (2007)

13. OASIS: Topology and Orchestration Specification for Cloud Applications (TOSCA)
Primer Version 1.0 (Jan 2013), http://www.tosca-open.org

14. OASIS: Topology and Orchestration Specification for Cloud Applications (TOSCA)
Version 1.0 Committee Specification 01 (Nov 2013), http://www.tosca-open.org

15. OpenMRS: Open Medical Record System, http://openmrs.org/
16. Orfanidis, L., et al.: Data Quality Issues in Electronic Health Records: An Adapta-

tion Framework for the Greek Health System. Health Informatics Journal 10(1),
23–36 (2004)

17. Waizenegger, T., et al.: Policy4TOSCA: A Policy-Aware Cloud Service Provisioning
Approach to Enable Secure Cloud Computing. In: Meersman, R., et al. (eds.) On
the Move to Meaningful Internet Systems: OTM 2013 Conferences. Lecture Notes
in Computer Science (LNCS), vol. 8185, pp. 360–376. Springer Berlin Heidelberg,
Heidelberg (Sept 2013)

82

A PaaSage to Multi-Site Security for Clouds

Tom Kirkham1, Kyriakos Kritikos2, Bartosz Kryza3, Philippe Massonet4, Franky
Vanraes5

1 Science and Technology Facilities Council (STFC), Chilton, United Kingdom
(Tom.Kirkham@stfc.ac.uk)

2 ICS-FORTH, Crete, Greece
(kritikos.kiriakos1@gmail.com)

3 AGH, Krakow, Poland
(bkryza@agh.edu.pl)

4 CETIC, Gosselies, Belgium
(philippe.massonet@cetic.be)

5 BE.WAN, Waterloo, Belgium
(Franky.VANRAES@bewan.be)

Abstract. Taking a model driven approach catering for automation and integra-
tion capabilities, multi-site security can be applied to Clouds which consist of
various infrastructure services provided by different service providers. The pro-
posed solution ensures attribute based access control and security policy inte-
gration across multi-cloud deployments integrating providers using common
standards for identity management. Models are used as carriers of security in-
formation in terms of user attributes and security policies which are then used
for the proper authentication and authorization of user requests in the developed
PaaS platform. Models are also used to express domain specific security re-
quirements which are then satisfied during the deployment planning and provi-
sioning of applications that span multiple Cloud Providers.

1 Introduction

Cloud Computing architectures typically consist of provider centric implementa-
tions which offer a variety of cloud services at different levels (IaaS, PaaS & SaaS).
As a result, applications deployed on the Cloud are restricted to the specific security
infrastructure and metrics offered by the selected provider. This constitutes a problem
for developers who might desire at some time to either port their applications to an-
other provider or provide software services across multiple Cloud providers. In such
cases, providers have to support security solutions using metrics which are calculated
in different ways [1]. This metric flexibility is, however, a feature not currently of-
fered by the major cloud providers in the market. To this end, there is a need of a
platform able to support such a feature by also raising the abstraction level and having
the ability to satisfy the security requirements of application developers across differ-
ent clouds.

The PaaSage project has the vision to “specify once and deploy anywhere” Cloud
applications. Central to the realization of this vision is the development of a platform

83

to enable automated application deployment and adaptive execution across Cloud
Providers. Novelty from a security perspective is present where we apply typically
static policy enforcement technology in a dynamic way to control how Cloud provid-
ers are both selected and managed during execution.

The dynamicity is present when policies can adapt to for specific deployments tak-
ing into account quality metrics from the deployment model in relation to the compu-
tational environment in which they are hosted. These metrics relate specifically to
captured and maintained security requirements across the Cloud lifecycle. The
PaaSage solution spans he stage of requirement specification leading to policy formu-
lation and then the enforcement during reasoning, execution and monitoring phases of
the Cloud lifecycle.

To date no solutions exist to handle this automated evolution and management of
security requirements across the whole Cloud lifecycle. The innovation described in
this paper will reduce the ambiguity and gap between Cloud provider terms of service
and application requirements ensuring that the process of Cloud adoption is more
transparent for users. This step is significant as it will enable users of Clouds to better
integrate security requirements and thus develop trust in Cloud providers. The current
lack of flexibility and trust presented by Cloud Providers is a key stumbling block in
the adoption of Cloud technology particularly for the Small to Medium Enterprises
[2].

The rest of the paper is structured as follows. Section 2 provides background in-
formation for security metrics in clouds. Section 3 analyzes our security solution. A
particular use case on which our solution has been applied is detailed in Section 4.
The state-of-the-art is analyzed in Section 5. Finally, the last section concludes the
paper and draws directions for further research.

2. Security Metrics for Multi Clouds

The European Commission recently published a list of security metrics that can be
used to evaluate individual Cloud Providers [21]. From a standardization and integra-
tion perspective the documentation of these metrics constitutes a first but significant
step. If the Cloud is to be fully embraced by business it is widely recognized that trust
in Cloud Provision needs to improve. Transparency of data processing is significant to
achieve this trust and the ability to agree standard metrics to monitor security would
be a significant step.

However, security metrics by nature contain sensitive data and often are sourced
from within the Cloud Providers internal systems. Releasing this data for monitoring
or evaluation is a risk for the provider both in terms of security threat but also poten-
tial impact on reputation. In addition, experience in relation to Safe Harbour compli-
ance has demonstrated that often data released by a provider is not necessarily a true
reflection on reality [22].

PaaSage provides a means around this by the provision of the PaaSage Social Net-
work. This enables the sharing of data between application developers on experiences
with Cloud providers. Such data can extend to security and referring to the list men-

84

tioned in [21] we have extracted the main metrics we propose to use in our solution
which are shown in Table 1.

Table 1: Metrics Related to Security

Availability
Level of uptime (Often termed "availability")
Percentage of successful requests
Percentage of timely service provisioning requests
Average Response Time
Maximum Response Time
User authentication and identity assurance level
Authentication
Third party authentication support
User authentication and identity assurance level
Logging parameters
Log access availability
Logs retention period
Certifications applicable

 The list above has been filtered to include metrics that the end user can measure
and share with others on the Social Network. At first glance the metrics relate more to
quality of service than security in a traditional sense. However (as mentioned), such
low level security information is sensitive and unlikely to be shared by providers.
Using this level of data security provision can be measured and monitored albeit in a
higher level way. Thus, it is only a fraction of the metrics listed in [21]. It is likely
that this list of metrics will expand with the development of specific security monitor-
ing tools for use by application developers to gather data from Cloud Providers for
sharing on a portals such as the PaaSage social network. It is also fair to assume that
if enough user / market traction gets behind the need for clearer security metrics pro-
viders will react and provide them. However, this currently is not the case. We there-
fore have based our solution on metrics published by Cloud providers and the metrics
/ experiences that are likely to be shared between application developers.

3. Delivering Multi-Clouds

 In order to put into context how we apply our security metrics to span Multi-Cloud
environments, it is important to introduce the PaaSage approach to Multi-Cloud pro-
vision.

3.1 The PaaSage Platform

 Significantly the PaaSage platform promises the automatic deployment and provi-
sioning of applications in multi-cloud environments through the use of model-driven

85

techniques. It relies on a particular unification of Doman Specific Languages (DSLs)
called CAMEL for the description of the respective required information aspects.
CAMEL models are used at all phases of the cloud lifecycle from deployment to exe-
cution. Three main modules manage the application through the Cloud lifecycle
namely the Upperware, Executionware and Metadata database (MDDB).
 The Upperware module is responsible for the creation of concrete deployment
plans and the generation of low-level deployment actions. These are executed by the
Executionware module which deploys the respective application and monitors its
performance in one or more clouds. The Executionware is also capable of performing
adaptation actions when violations on metrics occur which trigger certain scalability
rules captured in the applications' CAMEL model.
 The MDDB module is responsible for the storage and retrieval of the CAMEL
models as they evolve during the Cloud application lifecycle via their handling by the
respective core PaaSage modules. Thus, the MDDB is not only exploited for indirect
communication between the various PaaSage modules/components but also maintains
the state of an application and feeds this knowledge directly into the PaaSage Social
Network.
 The PaaSage Social Networks exist for specific deployments of PaaSage. When
PaaSage is deployed it also associates itself with a PaaSage Social Network. As will
be explained later the Social Network can be dedicated to the instance of PaaSage or
shared across instances. The common thread that ties the Social Network to the
PaaSage implementation is the MDDB as this is used by the Social Network to refer-
ence and store models.
 Knowledge is built upon in the social network by integrating data from past and
current deployments in the MDDB with extra context and knowledge shared between
users. Thus, the Social Network is not only a consumer of knowledge from the
MDDB but also a primary source of added-value information for the MDDB. An
example of added-value knowledge to be produced is the proposal of a certain opti-
mized deployment model for a certain type of application which has been deemed to
have the best performance in the past.
 The flow of information between the different PaaSage modules is depicted in
Fig. 1. As it can be seen, there are two optimisation loops involved, the runtime and
design-time loop. During the runtime optimisation loop, the Profiler constructs the
profile of an application and hands it over to the Reasoner in order to discover the
best possible deployment plan that matches it by also satisfying all the respective user
requirements. The deployment plan is then sent to the Adapter which calculates the
minimum amount of low-level deployment actions that have to be executed in order
to go from the previous application deployment configuration to the new, proposed
one. These low-level actions are then executed by the Executionware which also mon-
itors the application performance and performs cloud-specific adaptation actions,
when SLO violation occurs, according to particular scalability rules. In case that the

86

limits of possible scaling are reached or there are no cloud-specific ways to react to a
certain situation, then the Executionware informs the Upperware in order to modify
the current application configuration. At all times, when scaling actions are per-
formed, the Adapter is notified in order to have a complete picture of the current de-
ployment structure of the application.
According to the design-time loop, the Upperware informs the application developer
when the requirements posed are over-constrained or cannot be handled any more
according to the current application and cloud context. In this case, the user require-
ments will have to be modified in order to reach a new and optimized deployment
configuration of the respective application.

Fig. 1 - The flow of information between the PaaSage modules

During the PaaSage control flow, security needs are enforced at both the mod-
ule/component and information/data level. At the information/data level, security
requirements in the form of security SLOs involving security metrics are incarnated in
the respective application CAMEL model. At the module/component level, security
requirements are used to guide the reasoning phase towards the production of a secu-
rity-compliant deployment plan as well as for the monitoring of the application secu-
rity levels and reacting when these levels are violated by executing particular adapta-
tion/scaling rules.

3.2 Architecture for Multi-Site Security

The PaaSage platform (not an application) can itself be deployed in different ways:
(a) multi-site or (b) single-site. Examples of multi-site PaaSage deployments include
domains where a single Social Network exists, used to specify application deploy-
ment requirements, which incorporates data sharing across potentially multiple do-

87

mains. In such global models, different PaaSage operators/providers exist within a
trust network akin to a federation (using certificates signed by trusted third parties).
Local/single-site deployments occur in information sensitive domains.

 Typical examples here include instances of PaaSage where one Social Network is
specific to the business of a large organization. In such cases the information is com-
mercially sensitive and enough knowledge may exist and be shared among the clients
of this organisation without the need to share with other installations. In this latter
case, there is actually no need and meaning to have the respective PaaSage operator in
any kind of federation as this operators does not share any information with the other
federation members.

The security solution for PaaSage comprises four main components as illustrated in
Figure 2.

Fig2: Main PaaSage Security Components

As illustrated in Figure 2, (a) Identity Provider - IdP: this component is responsible

for user authentication and for sending restrained user information (attributes) to those
services/components which require subsequent user authorization, (b) Policy Decision
and Enforcement Points - PEP/PDPs: these components are responsible for the actual
user authorization by checking the role played by the user (expressed in attribute to-
ken from IdP) and the respective organisation policies expressed in XACML [16], (c)
Service Endpoint: it is the main access point for a service/module/component offered
by a single-site instance of the PaaSage platform which exploits the authorization
mechanisms provided by the local PEP/PDP points to authorize the user access to
these services; (d) CDO Policy Store: it is a private CDO Server [24] with an underly-
ing database which is responsible for the storage of organisation models (covering
authentication & authorization information aspects) specified through the organisation
DSL. As XACML is a XML-based language, through the use of appropriate Eclipse
tools, it is also considered and handled as a DSL whose models (i.e., policies) are

88

stored in the CDO Repository. Organisation models describe organisation (which can
be a PaaSage operator or one of its clients) information, such as contact details and
types of services offered, user information including authorization data, such as cre-
dentials, as well as other important information artifacts, such as roles and allowed
actions, which can then be exploited in order to express authorization information in
terms of XACML policies. Thus, what we have achieved here is true integration be-
tween two security-oriented DSLs that allows us to capture and integrate both authen-
tication and authorization information.

The security architecture mirrors existing well established approach of policy
based security in distributed systems from organizations such as the Liberty Alliance
[23]. The CDO store acts as the MDDB store for CAMEL linking it to the wider
PaaSage community for knowledge sharing on policies (after removing sensitive in-
formation and just capturing particular policy patterns recurring in the cloud domain)
for Cloud deployments. Here, our specification of policy can be made on a broad
level not specific to Cloud providers and incorporating other constraints such as quali-
ty of service (i.e. if response rate dips it could be indication of security threat). This
differs from typical deployments where the XACML policy is often specified and
often limited to a particular domain and Cloud environment.

4 Use Case

The PaaSage project will be demonstrated via several use cases. In order to show-
case the security concerns handled in this paper, we will use the PaaSage Enterprise
Resource Planning (ERP) Use Case as an example. BE.WAN is a Belgian SME who
provides ERP based solutions largely to industry in Belgium. Although it is an IT
company, it has not performed constant and decisive steps towards (fully) adopting
the cloud. Reflecting the findings in [2], the reasoning behind such lack of Cloud
adoption often is down to lack of customization for specific customers and concerns
over security of data.

However, a Cloud based solution for BE.WAN that can be customized by end us-
ers to exhibit tailored security levels is an attractive offer that instigated the compa-
ny’s involvement in the project. Such an offer could provide for a differentiation in
the Belgium market as well as assist BE.WAN in extending its portfolio of solutions
by also including differentiated security level offerings with flexible and attractive
pricing. Motivated by BE.WAN customer requirements we now explain how security
can be adapted for specific end users.

4.1 Integrating Identity from the Use Case

In order to administer security in applications deployed across Clouds, common

roles have to be defined through which policies can be constructed. Identity is the
start point at which an application is modelled and within CAMEL role definition
follows a standard form. The user links his / her organisations roles to particular role
taxonomies across all organisations in one site and across all sites. The taxonomy

89

covers all possible roles that are envisioned to be involved in the operation of the
PaaSage platform. The roles considered include:

(a) System Administrator: responsible for the deployment at the local site and the
proper functioning of a PaaSage platform instance/installation; it should have access
to all possible types of information and services - this includes the management of
authentication and authorization information.

(b) Application Owners (business users): responsible for the definition of the ap-
plication high-level requirements which can then be drilled down to more concrete
requirements at lower levels to guide the deployment, provisioning and monitoring of
the respective application.

(c) Developers: responsible for the development of the application and thus for the
creation of the respective application profiles and deployment models.

(d) Software engineers: responsible for the development of the software supporting
the functionality of the application as well as the low-level requirements posed by this
software (thus they can actually contribute to the refinement of requirement (e.g.,
specific SLOs for the software) and deployment models (specific VM requirements
dictating the way the software should be deployed/hosted)).

(e) Devops: responsible both for the development as well as the operation of the
application. This last role, as also has the responsibility of the application operation,
can generate not only application profiles, deployment & requirement models but also
scalability rules which can drive the adaptive operation/execution of the respective
application.

To support this process simple to use graphical tools are presented via interfaces
such as the Social Network. Once defined, the roles can then be mapped to particular
policies specific to an organisation. Different sets of policies will be enforced depend-
ing on the security level required by the respective organization and the specific con-
text in which it is applied. Policies are defined and simplified in PaaSage using the
Create, Read, Update, Delete (CRUD) approach to data access.

 Policies are defined in XACML [16] and stored privately in the CDO server linked
to the Policy Decision Point (PDP). We advocate for the high-level specification of
policy-based information in terms of security levels. This means that the organisation
has just to choose the particular security level that suits its needs. Once this is per-
formed, then the PaaSage platform will take care of mapping this security level to a
set of security policies that need to hold. If the organisation needs to perform any kind
of customization, then it can then modify one or more of the security policies that
have been generated automatically.

We advocate for the consideration of the following security levels:
• high security level: no information sharing is performed as only the users of

the organisation can have access to the information manipulated by this
organisation. This means that external users either from the same PaaSage
installation or a different one will not be able to see anything that is han-
dled by the organisation at hand.

• low security level: information sharing is allowed for all information generat-
ed by the organisation apart from its organisation model which includes
sensitive information. This means that external users will have read access
to all of this information while internal (i.e., organisation) users will have
both read and write access.

90

• medium security level: information sharing is allowed only for application
profiles and deployment models. This means that external users will have
read access to these models while the internal users will have read and
write access to all types of models manipulated by the organisation (apart
from the organisation model itself which should be visible and customiza-
ble only for a certain role of the organisation). The rationale of allowing
read access only to these models is that the organisation does not want to
reveal important or critical information, such as which requirements lead
to which deployment model and which scalability rules are used for a spe-
cific application. Thus, the sharing of basic knowledge is just allowed
here.

 Once roles are defined, identity in the live system can be mapped to them. Accord-
ing to [3], identity of a user can be classified into the following categories:

• Anonymous – not possible to identify user between sessions
• Pseudonymous – the same user identifier is used between sessions
• Self-asserted – user provided information, without validation
• Socially validated – user information is valid through their social graph
• Verified – formally verified user identity (e.g., through a ID document)

In PaaSage, to support the mapping of roles across domains, a standard way of de-
scribing users and their attributes is achieved using CERIF to exchange extended
metadata about user profiles.

CERIF [4] is a modelling framework for describing organizations, people, projects
and other aspects related to the research domain. It is an EU recommendation for
information systems related to research databases, in order to standardize research
information and foster research information exchange. A selected subset of CERIF
has been used to formulate the organisation DSL such that CERIF models, providing
descriptions about an organisation's structure, users and resources, can be transformed
into organisation ones and be integrated and stored in CDO Repository for the pur-
pose of improved user and organization modelling. To facilitate the CERIF-to-
Organisation model transformation, a specific tool has been developed which is able
to take as input a specific CERIF XML-based model and transform it into an (XMI-
based) organisation model one.

An example user description in CERIF for BE.WAN is presented below.

<cfPersName>

<cfPersNameId>persname-id1</cfPersNameId>
 <cfFamilyNames>Fontnot</cfFamilyNames>
 <cfFirstNames>Todd</cfFirstNames>
</cfPersName>
<cfPers>
 <cfPersId>pers-id1</cfPersId>
 <cfGender>m</cfGender>
 <cfPers_Class>
 <cfClassId>CAMEL.Administrator</cfClassId>
 <cfClassSchemeId>CAMEL</cfClassSchemeId>
 </cfPers_Class>
 <cfPersName_Pers>
 <cfPersNameId>persname-id1</cfPersNameId>
 </cfPersName_Pers>
 <cfPers_EAddr>
 <cfEAddrId>ToddMFontenot@dayrep.com</cfEAddrId>
 <cfClassId>35d43364-2160-4b6c-a487-5019458321e8</cfClassId>
 <cfClassSchemeId>05cc5ff9-bc58-4743-ab59-46e5013e0039</cfClassSchemeId>
 </cfPers_EAddr>
 <cfPers_OrgUnit>
 <cfOrgUnitId>123</cfOrgUnitId>
 <cfClassId>ebd55ab0-1cfc-11e1-8bc2-0800200c9a66</cfClassId>

91

 <cfClassSchemeId>e9616dbd-0d38-4b7d-a6cd-3c4df1e95462</cfClassSchemeId>
 <cfStartDate>2012-06-01T00:00:00</cfStartDate>

</cfPers_OrgUnit>
</cfPers>
…
Fig 3: Example User Description in CERIF

The user roles are extracted from the cfClass user attributes, which can reference

roles either from domain specific role hierarchies defined within organizations or
directly from the role ontology of PaaSage. In the former case, a mapping needs to be
provided by the respective organisation to map between these roles in case multi-site
deployment Such a mapping could be enforced during the CERIF-to-Organisation
model transformation as an extra input to be considered.

Once this information is specified and transformed to the respective organisation
model part, then a particular instance of the User class will be generated covering
user-specific information, including its credentials to the PaaSage platform as well as
to cloud providers. The latter credential information is a necessity in order to enable
the platform to perform the deployment and adaptation of applications in multi-cloud
environments. An instance of the RoleAssignment class will also be generated which
will be able to map a user or user group to a certain PaaSage-specific role.
 When authentication takes place the aforementioned generated user and role in-
formation is used. Currently, the default IdP implementation in PaaSage is the Sim-
pleSAMLphp identity service [5], which supports the SAML 2.0 [6] standard, while
the private CDO server is used as the data source for this IdP as it contains all the
organisation models immediately generated by organisations or transformed from
CERIF. The Social Network has been developed using the Open Source platform
Elgg [17] which supports both SAML and OAuth identity integration. BE.WAN’s
customers typically support SAML 2.0 based SSO.
 Authentication is based on SAML attributes which are then mapped to roles and
policies regarding data access expressed in XACML. As with the wider security ar-
chitecture this is done via the Service Provider for the resource being accessed. For
BE.WAN the choice of SAML enables formal representations of organizational iden-
tity attributes when compared to less formal / structured standards such OAuth or
OpenID. This suits business systems where attributes of users are typically mapped to
an identity store such as LDAP.

4.2 Security Models

 Once identity management requirements are defined through the organisation DSL
the next step is the creation of the end user security model. Here, the security DSL is
involved. This DSL can be used to describe security requirements and capabilities at a
coarse or fine-grained level related to metrics. The key concept considered is a securi-
ty control which indicates at a higher level of abstraction a part of the security level
offered by a particular cloud provider or required by the end-user. In this way, securi-
ty requirements and capabilities can be matched as they both map in a symmetric
manner to a set of security controls. Moreover, a security capability, in the way it is
defined, maps to the actual security level provided by a cloud provider.

The implementation of security controls can be checked through the enforcement
of more fine-grained security guarantees in the form of security service level objec-

92

tives (SLOs). Such SLOs include conditions on security properties or metrics which
are mainly defined through using constructs of another CAMEL DSL called SRL
(Scalability Rule Language) [20]. The linkage between security controls and security
SLOs is enabled through the mapping of security controls to particular security met-
rics and/or attributed. This of course requires the specification of a detailed security
model which comprises different levels and their linkage such that we can navigate
downwards or upwards and be able to associate higher-level constructs, such as secu-
rity controls, to lower-level ones, such as security metrics.

Through the use of security controls and security SLOs, two main PaaSage plat-
form functionalities can be supported: (a) the filtering of the cloud offering space
according to high-level and low-level security requirements and (b) the evaluation of
security SLOs which can be mapped to particular adaptation actions to be performed
once the evaluation result is a violation. The latter functionality is realized through the
specification of the respective scalability rule(s) through the SRL DSL which connect
events or event patterns mapping to (security) SLOs to the respective adaptation ac-
tions.

The filtering based on high-level requirements relies on checking whether the re-
quired security controls are a subset from those supported by a cloud provider. On the
other hand, the filtering based on low-level requirements relies on the way generally
SLOs are handled by the reasoner. As a general rule of thumb, an advertisement
matches a request when the solution space of the request is a subset of the solution
space of the requirement. In other words, the SLO requirements should be less strict
than the SLO capabilities.

4.3 Deployment Workflow

Once the organizational and security models have been defined the end user is
ready to deploy his / her application on the platform.

Fig 4: Deployment Workflow

93

Figure 4 shows the PaaSage deployment workflow and how the security DSL enables
security to be taken into account in the different phases of the workflow. For a
company like BE.WAN this provides reassurance that the requirements set in the
previous models are linked to each stage of the Cloud lifecycle.
 Example requirements expressed as CAMEL service level objectives (related to
security) set at the profiling phase and their evolution through the lifecycle can be
seen in Table2.

Table 2: Evolution of Service Level Objectives in PaaSage Cloud Lifecycle

Requirement Profiling Deployment Execution
Availability ! 99% Providers ABC 99.2%
Level of uptime
(Often termed
"availability")

! 99% Providers ABEG 99.3%

Percentage of suc-
cessful requests

! 99% Providers ABCEG 99.8%

Percentage of time-
ly service provi-
sioning requests

! 99% Providers ACG 99.0%

Average Response
Time

 0.1ms Providers ABCF 0.04ms

Maximum Re-
sponse Time

 0.3ms Providers ABG 0.15ms

At profiling phase the metric can be seen to specify measurable levels of service.

This is taken from the application designer requirements during the modelling phase.
The interface the designer uses may not ask for specific figures but could translate
inputs such as very high to specific metrics. At deployment phase the list of Cloud
Providers which fulfil the profiling criteria are listed. This enables the optimal provid-
er to be selected on the basis that they fulfil most or all of the criteria specified. This
is done using a Utility Function which is a focus of work in PaaSage. In such a func-
tion the compliance with security requirements will be weighed against the need to
comply with other metrics such as cost. Finally the execution metrics are the actual
performance values of the infrastructure that the application is deployed upon. Any
dip below the thresholds set at profiling phase causes the platform to adapt and check
if alternative providers exist from the deployment phase to take over execution.

This combination of model refinement by the end user and the use of models to
deploy, reason and monitor execution provides a level of reassurance and finer
grained control over clouds to reassure SMEs which use BE.WAN's offerings de-
ployed via the PaaSage platform.

5. Related Work

Security in Clouds links closely to previous work in the establishment of cross do-

main trust in Service Oriented computing environments. A prominent example of this
can be seen in the work of the Liberty Alliance [9]. The PaaSage approach adopts

94

some of the concepts of Liberty particularly around the authentication and authoriza-
tion approach to resource access [10]. Further realizations of the Liberty model can be
seen within implementations such as ZXID [11] and research on the TAS3 [12] pro-
ject. In such projects the finer grained control of access to resources has been imple-
mented following the concept of sticky policy [13] authorized access to resources.
This again is replicated in PaaSage and built on by including the policies within
CAMEL enabling them to evolve dynamically as the application passes through the
Cloud lifecycle.

In terms of security across federated clouds [26] presents a model where analysis
and detection of threats can be deployed across federations. In PaaSage we deploy a
similar approach based on execution data against constraints captured in CAMEL. We
have yet to defined detailed threat models to enabled advanced analysis of monitoring
data for emerging threats. This could be advanced using VM monitoring techniques as
outlined in [27]. In PaaSage enforcement is done on an instance basis and redeploy-
ment is the main method for averting threats. In terms of the model [25] outlines ap-
proaches for modelling of security constraints but is limited to the deployment phase
of the Cloud lifecycle. The PaaSage security meta-model goes beyond this to support
security metrics for the monitoring part. So the PaaSage security meta-model covers
the whole lifecycle.

With respect to modelling as an approach to integrate Clouds the concept of mod-
els to join terms between different implementation domains is established in domains
such as Cloud brokerage [14]. In such cases previous work has tended to focus on the
use of model driven Clouds for application deployment in terms of resource use [15].
Data protection and general security criteria have been limited in previous model
based approaches, this can be seen because they have focused on single rather than
multi-cloud deployments. PaaSage is a project looking to develop a wider scope for
security models across the whole Cloud lifecycle. The adoption of the PaaSage plat-
form and the further development of the Social Network in specific domains should
aid this purpose.

6. Future Work

Future work will focus on the following directions. First, the application of our ap-

proach in the other use cases of the PaaSage project. Second, its thorough evaluation
to prove that the proposed features are indeed exhibited. Third, the creation of a re-
pository which will be able to hold not only basic security models through which
security requirements and policies can be described but also security advertisements
for cloud providers that are needed for the proper matching of the end-user require-
ments.

It is essential to highlight that cloud providers should gain by reporting their secu-
rity capabilities as this will lead to making informed cloud selection decisions, it will
more clearly establish what is to be expected by the cloud users and it will increase
the trust in the cloud providers. This reporting will also provide them with appropriate
flexibility by being able to match different security levels to different class of clients
and can finally lead to extending the existing clientele and increasing their gains. The
populated repository can then be considered as an essential asset for any kind of cloud
marketplace or broker which needs to consider security aspects for the purchasing and

95

selection of the appropriate cloud services or the adaptive deployment and provision-
ing of multi-cloud applications. Fourth, as CDO provides a particular authentication
and authorization mechanism, we will explore how we can exploit and integrate it in
our current multi-site security solution architecture.

7. Conclusion

Using a model-driven approach a lifecycle approach to security in multi-cloud en-

vironments can be developed. Using a start point of identity management linked to
security policies and application developer requirements the management of security
can adapt to the context of the Cloud and application deployed upon it. This will ben-
efit SMEs who lack the skills and knowledge to create detailed models and security
specifications for application deployments onto the Cloud. By using PaaSage and its
supporting services such as the Social Network the adoption of Clouds by less tech-
nical SMEs can be enabled.

8. References

1. S. Subashini, and V. Kavitha. "A survey on security issues in service delivery models of

cloud computing." Journal of network and computer applications 34.1 (2011): 1-11.
2. J. Leonard “Cloud Computing No Way” Computing Magazine

http://www.computing.co.uk/ctg/feature/2327162/cloud-computing-no-way-say-half-of-
smes 10/05/15

3. Kaliyah Hamlin, The Identity Spectrum, http://www.identitywoman.net/the-identity-
spectrum 10/05/15

4. CERIF Home Page, http://cordis.europa.eu/cerif/home.html 10/05/15
5. SimpleSAMLphp Home Page, https://simplesamlphp.org 10/05/15
6. N. Ragouzis et al., Security Assertion Markup Language (SAML) V2.0 Technical Over-

view. OASIS Committee Draft, March 2008.
7. Cloud Control Matrix. Online: http://www.cloudsecurityalliance.org/cm.html. 2011

10/05/15
8. A. Pannetrat, Security-aware SLA Specification Language and Cloud Security Dependen-

cy Model. CUMULUS Deliverable D2.1, 2013
9. Alliance, Liberty. "Liberty alliance project." Web page at http://www. projectliberty.

org (2002).
10. A. Mansour, C. Adams. "Enhancing consumer privacy in the liberty alliance identity fed-

eration and web services frameworks." Privacy Enhancing Technologies. Springer Berlin
Heidelberg, 2006.

11. ZXID home page www.zxid.org last accessed 10/05/15
12. EU TAS3 project homepage www.tas3.eu last accessed 10/05/15
13. M. Mont, S Pearson, P Bramhall. "Towards accountable management of identity and pri-

vacy: Sticky policies and enforceable tracing services." Database and Expert Systems Ap-
plications, 2003. Proceedings. 14th International Workshop on. IEEE, 2003.

14. A. Simons et al. "Cloud Service Brokerage-2014: Towards the Multi-cloud Ecosys-
tem." Advances in Service-Oriented and Cloud Computing. Springer International Publish-
ing, 2014. 121-123.

15. A. Danilo, et al. "Modaclouds: A model-driven approach for the design and execution of
applications on multiple clouds." Proceedings of the 4th International Workshop on Mod-
eling in Software Engineering. IEEE Press, 2012.

96

16. S. Godik et al. OASIS eXtensible access control 2 markup language (XACML) 3. Tech.
rep. OASIS, 2002.

17. Elgg homepage https://elgg.org/ last accessed 10/05/15
18. N. Ferry, A. Rossini, F. Chauvel, B. Morin, A. Solberg. (2013, June). “Towards model-

driven provisioning, deployment, monitoring, and adaptation of multi-cloud systems.” In
Proceedings of the IEEE Sixth International Conference on Cloud Computing, CLOUD
(Vol. 13, pp. 887-894).

19. C. Quinton, D. Romero, L. Duchien. (2015). SALOON: a platform for selecting and con-
figuring cloud environments. Software: Practice and Experience.

20. J. Domaschka, K. Kritikos, A. Rossini (2014). Towards a generic language for scalability
rules. In Advances in Service-Oriented and Cloud Computing (pp. 206-220). Springer In-
ternational Publishing.

21. European Commission: Cloud Service Agreements Standardization Guidelines
https://ec.europa.eu/digital-agenda/en/news/cloud-service-level-agreement-
standardisation-guidelines last accessed 10/05/15

22. D. Heisenberg. Negotiating privacy: The European Union, the United States, and person-
al data protection. Lynne Rienner Publishers, 2005.

23. Alliance, Liberty. "Liberty alliance project." Web page at http://www.projectliberty.org
 last accessed 10/05/15

24. [24] Stepper, Eike. "CDO Model Repository Overview." (2012).
25. P. Massonet, J. Luna, A. Pannetrat, R. Trapero. "Idea: Optimising Multi-Cloud Deploy-

ments with Security Controls as Constraints." In Engineering Secure Software and Sys-
tems, pp. 102-110. Springer International Publishing, 2015.

26. L. Weiliang, L. Xu, Zhenxin Zhan, Q. Zheng, S. Xu. "Federated cloud security architec-
ture for secure and agile clouds." In High Performance Cloud Auditing and Applications,
pp. 169-188. Springer New York, 2014.

27. J. Gionta, A. Azab, W. Enck, P. Ning, X. Zhang. "Dacsa: A decoupled architecture for
cloud security analysis." In Proceedings of the 7th Workshop on Cyber Security Experi-
mentation and Test. USENIX. 2014.

97

An Attribute Based Access Control Model for

RESTful Services

Marc Hü�meyer and Ulf Schreier

Furtwangen University of Applied Sciences, Germany

Abstract. RESTful services o�er communication and interaction with
information systems (e.g. mobile devices, sensor networks) through well
know techniques in a large scale. As the popularity of REST grows more
and more the need for fine-grained access control grows in the same way.
Attribute Based Access Control (ABAC) seems to be the most suitable
candidate to meet the requirements of flexibility and scalability. XACML
is a very generic implementation of an access control system that follows
the ideas and principles of ABAC and is established as the standard mech-
anism. Its flexibility opens the opportunity to specify detailed security
policies. But on the other hand XACML has some drawbacks regarding
maintenance and performance when it comes to complex security policies.
Its generic design is the reason that authorization decisions only can be
computed at runtime. Long processing times for authorization requests
are the consequence in environments that require fine-grained or complex
security policies. Our approach to implement ABAC for RESTful services
is inspired by XACML and addresses its drawbacks by taking advantage
of the style of resource oriented architectures. We describe a lightweight
but powerful language that enables to specify security policies and to
process access requests. We also describe algorithms and techniques to
compute authorization decisions for that language in a very short time
even for complex security policies.

1 Introduction

Today’s information system often handle large amounts of data and users and
perform complex operations. The potentials of information systems grow more
and more and so does the need for flexible and e�cient access control mechanism.
Traditional access control mechanisms were built to support basic security con-
cepts. For example Access Control Lists (ACL) were designed to specify who may
access a single resource (e.g. a network interface or a file in an operating system)
while Role Based Access Control (RBAC) groups multiple subjects together
under a role property, reducing the amount of rules required to describe who may
access a resource. Having applications that support complex processes requires
more fine-grained mechanisms that can handle questions like who, what, how,
why, when or where and that are capable to adapt to frequent changes.

In times of social media, smart objects and the Internet of things [15] users
and systems often create and share new content within applications. A substantial

98

need to control access to this content is the consequence. In an environment where
large amounts of subjects provide large amounts of data and specify multiple
access rights, a flexible, high-performance access control mechanism is required.
Because traditional access control mechanisms have been designed for a di�erent
purpose, e�cient access control mechanisms and models must be found, that
o�er flexibility and guarantee high performance even in complex environments.

2 REST

The concept of Representational State Transfer (REST) describes an architectural
style for distributed systems and services [2]. Services that follow this style are
usually called RESTful. A RESTful service must follow four main principles.

The first concept is resource orientation and addressability. Each re-
source is addressed with an URI that identifies the resource. A good URI
design is important and might be a challenge [14]. URIs can be described
with the expression scheme:authority:path:query. An example for an URI is
http://example.org/users/1/photos?date=20150101. The scheme is http, the au-
thority is example.org, the path is /users/1/photos and the query is date=20150101.
While scheme and authority are usually unchanged in one application, the path
has a big impact on the application structure and requires a good design. A proper
design has a hierarchical nature forming a graph of resources and subresources.
A query can be interpreted as a filter that selects a subset of resources. In the
example only the photos of a specific date are requested.

Another important concept of REST is a uniform interface for resources.
For each resource the same finite set of actions may be executed. Usually REST
is associated with HTTP and the HTTP methods specify the methods of the
interface. That means for each resource GET, POST, PUT, DELETE and
some other HTTP methods can be applied. That o�ers the opportunity to use
standardized clients (e.g. browsers) to perform operations on a resource. The
only required client capability is the support for the uniform interface.

The di�erentiation between resources and representations is the third
concept of REST. A client requests a resource and a server returns a representation
of that resource. For example the client may request a single user and the server
responds with an identity card of that user which represents him. The client
usually has the option to specify preferred representations of a resource.

The fourth concept is that communication is stateless in RESTful Services.
That means that the server does not hold any information about the state of the
communication, but only stores the state of the resource expressed as hypermedia.
The application state is handled on client side. Therefore the concept is often
called Hypermedia as the engine of application state (HATEOAS).

3 Attribute Based Access Control

Attribute Based Access Control (ABAC) is a suitable candidate to fulfill the
need for flexibilty and may be the next important concept for access control

99

mechanisms [11]. The main idea of ABAC is that any property of an entity can
be used to determine access decisions. For example the location of a subject or
resource may be used to determine the access decision if the access conditions
depends on the question where. Gartner predicts that in 2020 70% of enterprises
will use ABAC as the dominant mechanism to protect critical assets [16].

3.1 eXtensible Access Control Markup Language

The eXtensible Access Control Markup Language (XACML) is a standard that
describes how to implement ABAC and is established as a de facto standard [3]. It
consists of three parts: an architecture describes multiple components and their
responsibilities in the authorization context, a declarative policy language can
be used to write security policies in XML and a request/response language

can be used to formulate access requests and responses. This work focusses on
the policy language and the request/response language and o�ers an alternative
access control mechanism to XACML, which enables flexible and e�cient access
control for RESTful Services.

There are three core elements in the structure of a XACML policy: Rules

describe if an access request is permitted or denied. Policies group di�erent
rules together and policy sets group di�erent policies together. Policy sets may
also contain other policy sets enforcing a hierarchical composition. Each of these
elements has a target that describes if the element can be applied to a request
by defining a condition. A single access request may be applied to multiple
policy sets, policies and rules. In that case those rules may have di�erent e�ects

(permit or deny) and a winning rule must be found (based on the structure of the
policy). XACML uses combining algorithms for that purpose. An example
for a combining algorithm is PermitOverrides. It states that an applicable rule
with the e�ect permit will always win against a rule with the e�ect deny. A full
list of algorithms can be found in [3].

Listing 1 shows an example of a XACML policy for a web application. That
policy prohibits the deletion of a photo list of a user using a HTTP DELETE
request. The root element is a policy set with the combining algorithm FirstAp-
plicable. The target of this policy set is empty, what means that the policy
set can be applied to any request. The policy set contains one policy, which
also has a combining algorithm of FirstApplicable. The target of the policy
specifies one attribute condition for a resource: the URI must match the value
/users/1/photos. The policy in turn contains one rule with the e�ect deny. The
rule declares a target with one attribute condition: the action must have an
attribute named HTTP-method with the value DELETE. Additionally one can
see AllOf and AnyOf elements which can be used to express logical conjunctions
resp. disjunctions.

4 Problems with XACML for RESTful Services

We identified the following problems that come up if XACML is used to secure
RESTful Services: performance, maintenance and target extensions.

100

<Pol i cySe t PolicyCombiningAlgId=" f i r s t ≠a p p l i c a b l e ">
<Target/>
<Pol i cy RuleCombiningAlgId=" f i r s t ≠a p p l i c a b l e ">

<Target>
<Match MatchId=" func t i on : s t r i n g ≠equal ">

<Attr ibuteValue >/u s e r s /1/ photos </Attr ibuteValue>
<Attr ibuteDes ignator Att r ibute Id ="URI"

Category=" r e s o u r c e " />
</Match>

</Target>
<Rule E f f e c t ="Deny">

<Target>
<AnyOf>

<AllOf>
<Match MatchId=" func t i on : s t r i n g ≠equal ">

<Attr ibuteValue>DELETE</Attr ibuteValue>
<Attr ibuteDes ignator Att r ibute Id ="HTTP≠method "

Category=" ac t i on " />
</Match>

</AllOf>
</AnyOf>

</Target>
</Rule>

</Pol icy>
</Pol icySet >

Listing 1. A XACML policy prohibiting an HTTP DELETE request

4.1 Performance - E�cient Policy Design

In a previous work we described how to optimize processing time for XACML
requests and reduce performance issues [5]. We have derived a cost function that
calculates the cost for processing an access request. Based on the cost function we
described three optimizations to write performance optimized policies. The first
optimization requires having only as few as possible attribute conditions in rules,
policies and policy sets so that variations in processing time for access requests are
minimized. A second optimization needs a combining algorithm of FirstApplicable
in addition with a proper rule and policy ordering. This optimization decreases
the average processing time. Finally, the measurements of our previous work
showed that the most important goal is to have a well-structured hierarchy in the
security policy. Repetitive targets in di�erent branches must be bundled together
to decrease the number of child nodes and thereby the average processing time
for an access request.

RESTful Services already ship with a well-structured hierarchy build on
Uniform Resource Identifiers (URI). E�cient XACML policies therefore should
be built on this hierarchy instead of complex attribute conditions. Following
this approach access requests can be evaluated much faster against the policy.
Our measurements showed that for single requests with a growing number of

101

rules, the average processing time increases linear to the number of rules if the
optimizations are not applied. Optimized versions of XACML policies only have
a logarithmic growth and our measurements showed approximately constant
processing times that are related to an initialization overhead of the XACML
implementation.

4.2 Maintenance and Target Extensions

To decrease maintenance e�orts it is required to have the security policy based
on a well-structure hierarchy. Tool support for XACML is very poor and more
complex policies may easily consist of hundreds of thousands lines of XML data
(e.g. for measurement purposes we created a security policy with about 4.500 rules
which consists of approximately 260.000 lines of XML data). Adding changes or
detecting faults can be very time consuming and error prone because XACML
does not specify how to handle changes in the security policy. Hence, a well-
structured policy helps to reduce maintenance e�orts. But in an environment,
that enforces frequent changes to the security policy, it becomes challenging to
adopt the security policy to the requirements in an acceptable time.

Another drawback of XACML is extending attribute conditions in targets.
Targets are the only option to pass attribute conditions from an upper level to a
lower level. But with every target the policy gets more restrictive. In consequence
attribute conditions have to be repeated multiple times if they should be extended.
For example a RESTful application may have a user list as a resource and this list
is addressed with the URI /users. A single user may be addressed with the URI
/users/1. The single user is a subresource of the user list and the security policy
should have a structure of the same fashion. Now it may be that the user list
should be only accessible by admins but the user resource should be accessible
by admins and the user itself. The admin condition cannot be used in targets
because a target cannot be extended which means that the single user never
could access the subresource. The only proper way to handle this is repeating the
admin condition multiple times for all users. That increases the policy complexity
and maintenance e�orts unnecessarily.

5 REST Access Control Language - RestACL

Based on the outcome described in Section 4 we wanted to build an access
control mechanism that forces security responsibles to build policies with an easy
and comprehensive structure and with an easy and e�cient interpretation. For
unexperienced developers REST can be a challenge itself. Therefore it would be
a great benefit to have an access control mechanism that supports REST in an
intuitive way and removes the drawbacks of XACML described in the previous
sections. RestACL is a policy language that is inspired by XACML and that is
made for RESTful Services. Its design is chosen in a way so that performance
loss is minimized and that gives architects, developers and administrators of
RESTful applications an intuitive way to handle information security. RestACLs

102

foundation is a tree build of URIs. The leaves of that tree specify access conditions.
XACML in contrast is founded on a tree on conditions.

Listing 2 shows an example of a RestACL policy. Like the example for XACML,
the policy prohibits the execution of an HTTP DELETE request on the photos
of a user. Additionally a second rule allows the execution of an HTTP DELETE
request on a subset of photos. To select a subset it is required to add a filter
based on query parameters to the URI. In the example, the additional rule grants
the execution of a HTTP DELETE on those resources which have the location
furtwangen and were taken on January 1st, 2015. The following URI applies this
filter: http://example.org/users/1/photos?location=furtwangen&date=20150101.
<pol i cy >

<r e s o u r c e u r i ="http :// example . org">
<r e s o u r c e u r i ="/ u s e r s /1/ photos">

<act i on id =" act i on1 " method="DELETE">
<r u l e id =" r u l e 1 " e f f e c t ="deny " p r i o r i t y ="1">

<cond i t i on/>
</ru le >

</act ion >
<f i l t e r >

<parameter name=" l o c a t i o n " va lue="furtwangen " />
<parameter name="date " va lue ="20150101" />
<act i on id =" act i on2 " method="DELETE">

<r u l e id =" r u l e 2 " e f f e c t ="permit " p r i o r i t y ="2">
<cond i t i on match="equal ">

<value >192.168.0.0 </ value>
<d es i gn a to r category ="environment">network
</des ignator >

</condi t ion >
</ru le >

</act ion >
</ f i l t e r >

</resource >
</resource >

</po l i cy >
Listing 2. A RestACL policy regulating HTTP DELETE access

The structure of our model is resource oriented. Since RESTful applications
have a hierarchical structure based on URIs, our access control model also has a
hierarchical nature. The root element is named policy. It must contain one or
more resource elements. Each resource element may contain multiple action

elements, filter elements or again resource elements. Within each action element
one or more rule elements may be specified which may contain a set of condition

elements and within filter elements additional action elements may be contained.
Without loss of generality condition elements within a single rule element are
logically conjuncted while rule elements in a single action element are logically
disjuncted. More complex logical operations can be integrated at a later point of
time. Each rule must have an e�ect that permits or denies access. Additionally a
rule may have a priority. The priority can be used to determine dominant rules.

103

Listing 3 shows a request that can be applied to the example policy in
Listing 2. The root element is named request. A request must contain one
resource. Similar to the policy a resource contains one action. In contrast to
the policy a request must contain exactly one resource and one action. Within
the action element a set of attributes may be specified. Like conditions in a
policy, attributes contain a value and a designator.
<request >

<r e s o u r c e u r i ="http :// example . org / u s e r s /1/ photos">
<act i on method="DELETE">

<set >
<a t t r i b u t e >

<value >192.168.0.0 </ value>
<d es i gn a to r category ="environment">network
</des ignator >

</a t t r i b u t e >
</set >

</act ion >
</resource >

</request >
Listing 3. A RestACL request

We want to show that our access control model fully supports RESTful
applications and does not conflict with the four main concepts of REST.

As described in Section 3 resources are addressed using URIs and URIs
consists of a scheme, an authority, a path and a query. It is obvious that our
model supports di�erent schemes and authorities. For example if di�erent schemes
or authorities are bundled within one application, one has to declare di�erent
resources within the policy element. Building the policy based on a hierarchical
path is the main idea of our access control model and query parameters are
supported using the filter element as described in Listing 4.

A uniform interface is part of the core concept of our model. Actions are
used to specify methods that can be applied to resources. RESTful services are
usually built on HTTP, but this is not a requirement of the architectural style.
Our model also is capable of supporting other access methods. For example a
uniform interface could be built on top of the CRUD pattern. In our model this
can be implemented by using CREATE, READ, UPDATE and DELETE as
methods of the action element.

Most applications want access decisions to be based on the request and not on
what the response contains. For RESTful applications that means that the access
decision likely is based on the requested resource rather than on the returned
representation. Therefore representations are not the focus for access control in a
resource oriented context. But even if they are, representations can be handled
as attribute conditions in a rule. For example a resource may have two di�erent
representations and those representations have di�erent access conditions. Then
two di�erent rules with an attribute representation of the category resource may
be specified. Listing 4 shows an example how to handle di�erent access rights for
multiple representations.

104

<r e s o u r c e u r i ="/ u s e r s /1/ photos">
<act i on id =" act i on1 " method="GET">

<r u l e id =" r u l e 1 " e f f e c t ="permit " p r i o r i t y ="1">
<cond i t i on match="equal ">

<value>image/png</value>
<des i gn a to r category =" r e s o u r c e "> r e p r e s e n t a t i o n
</des ignator >

</condi t ion >
</ru le >
<r u l e id =" r u l e 2 " e f f e c t ="deny " p r i o r i t y ="2">

<cond i t i on match="equal ">
<value>video /mpeg</value>
<des i gn a to r category =" r e s o u r c e "> r e p r e s e n t a t i o n
</des ignator >

</condi t ion >
</ru le >

</act ion >
</resource >

Listing 4. Representations with di�erent access control rules

Stateless communication is not a�ected with our access control model. The
model does not depend on any state information of a resource.

5.1 Data Model

Figure 1 shows the data model of a RestACL policy. A policy has a one-to-many
relation to resources. Resources have a dedicated attribute named URI and
one-to-many relations to filters and actions. Resources also have a self-reference
enforcing a hierarchical structure. A filter consists of various parameters that
declare a name and a value describing a query. Filters also contain actions. If a
filter matches the URI of the request, the rules of the filter are used to determine
the access decision instead of the rules that are directly assigned to the resource.
An action has a method name and contains many rules which in turn consist of
multiple conditions. A single condition has a match function (which must compute
to a boolean value) and either a value and a designator or two designators. A
designator uses a category and a name to identify attribute values in the request.
This value is then compared either to a fixed value or the value identified by
the second designator. Listing 2 and Listing 3 use a designator to identify an
attribute named network of category environment. This value is then compared
to 192.168.0.0 using the match function of the condition. Using two designators
enables comparing two values within a request. This allows for example to write
rules that grant or prohibit access to subjects if they are the owner of a resource
without specifying explicit values. The policy in Listing 5 uses two designators in
a single condition.

In this model targets and combining algorithms are obsolete. Targets can be
removed because the structure of policies is always based on resources and actions.
Because both URIs and the methods of a uniform interface are unique, it is not

105

Fig. 1. RestACL data model

possible to have multiple matching branches. Hence, combining algorithms can
be removed. To compare multiple rules within an action element we use priorities.
Priorities can be interpreted as a combining algorithm of FirstApplicable and
therefore o�er the profit of performance optimization. Additionally they o�er a
bit more flexibility regarding maintenance.

5.2 References and Includes

To address the drawbacks of extending targets as described in Section 4 we enable
rule references on subresource level. That means an action may refer to the action
of another resource located above in the resource hierarchy. In that case all the
rules of the referred action will also be applied to the referring action. All newly
specified rules are logically disjuncted to the rules of the referred action. For
e�cient processing of access requests, the referred rules can be directly stored in
the data model during the parsing phase of the access control policy.

Listing 5 shows the idea of references. A rule grants access to admins on a
resource users using a HTTP GET request. A subresource /users/1 refers this
rule using the reference attribute listed in an action element. Additionally a
second rule is added that grants access for single users. The problem described
in Section 4 can easily be addressed with the use of the reference attribute of the
action element.

Additionally remote policies can be included using a include attribute. This
enables splitting of large policies into multiple files and also o�ers the option of
reusing conditions. Includes can be used in resource elements and therefore may
contain other resource elements, filter elements and action elements.

106

<r e s o u r c e u r i ="/ u s e r s ">
<act i on id =" act i on1 " method="GET">

<r u l e id =" r u l e 1 " e f f e c t ="permit " p r i o r i t y ="1">
<cond i t i on match="equal ">

<value>admin</value>
<des i gn a to r category =" s u b j e c t ">type</des ignator >

</condi t ion >
</ru le >

</act ion >
<r e s o u r c e u r i ="/1">

<act i on id =" act i on2 " r e f e r e n c e =" act i on1 " method="GET">
<r u l e id =" r u l e 2 " e f f e c t ="permit " p r i o r i t y ="2">

<cond i t i on match="equal ">
<d es i gn a to r category =" s u b j e c t ">id </des ignator >
<d es i gn a to r category =" r e s o u r c e ">id </des ignator >

</condi t ion >
</ru le >

</act ion >
</resource >

</resource >
Listing 5. Rule referencing in RestACL

5.3 Evaluation Algorithm

Three steps are required to find a decision for an access request. First of all the
requested resource must be selected in the policy. Then one has to identify the
action that defines access rules for the request. Finally the rules for that action
need to be evaluated. These steps must be repeated for all resources of a policy
until the requested resource is found. Then the algorithm can stop the iteration.

Definition: We define R(p) as the set of resources of a policy p.

Input: Policy p, Request q

Output: E�ect e

’ri œ R(p)
r = selectResource(ri, q);
a = selectAction(r, q);
return evaluateRules(a, q);

Algorithm 1: findDecision

Identifying the selected resource (the requested resource) in the data model of
the security policy means one has to traverse the graph of resources recursively.
The algorithm must stop if the URIs of the security policy and the access request

107

are logically equal (note that a filter may contain various query parameters in an
undefined order).

Definition: We define r

Õ as a subresource of resource r and R

Õ(r) as the set
of subresources of r.

Input: Resource r, Request q

Output: Resource s

if(match(uri(r), uri(q)))
then return r;

’r

Õ
i œ R

Õ(r)
selectResource(rÕ

i, q);

Algorithm 2: selectResource

In the second step the corresponding actions must be found. That means one
must compare the method of the request with methods of the actions specified
for the selected resource. If they are identical, the algorithm must return the
action.

Definition: We define A(r) as the set of actions of resource r.

Input: Resource r, Request q

Output: Action a

’ai œ A(r)
if(method(ai) = method(q))

then return ai;

Algorithm 3: selectAction

In the last step the rules of the selected actions must be evaluated. The algorithm
must return the access decision for request q. Therefore one has to iterate over all
rules (ordered by the priorities of the rules). For each rule one must check whether
for all conditions there is an attribute in the request, so that the categories and
attribute names are equal and the execution of the match function of the condition
computes to true. If so the algorithm must return the e�ect of the rule. This
is indicated in Algorithm 4. If the condition consists of two designators both
of them must have an attribute that matches them and the match function is
applied to the values of these attributes.

Definition: We define U(a) as the set of rules of action a and C(u) as the
set of conditions of rule u. Further we define d(x) as a designator and v(x) as a
value of either a condition c or an attribute t. Finally we define T (q) as the set
of attributes of request q.

108

Input: Action a, Request q

Output: E�ect e

’u œ U(a)
if(’c œ C(u) :

÷t œ T (q) :
category(d(c)) = category(d(t))

name(d(c)) = name(d(t))
match(v(c), v(t))

then return effect(u);

Algorithm 4: evaluateRules

A great benefit for performance is that algorithms 2, 3 and 4 are decoupled. That
means traversing the graph of the security policy and evaluating access rules
can be separated. This is di�erent to XACML where the evaluation of a target
conditions must be done for every node of the graph.

6 Tests

We performed load testing for RestACL and optimized XACML using synthetic
policies. For each XACML policy we created a functionally equivalent RestACL
version and compared these pairs under di�erent load. The first pair of policies
handles 10 resources and for each of the main HTTP methods we created one
access rule. In the second pair we added 10 subresources to each resource and
again specified one rule per HTTP method. In the third pair we added another 10
subresources to each subresource and specified one rule for each HTTP method.
That means the di�erent policies have 40, 440 and 4440 rules. We wanted to
make statements regarding scalability depending on the number of rules and
depending on simultaneous access requests. Therefore we f the processing time
for 1, 10, 100 and 1000 simultaneous access requests. Figures 2-4 show the results
of these tests.

The tests were executed on dual core system with 8 GB of working memory
reserved for the tests. As XACML implementation we used Balana1 which is an
open source implementation provided by WSO2. For each test a minimum of 10
executions has been analyzed. In each request random attribute values have been
used. In a first test setup we measured the processing times directly on code base
without any protocol overhead. In a second setup we verify these results using
Apache JMeter2. Therefore we set up XACML in the so called REST profile
defined in version 3.0 of the XACML standard. The REST profile describes how
a XACML engine can be implemented as a service itself. We used the same setup
for RestACL. Load testing using Apache JMeter showed up similar results with
higher average processing times related to the additional overhead due to the use
of HTTP.
1 https://github.com/wso2/balana
2 http://jmeter.apache.org/

109

For optimized XACML policies the processing times increase with the number
of rules contained in a policy and with the number of simultaneous access requests.
A functionally equal but non-optimized version of the XACML policy required
about 300ms to process one request at a time for the policy with 4440 rules.
Therefore we decided to compare RestACL only with optimized XACML. Details
of the di�erence between optimized and non-optimized XACML can be found in
[5]. RestACL performs better than XACML for RESTful Services. This is related
to the decoupling of graph traversion and rule evaluation. Also RestACL is more
lightweight because targets and combining algorithms must not be considered
during evaluation.

100 101 102 103

0

50

100

4.7 5 6.3 12.411.4 17.3 22.2

95.5

number of simultaneous access requests

pr
oc

es
sin

g
tim

e(
m

s)

RestACL Optimized XACML

Fig. 2. Average processing time for a policy with 40 rules

100 101 102 103

0

50

100

5 5.5 7.4
17.616.1 18.2

38.2

107.3

number of simultaneous access requests

pr
oc

es
sin

g
tim

e(
m

s)

RestACL Optimized XACML

Fig. 3. Average processing time for a policy with 440 rules

110

100 101 102 103

0

50

100

5.6 6 9.2
24.315.5 20.4

85.8

120.6

number of simultaneous access requests

pr
oc

es
sin

g
tim

e(
m

s)

RestACL Optimized XACML

Fig. 4. Average processing time for a policy with 4440 rules

7 Related Work

Several approaches try to address performance problems with transformation and
reordering techniques. A graph based approach is described in [10]. This approach
uses two di�erent trees to evaluate an access request. The first tree identifies
applicable rules. The second tree holds the original structure of the security policy
and determines the access decision. Another approach uses numericalization and
normalization to optimize performance [6,7]. Numericalization converts every
attribute to an integer value. Normalization converts every combining algorithm
into FirstApplicable. In [8] processing time is optimized by reordering policy sets
and policies based on statistics of past results. A similar approach also reorders
policies based on cost functions but focusses on categories rather than attributes
[9]. This approach also assumes that a rule always is a 4-tupel of a subject, an
action, a resource and an e�ect. Other combinations of categories are not allowed.

Declarative authorization for RESTful services is handled in [4]. Attributes
are not considered in this approach. Another approach that targets authorization
for RESTful Services is described in [1]. But this work is focused on RBAC.
In [17] an architecture is described to secure web services (SOAP) based on
attributes. Another approach that is focused on SOAP is described in [12]. The
detection of access control vulnerabilities in web applications is discussed in [13].
This work covers web applications that use RBAC as access mechanism.

8 Conclusions

We created a new access control model that is designed for RESTful Services
and that is inspired by XACML. The model o�ers a lightweight mechanism to
implement attribute based access control in a resource oriented environment and
follows the guidelines to optimize processing time described in [5]. A similar
structure of the RESTful application and the security policy is enforced, so that

111

high performance and lower maintenance e�orts can be guaranteed. Developers
of RESTful Service is o�ered an intuitive way to implement information security
based on attributes.

Test results showed that the performance of this access control model is
an improvement to the performance of XACML policies in a resource oriented
environment. We verified our results using two di�erent test methods that showed
similar results. Also we addressed the problem of extending access control rules in
a hierarchical structure so that maintenance e�orts can be reduced and security
policies are less error prone.

References

1. E. Brachmann, G. Dittmann, and K. Schubert. Simplified Authentication and Au-
thorization for RESTful Services in Trusted Environments. ESOCC’12 Proceedings
of the First European conference on Service-Oriented and Cloud Computing, 2012.

2. T. R. Fielding. Architectural Styles and the Design of Network-based Software
Architectures. University of California, Irvine, 2000.

3. Organization for the Advancement of Structured Information Standard. eXtensible
Access Control Markup Language (XACML) Version 3.0. OASIS Standard, 2013.

4. S. Graf, V. Zholudev, L. Lewandowski, and M. Waldvogel. Hecate, Managing
Authorization with RESTful XML. WS-REST ’11, 2011.

5. M. Hue�meyer and U. Schreier. E�cient Attribute Based Access Control for
RESTful Services. ZEUS ’15, 2015.

6. A. Liu, F. Chen, J. Hwang, and T. Xie. Xengine: A Fast and Scalable XACML
Policy Evaluation Engines. SIGMETRICS ’08, 2008.

7. A. Liu, F. Chen, J. Hwang, and T. Xie. Designing Fast and Scalable XACML
Policy Evaluation Engines. IEEE Transactions on Compters, Vol. 60, 2011.

8. F. Marouf, M. Shehab, A. Squicciarini, and S. Sundareswaran. Adaptive Reordering
and Clustering-Based Framework for E�cient XACML Policy Evaluation. IEEE
Transactions on Services Computing, Vol 4, 2010.

9. P. Miseldine. Automated XACML Policy Reconfiguration for Evaluation Optimisa-
tion. SESS ’08, 2008.

10. S. Ros, M. Lischka, and F. Marmol. Graph-Based XACML Evaluation. SACMAT
’12, 2012.

11. D. Sandhu. The authorization leap from rights to attributes: maturation or chaos?
SACMAT ’12, 2012.

12. H. Shen and F. Hong. An Attribute Based Access Control Model for Web Services.
Parallel and Distributed Computing, Applications and Technologies, PDCAT ’06,
2006.

13. F. Sun, L. Xu, and Z. Su. Static Detection of Access Control Vulnerabilities in
Web Applications. SEC’11 Proceedings of the 20th USENIX conference on Security,
2011.

14. S. Tilkov. REST und HTTP. dpunkt.verlag, 2009.
15. D. Uckelmann, M. Harrison, and F. Michahelles. Architecting the Internet of Things.

Springer, 2011.
16. E. Wagner, R. andl Perkins, F. Kreizman, G. Gaehtgens, and A. Allan. Identity

and Access Management 2020. Gartner, 2013.
17. E. Yuan and J. Tong. Attributed Based Access Control (ABAC) for Web Services.

ICWS 2005 IEEE International Conference on Web Services, 2005.

112

SitRS – A Situation Recognition Service based
on Modeling and Executing Situation Templates

Pascal Hirmer1, Matthias Wieland1, Holger Schwarz1, Bernhard Mitschang1,
Uwe Breitenbücher2, and Frank Leymann2

1 Universität Stuttgart, Institute of Parallel and Distributed Systems,
70569 Stuttgart, Germany

pascal.hirmer@ipvs.uni-stuttgart.de
http://www.ipvs.uni-stuttgart.de/

2 Universität Stuttgart, Institute of Architecture of Application Systems,
70569 Stuttgart, Germany

http://www.iaas.uni-stuttgart.de/

Abstract. Today, the Internet of Things has evolved due to an advanced
connectivity of physical objects. Furthermore, Cloud Computing gains
more and more interest for the provisioning of services. In this paper, we
want to further improve the integration of these two areas by providing a
cloud-based situation recognition service – SitRS. This service can be used
to integrate real world objects – the things – into the internet by deriving
their situational state based on sensors. This enables context-aware appli-
cations to detect events in a smart environment. SitRS is a basic service
enabling a generic and easy implementation of Smart* applications such
as SmartFactorys, SmartCities, SmartHomes. This paper introduces an
approach containing a method and a system architecture for the realiza-
tion of such a service. The core steps of the method are: (i) registration
of the sensors, (ii) modeling of the situation, and (iii) execution of the
situation recognition. Furthermore, a prototypical implementation of
SitRS is presented and evaluated via runtime measurements.

Keywords: Situation Recognition, IoT, Context, Integration, Cloud
Computing, OSLC

1 Introduction

A major challenge for the Internet of Things (IoT) is sensor data integration
and sensor data processing [10]. The sensor access should be pervasive and the
integration of the sensors has to be automated. Furthermore, the sensor data
have to be interpreted in order to derive situations that can be understood
and processed more easily than the huge amount of low-level data, which is
di�cult to handle. To enable situation-awareness for the IoT, di↵erent levels
of processing are needed. These levels are described in Fig. 1. Here, the first
level – the data level – contains the sensor devices. On this level only the raw
sensor data is available, which is very complex and di�cult to process. Because

113

http://www.ipvs.uni-stuttgart.de/
http://www.iaas.uni-stuttgart.de/

2 Situation Recognition Service

Smart Environment Level: Observable Objects (Things)

Data Level: Sensor Data

Information Level: Observable Context

Knowledge Level: Situation

Application Level: Situation-aware Internet Application
1. Register situation
recognition for server
2. Adapt to recognized
situations

Situation-Model,
e.g. state of server
“ready” or “critical”

observation notification

Context-Model,
e.g. Object.RamState

Basic data types,
e.g. MB of free RAM

Fig. 1. Transition Levels from Data via Information to Knowledge

of that, the sensors are pushing their data to the next level – the information
level. At this point, the sensor data, such as temperature or load percentage, is
enhanced with information about their relations to objects, such as smart phones
or computers in a smart environment. On the information level, this data i.e., the
observable context, is linked to real world objects of the smart environment and
becomes information about the environment. Based on this context information
sensor data is aggregated and interpreted in order to derive well-understandable
situations that lead to knowledge about the smart environment. This knowledge,
i.e. high-level context, can be processed on a higher-level of abstraction, which
simplifies building situation-aware applications.

A method and a system architecture to provide this sensor data processing
for situation recognition as a service in an automatic, cloud-based manner are the
main contributions of this paper. Our system architecture supports automated
service deployment, a web-based front-end and loose coupling. This has many
advantages like concurrent remote access, high availability and scalability in order
to support multiple instances of our service as well as the integration of many
distributed sensors. In addition, we provide a means to define the situations
that could occur, that is, a model containing all necessary information for their
recognition. This model, called situation template in this paper, contains the
sensors being monitored as well as the conditions that have to match for a certain
situation. Once the model is created, it can be used to execute a data flow
that integrates the sensor information and executes comparison operations to

114

Situation Recognition Service 3

recognize occurring situations. The result of the processing is the recognition of
situations that allow applications to adapt to the smart environments observed
by the sensors. The advantage of such a service is, that the applications do not
have to care about the sensor access, the sensor data processing and not even
about the situation recognition. Instead, the applications only query the needed
knowledge or register for push notifications on occurring situations. The service
cares for finding appropriate sensor devices, storing the context data for queries,
providing a registration service for push notifications and finally automatically
setting up the situation recognition for the needed situations. This enables smart
applications to integrate real world objects into the internet by deriving their
situational state based on sensors.

The remainder of this paper is structured as follows: First, Section 2 intro-
duces related work. After that, Section 3 presents an architecture and method
for situation recognition that copes with the mentioned issues and enables situa-
tion recognition based on sensor data. Afterwards, in Section 4 we present our
prototypical implementation of SitRS. Section 5 evaluates the approach using
runtime measurements and finally Section 6 gives a summary of the paper and
an outlook on future work.

Motivating Scenario: This section introduces a motivating scenario that is
used throughout the paper to explain our approach. The goal of this scenario is
the monitoring of sensors of several machines simultaneously and the reaction
on occurring situations. For example, these machines could be web servers or
cloud-based virtual machines in a data center. Using a dashboard, the currently
occurring situation of all machines and, as a consequence, the state of a web
server or a data center can be seen immediately. It’s even possible to receive
notifications in case of emerging problems. For that, we define three types of situ-
ations: (i) “Failed” indicates that the system is not available due to an occurred
error, (ii) “Critical” indicates an occurring problem that could lead to a system
failure (cf. example in Fig. 4) and (iii) “Running” indicates that no problem is
occurring or emerging. The sensor data that is used to recognize these situations
is provided by heterogeneous APIs, depending on the respective machine. A
main challenge in this scenario is (i) coping with di↵erent representations of
the sensor data, (ii) integrating the sensor data, (iii) computing the situation,
and (iv) integrating highly heterogeneous APIs. Our solution is able to realize
this scenario by representing sensor data as uniform REST resources and by
integrating and analyzing them using a data flow-based integration. We will
explain the following concepts based on this motivating scenario, which has also
been implemented in our prototype.

2 Related Work

Acquiring, modeling and managing context information is a tedious and expensive
task [6,8]. As a consequence, it is beneficial to share this information between
di↵erent kinds of context-aware applications. We use the definition of context

115

4 Situation Recognition Service

given by A.K. Dey and G.D. Abowd as “any information that can be used to
characterize the situation of an entity, where an entity can be a person, place,
or object” [5]. Thus, as Dey and Abowd already defined, context information
can be used to identify and derive situations. Context models were introduced in
previous work [6] to represent or mirror certain aspects of the real world as closely
as possible thereby serving as a shared, common basis for di↵erent context-aware
applications and systems. In this paper, however, we concentrate on how context
and context models can be used to recognize situations. So the basic idea is to
enhance an existing context model infrastructure with a situation recognition
service based on so called situation templates. A situation template is an abstract,
machine-readable description of a certain basic situation, which describes context
information considered for being relevant for the situation and a description of
how to derive the existence of a situation from these values. Situation templates
were introduced before and this paper builds on the definition presented in [7].
Due to the historical development of rule-based expert systems, most context
reasoning systems [11] use ontology-based and predefined rule-based approaches.
Compared to our approach, most of the existing context-aware systems are
supposed to cover only a limited geographical area or support only a specific use
case scenario [2]. In our approach, any geographical area can be supported using
a global context model and in addition any kind of situation recognition can
be modeled as situation template based on the available context model. Unlike
situation recognition approaches that are based on pattern recognition using
e.g., machine learning [1] or on ontological reasoning [4] our approach executes
the situation recognition as a data flow. Furthermore, complex event processing
(CEP) [3] engines can be used for data flow execution in our approach. Hence,
the only errors and uncertainties in the process result from the sensors and their
sensor data readings. The data flow processing is accurate.

For the execution of the situation recognition, we use the Pipes and Filters
pattern [9] – which is implemented in our prototype using Node-RED3 – and
build on a transformation approach presented previously in [12]. There, the
concept of mapping the Pipes and Filters pattern to an executable representa-
tion was presented. In this paper, this concept is enhanced by a more detailed
approach introducing a method for situation recognition as well as a prototypical
implementation.

3 SitRS – Architecture and Method

The SitRS architecture, displayed in Fig. 2, consists of the situation model, the
situation recognition service, and the sensors. The components of the situation
recognition service can be deployed as cloud services, on a local machine or in a
hybrid manner. The service is subdivided into two core components, the situation
recognition system and the resource management platform and furthermore
contains two repositories, one for storing the situation templates and the other
for storing sensor information. In addition, it contains the following software
components: the situation registration service and the sensor adapters.
3 http://nodered.org/

116

Situation Recognition Service 5

Resource Management
Platform

Situation Recognition System

Physical Objects
with Sensors

Tools Transport Material Machines Production

Situation
Template

Repository

…

Situation
Registration

Service

Service Service

1 2 3 4

Mapping
fID

oID+ST

S1 Sn…

Situation
Recognition

Sensor
Registry

Create
Resource

Register
Sensor

Sensor Adapter 1 Sensor Adapter n

Situation
Objects

Situation
Recognition

Service

Situation Model

Fig. 2. SitRS – Architecture

The sensors at the bottom level can be registered in the Sensor Registry,
which invokes the resource management platform that extracts the sensor data
via the adapters and provisions them as uniform REST resources. Based on the
registered sensors, a description defining the conditions for an occurring situation
is modeled using so called situation templates. These situation templates are
stored in the Situation Template Repository. The Situation Registration Service is
used for the registration on occurring situations based on the situation templates.
The situation templates are mapped onto an executable representation – we
call executable situation template in the context of this paper – and executed
in the Situation Recognition System, i.e., an execution engine. The output of
this engine determines if modeled situations occurred. Note that the mapping
from a situation template to an executable representation is necessary to support
di↵erent execution engines, i.e., to prevent being dependent on a specific engine.

The introduced architecture is used as shown in Fig. 3. There are two kinds
of actors participating in this method, the situation recognition user and the
situation recognition admin. The admin has to register the sensors to be used.
The situation recognition user models the situation to be recognized as situa-
tion template and processes the notifications of the situation recognition. This
separation enables the usage by non-expert users regarding sensor integration
and technical details. The method contains all steps needed for defining the

117

6 Situation Recognition Service

Register Sensors Model Situation
Template

Situation
Recognition

1 2 3

Situation TemplateSensors Executable
Situation Template

Fig. 3. Method for Situation Recognition

continuous recognition of a situation. Due to a design decision, only a situation
for a single object, e.g. a web server, can be monitored by our approach. As a
consequence, this method has to be re-applied for di↵erent objects. Because of
that, it makes sense to create a single (cloud-based) instance of the service for
each object to be monitored. Recognizing situations regarding multiple objects is
part of our future work. The overall method consists of the following steps:

Step 1 – Sensor Registration: In the first step of the situation recognition
method, the available sensors are registered in the sensor registry component (cf.
Fig. 2). This registry is connected to the resource management platform, which
provides the sensor’s data as uniform REST resources. To register a sensor of
a specific object, e.g., the heat sensor of a machine, the object’s id, the type of
the sensor as well as its access path have to be specified. Thereupon, an entry is
created in the sensor registry containing the given information and an unique id
of the registered sensor. Once a sensor is registered, an event is generated that
notifies the resource management platform. Thereupon, this platform creates an
adapter to connect to the sensor and provides its data through a REST resource.
Note that each sensor is represented by exactly one REST resource. The URI
of this resource can be requested from the sensor registry using the sensor’s
id and is used for the transformation of a situation template to an executable
representation, which is described in Step 3.2.

Step 2 – Situation Template Modeling: Before we are able to recognize
situations, we need a means to define them. To enable this, we build situation
templates (ST), using Situation-Aggregation-Trees (SAT) that were defined by
Zweigle et al. [13]. These SATs are directed graphs resulting in a tree structure,
in which the branches are aggregated bottom-up (as shown in Fig. 4). As a
consequence, all paths are joined in a single root node that represents the
situation. The leaf nodes of the situation template – called context nodes –
represent the sensors. These context nodes are connected to condition nodes for

118

Situation Recognition Service 7

Res-

ponse

Code

CPU

Sensor

RAM

Sensor

MB

RAM

Load in

%

Watchdog

Sensor

!= 200 < 1000 > 90

OR

Critical

<SituationTemplate id="sitrec" name="System

Observation">

<Situation id="A" name="System Critical">

</Situation>

</SituationTemplate>

<operationNode id="A2" name="Combine">

<type>or</type>

<parent parentID="A3"/>

</operationNode>

<conditionNode id="A1" name="% CPU load">

<opType>greaterThan</opType>

<condValue>

<value>90</value>

</condValue>

<parent parentID="A2"/>

</conditionNode>

<situationNode name="System Critical"

id="A3"/>

<contextNode id="A0" name= "CPU Sensor"

type="cpuLoadSensor">

<parent parentID="A1"/>

</contextNode>

Fig. 4. Example of a Situation Template modeled in XML

filtering the incoming sensor data based on a condition. The output of these
condition nodes can be aggregated by operation nodes using logical operations
until the root node is reached. In previous work, no machine-readable format has
been properly defined for the exchange and definition of these SATs, which is
important to enable automated processing. To overcome this issue, we propose a
schema based on XML. Of course, other formats such as JSON could be used as
well. Note that modeling XML manually is a time-consuming and also error-prone
task due to the lack of an automated schema validation. To cope with this issue,
we recommend using existing XML modeling tools, both graphically or textually.
Due to the fact that a large variety of XML modeling tools already exist, we do
not provide an additional modeling tool for situation templates.

Figure 4 shows an example of a situation template that serves the recognition
of the situation “Critical” of a web server as described in the motivating scenario
in Section 1. To model such a situation, firstly, the available sensors of the
machine have to be modeled using context nodes that are containing the type
of the sensor. These context nodes are then connected to condition nodes that
compare the sensor’s data with predefined values. In the shown example, (i) the
CPU load percentage should be greater than 90, (ii) the available RAM should be
lower than 1000 MB, and (iii) the response code of the machine should not equal
200 in order to produce the output true. These condition nodes are aggregated
using operation nodes that represent logical operators, in this specific example
the OR operation node. The root of the SAT is the situation itself, i.e., the
situation occurs if the root node evaluates to true.

In the following, we describe the individual parts of a situation template
in detail, which is defined using an XML schema definition that can be found

119

8 Situation Recognition Service

online4. Each situation template has a unique identifier, a name and may contain
an arbitrary number of situations. This enables the simultaneous monitoring of
many di↵erent occurring situations within a single situation template. A situation
describes, which conditions have to apply for its occurrence, i.e., it is defined
by a directed tree. This tree contains a single root node, the situation node,
which occurs once inside a situation. The situation node describes the situation
to be monitored. A situation is uniquely defined by an identifier and its name.
Furthermore, a situation contains an arbitrary number of context nodes, condition
nodes and operation nodes. These nodes are connected using the parent element,
which contains a reference to the parent node.

Context nodes are used to describe the sensors that provide the data and are
defined with an identifier, a name and its type. Detailed information about the
sensor can be requested from the registry using the type attribute of the context
node as well as the identifier of the monitored object. Note that each sensor that
is being modeled has to be registered in the sensor registry first (cf. Step 1). The
parent nodes of context nodes are always condition nodes, as shown in Fig. 4.

Condition nodes are used to compare sensor data with values that are pre-
defined in the situation template. Possible types of condition nodes are greater
than, less than, equals, not equals and between. The value used for comparison
can be determined in the XML element condValue. Furthermore, each condition
node can have an arbitrary number of operation nodes as parents.

Operation nodes are used to aggregate the output of the condition nodes
and are restricted to the logical operations AND, OR, XOR and NOT. That
is, a situation usually occurs if more than one condition applies. However, if a
situation is dependent on only one condition, no operation nodes have to be
modeled. The parent of an operation node is either a single situation node or an
arbitrary number of operation nodes.

To ensure reusability and concurrent access, the modeled situation templates
are stored in the situation template repository.

Step 3 – Situation Recognition: The third step of our method is subdivided
into several sub-steps that are shown in Fig. 5 and are described in the following.

Step 3.1 – Situation Registration: The situation registry serves the reg-
istration on a specific situation to be recognized. The input of the situation
registry is the id of the situation template as well as the id of the object (oID)
to be monitored. On successful registration, the situation registration service
returns an observation flow instance id (fID) that can be used for deregistration
or management purposes. Once a situation is registered, an event is generated
that invokes the transformation of the situation template. This transformation
receives the situation template from the situation template repository using the
given id and transforms it into the executable situation template. After that, this
executable situation template can be deployed and executed in the respective

4 http://pastebin.com/TyBNPUEs

120

Situation Recognition Service 9

Situation
Recognition

3.2
Transform ST

to flow

3.3
Deployment

3.4
Execution

3.5
Deregistration

of Situation
Recognition

3.1
Register
Situation

Recognition

3

Executable
Situation Template

Situation

Sn

Fig. 5. Detailed View of the Situation Recognition Step

runtime environment. The execution runs until a situation template or all objects
relating to a situation template are deregistered in the situation registry.

Step 3.2 – Situation Template Transformation: The transformation of
situation templates serves the creation of an executable, event- and flow-based
representation that is able to recognize occurring situations based on the modeled
situation template. The input of the mapping is the identifier of the object to be
monitored (e.g., a web server) that was entered in the situation registry. In our
prototypical implementation, e.g., the format of the executable representation is
defined in JSON so it can be executed in the Node-RED environment. However,
depending on the execution environment, many di↵erent formats are possible.
We provide a 1-to-1 transformation from the XML-based situation template to
an executable representation. That is, each element of the situation template
is represented by exactly one element in the executable representation. In the
first step of the transformation, we map the context nodes onto calls of REST
resources that provide the latest sensor data. To do so, we receive the access
information, i.e. the URL of the resource, from the sensor registry (cf. Step
1), using the object id from the mapping’s input and the type of the sensor
defined in the situation template. The second step of the mapping processes the
condition nodes, i.e., the nodes implementing comparison operations such as
greater than, less than or equals that compare sensor data with predefined values.
These condition nodes are mapped to predefined function nodes, implementing
the comparison operations, e.g., using JavaScript in Node-RED. In a similar
fashion, the third step maps the condition nodes AND, OR, XOR or NOT to

121

10 Situation Recognition Service

corresponding function nodes that implement these logical operators. In the final
step, the nodes are connected using the means of the respective execution model.
The result is an executable situation template that recognizes occurring situations
through its execution. The time interval, in which the data flow will be executed,
that is, in which a situation should be monitored, has to be predefined by the
user of the solution and is used as input for the transformation. This is necessary,
because the execution time interval strongly depends on the use case. For each
situation, modeled in the situation template, a single flow graph is created and
can be deployed and executed separately.

Step 3.3 – Situation Template Deployment: After its transformation, the
executable situation template is deployed into the execution environment, e.g.,
Node-RED, CEP-Esper5 or Odysseus6. As a consequence, the deployment serves
as the interface to the execution engines being used. It should be flexible enough
to support di↵erent engines and should also be able to handle occurring errors
during the deployment. Operations supported by the deployment are deploy,
start situation recognition and stop situation recognition. In our prototype, for
example, the deployment sends a HTTP REST call to the Node-RED engine to
deploy a mapped situation template. After that, the situation recognition flow is
initiated by executing the start command. The situation recognition is active as
long as the modeled situation should be monitored, i.e., until it is deregistered in
the situation registry.

Step 3.4 – Situation Template Execution: After the deployment, the exe-
cutable situation template is executed using the respective execution environment,
e.g., an event-processing engine such as Node-RED. In the predetermined time
interval, the sensor data is requested from the REST resources that return the
latest sensor data. Thereupon, the further nodes of the situation template are
processed. These are always condition nodes that were mapped onto predefined
function nodes that compare the sensor data with predefined values and return
a Boolean value determining whether the condition applies. After each of these
condition nodes is processed, their output is concatenated using the mapped
operation nodes that implement logical operations. The concatenation of the
paths is processed until a single output emerges. This output is a Boolean value,
determining whether a situation occurred or not. This flow is repeated in the
given time interval until the situation is deregistered.

Step 3.5 – Situation Deregistration: The final step of the situation recogni-
tion is the deregistration of a situation template for a certain object. After the
need for the recognition of a situation expires, it is deregistered in the situation
registry. In case no more registrations exist for a situation, two steps are pro-
cessed. First, the execution engine stops the situation recognition flow. Second,
the executable situation template is undeployed from its execution environment.

5 http://esper.codehaus.org/ 6 http://odysseus.informatik.uni-oldenburg.de/

122

Situation Recognition Service 11

Situation
Recognition

Service

Physical Sensors

OSLC-based Resource
Management Platform

…

OSLC Service OSLC Service

1 2 3 4OSLC REST Resources

OSLC Service Layer

Sensor
Registry

Create
Resource

Register
Sensor

OSLC Service Provider
Data Cache

OSLC Adapter 1 OSLC Adapter n

push push

pull

Node-RED
Situation
Template

Repository

Situation
Registration

Service
Mapping

fID

oID+ST

XML File Store

Java
JAXB
JSON

Fig. 6. Architecture of the SitRS Prototype

The deregistration of a situation secures that no unnecessary resources are spent
for an (even temporary) unneeded situation recognition.

4 Prototypical Implementation

In this chapter, we describe our prototypical implementation of the introduced
concepts. The overall architecture of the prototype is shown in Fig. 6. Furthermore,
the prototype is available on GitHub (https://github.com/hirmerpl/SitOPT).

Firstly, we implemented a mapping of situation templates defined in XML to
an executable representation in JSON. This mapping has been implemented as
a Java library using the Java Architecture for XML Binding (JAXB), which is
used to parse the situation template. Furthermore, we used the Apache Wink7

JSON library to create a JSON model for the executable representation.
After the mapping is processed, we deploy the executable situation template

to Node-RED using the provided HTTP REST interface. There exist many
technologies that could have been used for processing the situation template
such as RestFlow8. However, for our prototype, it is a requirement that the used
engine is web-based, RESTful and o↵ers a graphical user interface to enable
an easier development as well as advantages in debugging. Because of that, we
used Node-RED here, which provides a nice user interface showing a graphical
representation of the executed flows, supports automatic deployment and o↵ers
a native REST support. The flow is started automatically and processes the
situation recognition in predefined time intervals.

The resource management platform provides sensor data of heterogeneous
sources to be processed by the executable situation template deployed in Node-
RED. The resource management platform is currently being implemented using

7 https://wink.apache.org/ 8 https://github.com/restflow-org/

123

12 Situation Recognition Service

Eclipse Lyo9 – the Java-based implementation of the Open Services for Lifecycle
Collaboration (OSLC)10 specification –, however, it is not yet available in our
prototype. Same with the sensor registry that could e.g, be realized using a web
service with an underlying database to store the sensor’s information.

The implementation of the resource management platform is based on OSLC
because OSLC provides a mature specification that describes how to provide
data as uniform REST services. In this paper, we use a push approach from
the sensors to the resource management platform and a pull approach from the
situation recognition system to the resource management platform. This mixed
push/pull-approach is necessary because the situation recognition processes the
sensor data independent of the sensors’ reaction, i.e., sensor values have to be
available at all times not only if pushed by the sensors. The resource management
platform consists of (i) OSLC adapters to connect to the sensor data sources, (ii)
a data cache to store intermediate data, (iii) an OSLC service provider managing
OSLC services, (iv) OSLC services that create, modify or delete REST resources,
and (v) the REST resources themselves that provide data of the connected sensors
to enable uniform accessibility. The architecture of these components is displayed
in Fig. 6. Note that the OSLC specification is usually used for the integration
of lifecycle tools for software development. For our prototype, we designed an
OSLC-inspired architecture that transfers the concepts of OSLC to enable the
integration of sensor data sources. As a consequence, our design could slightly
di↵er from the OSLC specification. In the following, the components of the
resource management platform are described in detail:

OSLC Adapter: An OSLC adapter is used to connect to a sensor’s API
in order to extract its data. This can be realized using either a push or pull
approach. In the pull approach, the adapter requests the data from the sensor,
in the push approach, the data is sent directly to the OSLC adapter as soon as
the sensor reacts. Note that the pull approach requires a sensor API that caches
its data and provides it on request, independent of the sensor’s reaction. In the
motivating scenario, an adapter for each machine to be monitored has to be
created by accessing the machine’s sensor APIs and by extracting data, e.g., the
CPU load, the currently available RAM or the CPU temperature. This data is
stored into a data cache, e.g. a key-value store, to be available on request. Note
that details about the binding of the sensors are part of our future work.

OSLC Service Provider: The OSLC service provider represents the entry
point of the platform and manages the OSLC services that provide the REST
resources. In our approach, we use a single service provider, managing all services.

OSLC Services: OSLC services are responsible for the on-demand creation,
modification and removal of REST resources. Each service represents an object
to be monitored. This object may contain an arbitrary number of sensors. For
each sensor of an object, an OSLC REST resource providing the sensor data is
created by these services.

REST Resources: The REST resources represent the interface to the user of
our OSLC platform, that is, the situation recognition. The data extracted by the

9 http://eclipse.org/lyo/ 10 http://open-services.net/

124

Situation Recognition Service 13

Table 1. Runtime Measurements of the Prototype

Measurement ST Transformation ST Deployment ST Execution
1 219 ms 141 ms 6 ms
2 219 ms 126 ms 6 ms
3 234 ms 125 ms 5 ms
4 203 ms 141 ms 5 ms
5 204 ms 140 ms 6 ms

215,8 ms 134,6 ms 5,6 ms

OSLC adapters is accessed through the data cache and is made available through
a RESTful interface, providing the uniform methods GET, PUT, POST and
DELETE that can be invoked using the Hypertext Transfer Protocol (HTTP).
The actual implementation of the resources is defined in the corresponding OSLC
service. In our prototype, only the GET and DELETE methods are relevant to
either receive the sensor data or delete the resource if a sensor is deregistered.

Currently, the SitRS prototype has the following limitations: Firstly, it is
not yet possible to compare sensor values with each other. It is only possible
to compare sensor data with fixed values. Secondly, no concept of time exists
because it is focus of this paper to recognize only current situations.

5 Evaluation

This section contains the evaluation of our approach by presenting runtime
measurements and a load test based on the prototypical implementation.

To conduct the runtime measurements, we used an Ubuntu image hosted on
Openstack11 with 8 GB RAM and 8 Intel(R) Xeon(R) CPU E5-2630 0 @ 2.30GHz
CPUs for our measurements. We measured the runtime of the situation template
transformation, the deployment and the execution, separately. The situation
template we used for these measurements monitors a remote machine, modeled
as shown in the example in Fig. 4. All in all, this situation template contains 8
nodes to be mapped, deployed and executed. Table 1 shows the measurement
results. These measurements are based on the transformation, deployment and
execution of a single situation template. Our measurements are used as proof of
concept that the introduced steps are processed in a reasonable time.

We further executed a load test to check how many situation templates
can be transformed, deployed and executed in parallel inside a single runtime
environment, using the same situation template as above. The results are shown
in Table 2. As displayed, the runtime highly increases with increasing situations
to be monitored in parallel. Our measurements show that executing two flows
in parallel increases the runtime to 38 ms, when executing ten flows in parallel
even to 404 ms. This means, Node-RED produces an overhead when processing
multiple parallelized flows. This happens due to Node-RED’s inability to process
the flows in parallel using multiple threads. Furthermore, the internal execution

11 http://www.openstack.org/

125

14 Situation Recognition Service

Table 2. Load Test of the Prototype

ST Transformation Deployment Parallel Runtime Sequential Runtime
1 215,8 ms 134,6 ms 5,6 ms 5,6 ms
2 424,4 ms 209,2 ms 37,6 ms 13 ms
5 1093 ms 350 ms 176,4 ms 27 ms
10 2475 ms 659,2 ms 404,4 ms 57 ms

scheduling leads to waiting periods between the execution of nodes. However,
when executing the flows sequentially, the runtime is growing approximately
linearly as expected, e.g. 10 sequentially executed flows lead to a runtime of 57 ms
instead of 404 ms when executed in parallel (cf. column “Sequential Runtime”).
In conclusion, when using the Node-RED runtime environment, it would be
necessary to implement a self-made runtime scheduler to avoid a poor runtime.
As a consequence, we use the Node-RED runtime environment only for our
proof-of-concept implementation. In the future, we will implement and compare
further execution engines such as CEP-Esper that are suitable for highly parallel
scenarios.

6 Summary and Outlook

In this paper, we presented an approach for a situation recognition service called
SitRS. This service can be used to integrate real world objects (things) into the
internet by deriving their situational state based on sensors. For that, we intro-
duced a method for the recognition of situations based on modeling and executing
situation templates. These templates represent a model to define situations by
the sensor data to be used as well as the conditions for the situations. The SitRS
service transforms this description into an executable situation template that
can be automatically deployed and executed in a (cloud-based) execution engine.
The architecture of our approach is separated into two components, the situation
recognition component and the resource management platform. The situation
recognition component is used to execute a data flow that reads sensor data,
compares them with predefined values and uses this information to determine if
a certain situation occurred. The sensor data is provided by REST. The sensor
registry can be used to register new sensor data sources or deregister them if
they aren’t needed anymore.

As future work, we plan to integrate SitRS into a workflow system in order
to realize situation-aware workflows. Furthermore, we plan to use the presented
method in a di↵erent use case to enable situation recognition in advanced man-
ufacturing (Industry 4.0) environments, i.e., we will introduce and implement
an IoT scenario based on “real” objects such as production machines. On the
technical side, we want to provide additional situation template mapping algo-
rithms for other execution engines such as CEP-systems like Esper and data
streaming systems like Odysseus. The current SitRS prototype provides the
basis for further development and is available as open source implementation

126

Situation Recognition Service 15

(https://github.com/hirmerpl/SitOPT). In addition, we plan to enable automatic
sensor binding and registration based on ontologies.

Acknowledgment: This work is funded by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) - Grant 610872, project SitOPT.

References

1. Attard, J., Scerri, S., Rivera, I., Handschuh, S.: Ontology-based Situation Recogni-
tion for Context-aware Systems. In: Proceedings of the 9th International Conference
on Semantic Systems (2013)

2. Brumitt, B., Meyers, B., Krumm, J., Kern, A., Shafer, S.: EasyLiving: Technologies
for Intelligent Environments. In: Handheld and Ubiquitous Computing. Springer
Berlin Heidelberg (2000)

3. Buchmann, A., Koldehofe, B.: Complex event processing. it-Information Technology
Methoden und innovative Anwendungen der Informatik und Informationstechnik
(2009)

4. Dargie, W., Eldora, Mendez, J., Mobius, C., Rybina, K., Thost, V., Turhan, A.Y.:
Situation Recognition for Service Management Systems Using OWL 2 Reasoners.
In: Pervasive Computing and Communications Workshops (PERCOM Workshops),
2013 IEEE International Conference on (2013)

5. Dey, A.K.: Understanding and Using Context. Personal and Ubiquitous Computing
(2001)

6. Großmann, M., Bauer, M., Hönle, N., Käppeler, U.P., Nicklas, D., Schwarz, T.:
E�ciently Managing Context Information for Large-Scale Scenarios. In: Proc. of
the Third IEEE Intl. Conf. on Pervasive Computing and Communications (2005)

7. Hussermann, K., Hubig, C., Levi, P., Leymann, F., Siemoneit, O., Wieland, M.,
Zweigle, O.: Understanding and Designing Situation-Aware Mobile and Ubiquitous
Computing Systems. In: Proceedings of the International Conference on Computer,
Electrical, and Systems Science, and Engineering 2010 (ICCESSE 2010) (2010)

8. Lange, R., Cipriani, N., Geiger, L., Großmann, M., Weinschrott, H., Brodt, A.,
Wieland, M., Rizou, S., Rothermel, K.: Making the World Wide Space Happen: New
Challenges for the Nexus Context Platform. In: Proceedings of the 7th Annual IEEE
International Conference on Pervasive Computing and Communications (PerCom
’09). Galveston, TX, USA. March 2009 (2009)

9. Meunier, R.: The pipes and filters architecture. In: Pattern languages of program
design (1995)

10. Vermesan, O., Friess, P.: Internet of Things: Converging Technologies for Smart
Environments and Integrated Ecosystems. River Publishers (2013)

11. Wang, X., Zhang, D.Q., Gu, T., Pung, H.: Ontology based context modeling and
reasoning using OWL. In: Pervasive Computing and Communications Workshops,
2004. Proceedings of the Second IEEE Annual Conference on (2004)

12. Wieland, M., Schwarz, H., Breitenbücher, U., Leymann, F.: Towards Situation-
Aware Adaptive Workflows. In: Proceedings of the IEEE International Conference
on Pervasive Computing and Communications (PerCom) (2015)

13. Zweigle, O., Häussermann, K., Käppeler, U.P., Levi, P.: Supervised Learning
Algorithm for Automatic Adaption of Situation Templates Using Uncertain Data. In:
Proceedings of the 2nd International Conference on Interaction Sciences: Information
Technology, Culture and Human (2009)

127

Detecting Frequently Recurring Structures in
BPMN 2.0 Process Models

Marigianna Skouradaki and Frank Leymann

Institute of Architecture of Application Systems, University of Stuttgart, Germany
{skouradaki,leymann}@iaas.uni-stuttgart.de

Abstract Reusability of process models is frequently discussed in the
literature. Practices of reusability are expected to increase the perfor-
mance of the designers, because they do not need to start everything
from scratch, and the usage of best practices is reinforced. However, the
detection of reusable parts and best practices in collections of BPMN
2.0 process models is currently only defined through the experience of
experts in this field. In this work we extend an algorithm that detects
the recurring structures in a collection of process models. The extended
algorithm counts the number of times that a recurring structure appears
in a collection of process models, and assigns the corresponding number
to its semantics. Moreover, the dublicate entries are eliminated from the
collection that contains the extracted recurring structures. In this way,
we assert that the resulting collection contains only unique entries. We
validate our methodology by applying it on a collection of BPMN 2.0
process models and analyze the results. As shown in the analysis the
methodology does not only detect applied practices, but also leads to
conclusions of our collection’s special characteristics.

Keywords: BPMN 2.0, Relevant Process Fragments, RPF, process models,
reusabulity, structural, similarity

1 Introduction

During the last years many researchers [6, 7, 12, 15,16] have emphasized the im-
portance of the reusability of process models. It is expected that an e�cient
methodology to reuse process models will contribute to a more e↵ective engi-
neering of process models [15]. For this reason we need to analyze the process
models and decide which parts can be reused. The research field of process mod-
els similarities focuses on three di↵erent areas: 1) text semantics, 2) structural
analysis and 3) behavioral analysis [5].

Large collections of process models are anonymized or modeled for docu-
mentation. Thus, they are not executable. Consequently, the approaches of text
semantics (vs. anonymized models) and behavioral analysis on executable mod-
els (vs. mock-up, non-executable models) cannot be used e�ciently. In these
cases we need to apply the approach of structural similarities. However, struc-
tural similarities also base their functionality on text semantics and behavioral

128

2

similarities [4,5,14]. For this reason we have suggested a methodology that runs
(sub)graph isomorphism against a collection of process models and focuses on
extracting the common recurring structures. The first approach of our method-
ology leads to promising results, as experiments showed that the algorithm can
run with logarithmic complexity [17].

This work extends the work described in [17] with the following contributions:

1. extending the algorithm to count the recurring structures and filter the du-
plicate results

2. applying the algorithm on di↵erent use case scenarios
3. analyzing the exported results

This paper is structured as follows: section 2 describes the overall methodol-
ogy overview of our work. Section 3 defines the problem and explains the basic
concepts that frame it. Section 4 shows the implementation of the designed
methodology. Section 5 discusses the results of the methodology’s application.
Section 6 addresses the related work in this area, and Section 7 concludes and
describes our plans for future work.

2 Methodology Overview

The BenchFlow Project1 aims to create the first benchmark for Business Process
Model and Notation (BPMN 2.0) compliant Workflow Engines. In the scope of
that project we have collected process models that reflect the diversity of appli-
cation scenarios. For the construction of a representative benchmark it is needed
to extract the essence of each of the scenarios and construct a set of represen-
tative process models. The extracted representative process models are called
“synthetic” process models, because even though they are artificial they consti-
tute an accurate representation of real world use cases. Synthetic process models
should also be combined with appropriate Web Services, synthetic data and in-
teracting users. To address these challenges, we develop a workload generator.
In this work we focus on the methodology to synthesize representative process
models while the generation of appropriate web services and interacting users is
left for future work.

Figure 1 depicts the methodology for the generation of the synthetic pro-
cesses, which uses the following four phases:

1. Process Fragments Discovery: Addresses the automatic discovery of re-
curring structures in a collection of process models. Our methodology is
applied in a collection of BPMN 2.0 process models. The definition and im-
plementation of this methodology are described in [17].

2. Process Fragments Refinement: The extracted recurring structures are
stored as unstructured BPMN 2.0 code. They need to be refined as “Process
Fragments” [15] in order to be stored in a process fragment library, out of
which they can be managed, and retrieved.

1
http://www.iaas.uni-stuttgart.de/forschung/projects/benchflow.php

129

http://www.iaas.uni-stuttgart.de/forschung/projects/benchflow.php

3

Figure 1. Methodology Overview

3. Process Fragments Selection: All process fragments are not necessarily
of equal interest for the benchmark. For example, in a benchmark scenario we
are interested in high parallel fragments, while in another scenario we need
to check how the Workflow Engine responds to complex control flow branch-
ing structures. This component selects fragments that satisfy benchmark
related criteria. The criteria are defined by the user or from the benchmark
customization. The work described in this paper focuses on this component,
because it calculates the appearance rate of each recurring structure in the
collection. Furthermore, it annotates the recurring structure with its appear-
ance number. This is one of the metrics that will be used for the selection
of the process fragments. Other metrics that we defined are size, structural
metrics, metrics of external interaction, data handling and complexity [2,13].
The process fragments that we select from this component are stored in a
separate repository.
It is possible that phases 1-3 (Figure 1) can sometimes be omitted if the
extraction criteria are compliant with the purposes of the benchmarking
process.

4. Process Fragments Synthesis: Synthesizes the process fragments into
executable processes according to the composition criteria given by the user

130

4

or the benchmark customization. For example, when the selection criteria
ask for a process with control-flow nesting N and M external interactions,
the appropriate fragments are chosen to synthesize it.

3 Background

3.1 Problem Definition

In graph theory the task of discovering similar structures is expressed as sub-
graph discovery problem. Recurring sub-graph discovery is a sub-category of the
general problem of subgraph isomorphism which is proven to be NP-Complete
[1,9]. However there are special cases of graphs and matching problems that are
proven to be of lower complexity [20].

Figure 2 presents two process models expressed in BPMN 2.0. As seen, these
models consist of nodes (in BPMN 2.0 tasks, events and gateways), directed
edges (in BPMN 2.0 sequence flows), and labeling (BPMN 2.0 language seman-
tics on events and gateways, and names on tasks). Hence, process models are a
special type of directed attributed graphs. These are graphs where their vertexes
or edges contain information.

Figure 2. Recurring Structures in two BPMN 2.0 Process Models

Some results of the recurring structures extraction is shown in Figure 2. It
shows four pairs of recurring structures in two BPMN 2.0 process models. These
structures are not the complete set of reoccurring structures in these two process
models. However we considered these as representative cases as they demonstrate
the following attributes:

131

5

1. Structures can be nested within each other. This means that a recurring
structure may be a subgraph of another, bigger recurring structure. Example
structures of this attribute are marked with the red solid and the blue dash-
dotted line.

2. Reoccurring structures can appear in di↵erent positions of the process model.
As position we define the number of edges from the node to the model’s start
event This attribute applies to all represented structures.

3. Structures can be “partially” similar. This means that some of the outgo-
ing edges of a node can lead to similar structures. Structures marked with
the orange dash line and the green dotted line are some examples of this
attribute.

It is also possible that a structure demonstrates more than one of the above
attributes. For example the structure marked with the blue dash-dotted line is
nested (Attribute 2) and appears in di↵erent positions of the diagram (Attribute
3).

We have used these attributes as a basis to develop the methodology to
detect and extract recurring structures [17]. The goal of this work is to: a)
detect the duplicate structures and b) to tag them with the appropriate number
of appearances. This task is also reduced to a subgraph isomorphism challenge,
since we have to reapply the methodology of graph isomorphism in order to
decide if a structure is duplicate in the collection.

3.2 Basic Concepts

This section sets the theoretical work used by our methodology of fragmenta-
tion, duplicate filtering, and appearance counting. We extend the definition of
“Process Fragment”, initially given by [15] to fit our needs.

Before we proceed to the extension of the “Process Fragment” definition,
we need to define the concept of a “Checkpoint”. As “Checkpoint” we define
any type of node that can be used as a starting point for our extended process
fragments. The types of checkpoints can be configured by the user, and vary
with respect to the process language that describes the models.

The extended definition of “Process Fragment” is called a “Relevant Process
Fragment” (RPF) because its detection is dependent to its existence in at least
K process models. RPF satisfy the following structural requirements:

– starts with a checkpoint
– has at least N nodes including the checkpoint, where N is a natural number
and pre-configured from the user. We use N �3.

– contains at least one activity

For this paper we focus on the detection of RPFs when K = 2, while in
future work the threshold of K may vary.

Finally, we define as duplicate any structure that appears in K + 1 process
models. Since in this work the threshold is set as K = 2, a duplicate must appear
in at least 3 models before it is filtered.

132

6

4 Implementation

4.1 Algorithm: Get Recurring Structures

This section describes the methodology we developed for the discovery of the
RPFs. For a better comprehension the algorithm is separated in two algorithms.
Algorithm 1 starts the traversal of the model, calls Algorithm 2, and returns the
discovered RPF. Algorithm 2 compares two models with each other and extracts
the discovered similar structures.

Algorithm 1 takes as input one set of sequence flows (graph’s edges) for each
model. These sequence flows correspond to every outgoing sequence flows of each
checkpoint. Figure 2 shows the scenario were the configured types of checkpoints
are gateways and events. For example, see checkpoint B and checkpoint E 0 (cf.
figure 2) . The corresponding sets given as input to the algorithm will be Set1 =
{{exclusive gateway ! Task A }, {exclusive gateway ! Task C }} for Model
A and Set2 = {{parallel gateway ! TaskE }, {parallel gateway ! Task F }}
for Model B. These sets of checkpoint sequence flows are called checkpointFlows
in lines 3-4 of algorithm 2. This process is done to ensure that all possible sets
of paths will be traversed by the end of the algorithm.

Algorithm 1 Procedure that calculates the matching paths of two models
1: procedure getMatchingPath()
2: i 0
3: for all checkpointF lows chF lowA 2 modelA do

4: for all checkpointsF lows chF lowB 2 modelB do

5: tmpFragment ;
6: tmpFragment comparison(chF lowA, chF lowB, tmpFragment)
7: if isValidFragment(tmpFragment) then
8: add(collection, tmpFragment)
9: end if

10: end for

11: end for

12: end procedure

For all possible pairs of checkpointFlows in the two checkpoint sets, namely
for their Cartesian product, we call algorithm 2 (line 6 of algorithm 1). It takes
as parameters the current instances of checkpointFlows, and an empty fragment.
By iteratively calling algorithm 2 for the di↵erent checkpointFlows we manage
to check all possible checkpointFlows combinations as a possible start point of
an RPF. The comparison procedure returns the calculated RPF (cf. variable
tmpFragment). At this point we need to validate if the returned structure com-
prises an RPF or not (cv. function ISVALIDFRAGMENT(tmpFragment)). The
validation rules applied are the requirements described in Section 3.2. If the val-
idation is successful, then the RPF is saved in a temporary data structure that
holds all the discovered RPFs (cf. variable “collection” in algorithm 1)).

133

7

Algorithm 2 Procedure that compares the two models
1: procedure comparison(sequenceF lowModelA, sequenceF lowModelB,

tmpFragment)
2: if (getSourceType(sequenceF lowModelA)

equals

getSourceType(sequenceF lowModelB))
and

(getTargetType(sequenceF lowModelA)
equals

getTargetType(sequenceF lowModelB)) then

3: outgoingA getOutgoing(sequenceFlowModelA)
4: outgoingB getOutgoing(sequenceFlowModelB)
5: add(fragment, sequenceF lowModelB)
6: for all outgoingA 2ModelA do

7: for all outgoingB 2ModelB do

8: if outgoingB /2 tmpFragment then

9: comparison(outgoingA, outgoingB, tmpFragment)
10: end if

11: end for

12: end for

13: else

14: return fragment

15: end if

16: end procedure

The functionality of algorithm 2 is to traverse and compare the models. The
first step in this procedure is to check if the sequence flows that are given as pa-
rameters have sources and targets that are of the same type (e.g. task, exclusive
gateway, start event etc.)(cf. functions GETSOURCETYPE() and GETTAR-
GETTYPE()). When this condition is satisfied we say that two sequence flows
match. Since we are strictly focusing on the structural similarity of the models
this decision can be taken only based on the type of the sequence flow’s source
and target node. However, the condition could be extended if we wanted to
check the similarity regarding more parameters e.g. labels of the nodes. When
the sequence flows match we add the respective sequence flow to a temporary
fragment structure (cf. variable tmpFragment in algorithm 2). Afterwards we get
all the outgoing sequence flows (cf. function GETOUTGOING()) of the previ-
ously considered target nodes, i.e. make a step forward to the traversal, and call
recursively the comparison algorithm for all pairs of outgoing sequence flows.
The termination condition of the recursion is two sequence flows that do not
match, or if the checked nodes do not have any outgoing sequence flows. If this
condition is satisfied the algorithm returns the set of matched sequence flows
until this point of execution (cf. variable tmpFragment in algorithm 2).

134

8

4.2 Algorithm: Find Duplicates and Count Appearance

This section presents the extensions that we developed for the algorithms of
subsection 4.1. Their goal is to filter the duplicate RPFs, and count the times of
their appearance. Algorithm 3 will check a set of newly discovered RPFs against
the collection of stored RPFs, to find the number of appearances of an RPF in
the collection. To this end, it calls algorithm 4 for their Cartesian product to
check if they are isomorphic. Algorithm 4 checks if two RPFs are isomorphic to
each other.

Algorithm 3 Procedure that checks if a fragments is duplicate and increases
appearance counter

procedure handleDuplicates(matches)
for all match 2 matches do

if collection equals ; then
4: add(collection,match)

else if contains(collection,match) then
tmpFragment collection[match]
appearanceCounter tmpFragment.appearanceCounter

8: tmpFragment.appearanceCounter appearanceCounter + 1
tmpFragment.isomorphic true

else

add(collection,match)
12: end if

end for

end procedure

More particularly, algorithm 3 takes as parameter a set of matched RPFs.
This is basically the output of algorithm 1 described in subsection 4.1. As dis-
cussed the set of newly matched RPFs (cf. matches) is compared against the
RPFs that are already stored in the collection. Firstly, we need to check if
the collection is empty (cf. variable collection). In this case we add the first
matched RPF the collection and we do not need apply further checks. For every
other newly matched RPF (cf. variable match) we check if it is contained in the
collection. The function CONTAINS (cf. line 5 in algorithm 3) will internally
call algorithm 4 to compare each matched RPF match with each RPF stored in
the collection. If we find an isomorphic match we need to edit its corresponding
isomorphic RPF that is stored in the collection. We mark it as isomorphic, and
we increase its appearance counter by 1. If we do not find any isomorphic match
then the RPF is added in the collection (cf. function ADD at line 11 of algo-
rithm 3). If we apply this procedure before storing each RPF, the final collection
will not contain any duplicates.

Algorithm 4 is called internally from the CONTAINS function of algo-
rithm 3. Its parameters are the RPFs to compare. It will return true if and only
if the two RPFs are completely isomorphic. So the cases of isomorphic subsets

135

9

Algorithm 4 Procedure that calculates if two RPFs are equal
1: procedure isFragmentIsomorphic(fragment1, fragment2)
2: fragment1SequenceF lows sequenceF lows 2 fragment1
3: fragment2SequenceF lows sequenceF lows 2 fragment2
4: if fragment1SequenceF lows.size() equals

fragment2SequenceF lows.size() then
5: tmpFragment ;
6: comparison(fragment1SequenceF lows[0],

fragment2SequenceF lows[0], tmpFragment)
7: if tmpFragment.size equals fragment2SequenceF lows.size then

8: return true

9: end if

10: end if

11: return false

12: end procedure

are not considered in this case. We first check if the two RPFs have the same
number of sequence flows. In this case we call the algorithm 2 which operates
as it was described in subsection 4.1. Then we need to check if the output of
algorithm 2 has the same size of sequence flows. If two RPFs are isomorphic and
have the same number of sequence flows then it is sure that the RPFs are equal.
If the two RPFs did not have the same number of sequence flows we know for
sure they were not completely isomorphic. In this case false is returned.

5 Validation and Discussion

This section shows and analyzes the results of the methodology’s application.
For the validation we used 43 BPMN 2.0 process models that originate from the
sets of BPMN 2.0 process models2 also used in [14], and the BPMN 2.0 standard
examples3 [11]. This is a combination of artificial and real-world process models.
The RPFs discovery algorithm (cf. algorithm 1) is configured to calculate the
types of Set1 = {events, gateways} as checkpoints, and we set N = 3 the
number of nodes of each RPF.

Each model is compared with all the other models except for themselves. This
leads to 903 comparisons. That results in 1544 non-filtered RPFs. The results
are decreased to 259 RPFs after the filtering of duplicates. This leads to 83.22%
decrease of the results. This is an important percentage of decrease because it
will help us reduce the exported results and ease the analysis of the produced
RPF collection.

The calculated times of appearance of the detected RPFs range from [1, 178].
From the RPFs that appear more than one times in the collection (54 RPFs)
we calculate the median value and set it as threshold. Statistically the median

2
http://pi.informatik.uni-siegen.de/qudimo/bpmn/

3
http://www.omg.org/spec/BPMN/20100602/

136

http://pi.informatik.uni-siegen.de/qudimo/bpmn/
http://www.omg.org/spec/BPMN/20100602/

10

value shows a central tendency of a set. Hence, it was considered representative
as a threshold. In this case:

Median = Threshold = 14

We result in 27 RPFs with re-appearance rate above the threshold. Setting the
threshold does not only eliminate significantly the results, but also gives us an
insight of the most frequently used RPFs in the collection. Due to space limita-
tions in figure 3 we present only the first 8 RPFs with the biggest appearance
rate. Each RPF shown in the figure 3 has an ID number at its left side, and at
its right side a number that indicates the times of appearance in the collection.
As seen figure 3 most of the RPFs (1,2,3,4,5,7) comprise of simple structures.

Figure 3. The first 8 RPFs with the bigger appearance rate

These structures are expected to be found in a collection of process models as
they are simple combinations of parallel and/or exclusive gateways with tasks.

137

11

Hence, unless someone is interested to learn the appearance ratio of these trivial
structures the number of nodes per RPF can be set to a number> 3. Then these
RPFs will not be included in the results.

By studying the resulting RPFs it is also possible to draw conclusions about
usual practices in the design of process models. For example, RPF 6 reveals that
parallel structures are frequently used at the end of process models. It is also
interesting to notice that only one branch of the branching structures is found
to be repeated each time. This indicates that the rest of the branches followed
a di↵erent business logic.

General conclusions about our collection can also be drawn. For example, we
observe that RPF 7 and RPF 9 are quite big and complex to have so frequent
appearances. From this we can conclude many of the analyzed models were
di↵erent versions of the same business process. As the real analysis will be applied
on thousands of real-world process models gathered from di↵erent resources,
this phenomenon is expected to be eliminated. However, we might have similar
phenomena where the RPFs will reveal other details about our collection.

6 Related Work

Process Fragmentation is frequently discussed in the literature, with a focus to
Single-Entry-Single-Exit (SESE) regions [18, 19]. These regions are then con-
nected together, to form an hierarchy called “Refined Process Structure Tree”
(RPST), which is then used to detect these sub-graphs of models that match
together [8]. This approach was also examined in our work [17]. However, the di-
vision of the model to SESE regions, and then RPSTs would result in a sub-set of
fragments, that do not necessarily represent the existing recurring structures in
the process models. Therefore, the proposed technique was not considered com-
pliant with our needs. In the field of structural similarities we could not find any
approach that focuses on the detection of recurring structural parts in BPMN
2.0 models with a sole focus on their control-flow. A number of algorithms for
process model structural matching and comparison are presented in [4, 14], but
all of them have a strong focus on text semantics to detect similar mappings. As
our work focuses on the structure of the process model and is independent of text
or behavioral information, it was not possible to further use the aforementioned
approaches. In [10] there is a focus on BPEL processes, which are tranformed to
a BPEL process tree. Afterwards, tree mining algorithms are applied in order to
discover recurring structures in a process. Although the further goal of this work
is very similar to our goal, the di↵erent nature of BPMN 2.0 language does not
allow to apply the same tree mining techniques for similar structures detection.

The Workflow Patterns Initiative4 is an e↵ort to provide a conceptual basis
for process technology [3]. This initiative presents the aspects (control flow, data,
resource, and exception handling) that need to be supported by any workflow
language. As pattern they describe the minimum sequence of workflow language

4
http://www.workflowpatterns.com/

138

http://www.workflowpatterns.com/

12

elements that should be combined to represent a fundamental concept. The
proposed micro-structures are not accompanied by information of real-life usage
rate. Therefore, we consider this approach to complement but not replace our
goals.

7 Conclusion and Future Work

In this work we described an extension of an algorithm defined in [17]. With
this extension the algorithm automatically counts the appearances of recurring
structures in a collection of process models. The ultimate motivation for this
work is the development of a workload generator for benchmarking BPMN 2.0
Workflow Engines. However, the proposed methodology can be also applied to
di↵erent use-case scenarios for process model re-usability.

To the best of our knowledge, this work is the first attempt to automatically
detect frequently used structures in a collection of BPMN 2.0 process models. We
have evaluated our approach with a collection of 43 BPMN 2.0 process models.
As seen from the resulting RPFs conclusions can be made about a) frequently
used structures (usual-practices) in BPMN 2.0 and b) for the collection’s special
characteristics.

As future work we plan to extend the algorithm for the complete set of BPMN
2.0 model elements. We will run the approach on the complete collection of real-
world models, and execute a thorough analysis on the results. As a next step we
will implement the first prototype of the process synthesizing methodology.

Acknowledgments This work is funded by the Swiss National Science Foun-
dation and the German Research Foundation with the BenchFlow - A Bench-
mark for Workflow Management Systems (DACH Grant Nr. 200021E-145062/1)
project.

References

1. Basin, D.A.: A term equality problem equivalent to graph isomorphism. Informa-
tion Processing Letters 51 (1994)

2. Cardoso, J.: Business process control-flow complexity: Metric, evaluation, and val-
idation. International Journal of Web Services Research 5(2), 49–76 (2008)

3. van Der Aalst, W.M.P., Ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.:
Workflow patterns. Distrib. Parallel Databases 14(1), 5–51 (Jul 2003)

4. Dijkman, R., Dumas, M., van Dongen, B., Käärik, R., Mendling, J.: Similarity of
business process models: Metrics and evaluation. Inf. Syst. 36(2), 498–516 (Apr
2011)

5. Dijkman, R., Dumas, M., Garćıa-Bañuelos, L.: Graph matching algorithms for
business process model similarity search. In: Proceedings of BPM ’09. pp. 48–63.
Springer-Verlag, Berlin, Heidelberg (2009)

6. Eberle, H., Leymann, F., Schleicher, D., Schumm, D., Unger, T.: Process Fragment
Composition Operations. In: Proceedings of APSCC 2010. pp. 1–7. IEEE Xplore
(December 2010)

139

13

7. Eberle, H., Unger, T., Leymann, F.: Process fragments. In: Meersman, R., Dil-
lon, T., Herrero, P. (eds.) On the Move to Meaningful Internet Systems: OTM
2009, Lecture Notes in Computer Science, vol. 5870, pp. 398–405. Springer Berlin
Heidelberg (2009)

8. Garćıa-Bañuelos, L.: Pattern identification and classification in the translation
from bpmn to bpel. In: Meersman, R., Tari, Z. (eds.) OTM Conferences (1). Lecture
Notes in Computer Science, vol. 5331, pp. 436–444. Springer (2008)

9. Garey, M.R., Johnson, D.S.: Computers and Intractability; A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York, NY, USA (1990)

10. Hertis, M., Juric, M.B.: An empirical analysis of business process execution lan-
guage usage. IEEE Transactions on Software Engineering 40(8), 1–1 (2014)

11. Jordan, D., Evdemon, J.: Business process model and notation (BPMN) version
2.0. Object Management Group, Inc (January 2011)

12. Ma, Z.: Process fragments: enhancing reuse of process logic in BPEL process mod-
els. Ph.D. thesis, Universitt Stuttgart (2012)

13. Mendling, J.: Metrics for Process Models: Empirical Foundations of Verification,
Error Prediction, and Guidelines for Correctness. Springer (2008)

14. Pietsch, P., Wenzel, S.: Comparison of bpmn2 diagrams. In: Mendling, J., Wei-
dlich, M. (eds.) Business Process Model and Notation, Lecture Notes in Business
Information Processing, vol. 125, pp. 83–97. Springer Berlin Heidelberg (2012)

15. Schumm, D., Leymann, F., Ma, Z., Scheibler, T., Strauch, S.: Integrating Compli-
ance into Business Processes: Process Fragments as Reusable Compliance Con-
trols. In: Schumann/Kolbe/Breitner/Frerichs (ed.) MKWI’10, Göttingen, Ger-
many, February 23-25, 2010. pp. 2125–2137

16. Schumm, D., et al.: Process Fragment Libraries for Easier and Faster Development
of Process-based Applications. JSI 2(1), 39–55 (January 2011)

17. Skouradaki, M., Goerlach, K., Hahn, M., Leymann, F.: Application of Sub-Graph
Isomorphism to Extract Reoccurring Structures from BPMN 2.0 Process Models.
In: SOSE 2015; San Francisco Bay, USA, March 30 - 3, 2015. IEEE (April 2015)

18. Vanhatalo, J., Völzer, H., Leymann, F.: Faster and More Focused Control-Flow
Analysis for Business Process Models Through SESE Decomposition. In: Krämer,
B., Lin, K., Narasimhan, P. (eds.) Proceedings of ICSOC 2007. Lecture Notes in
Computer Science, vol. 4749, pp. 43–55. Springer-Verlag, Berlin (2007)

19. Vanhatalo, J., Vlzer, H., Koehler, J.: The refined process structure tree. In: Dumas,
M., Reichert, M., Shan, M.C. (eds.) Business Process Management, Lecture Notes
in Computer Science, vol. 5240, pp. 100–115. Springer Berlin Heidelberg (2008)

20. Verma, R.M., Reyner, S.W.: An analysis of a good algorithm for the subtree prob-
lem, correlated. SIAM J. Comput. 18(5), 906–908 (Oct 1989)

140

A Cooperative Game in Urban Mobility Systems

Marina Bitsaki1, Vasilios Andrikopoulos2, Alina Psycharaki1

1Transformation Services Laboratory, University of Crete, Heraklion, 70013, Greece
{bitsaki, psyharak}@tsl.gr

2Institute of Architecture of Application Systems, University of Stuttgart, Stuttgart, 70569,
Germany

andrikopoulos@iaas.uni-stuttgart.de

Abstract. Collective Adaptive Systems (CASs) are very complex and evolve
under uncertainty. Entities exchange information and coordinate their actions
with each other in order to accomplish certain goals within CASs. In such an
environment, entities have incomplete and uncertain knowledge about the ac-
tions of other entities. This affects their decisions that change dynamically and
their interactions with each other. Game theory is the dominant approach used
in decision making to model the strategic interactions of entities. In this paper
we provide the description of a cooperative game that is used to model the be-
havior of passengers and journey planners in the process of journey selections
in an Urban Mobility System (UMS).). Our goal is to demonstrate the analyti-
cal tools and the insights into the workings of CASs that such a game theoreti-
cal approach would accrue.

Keywords: Cooperative game - cost allocation - urban mobility systems.

1 Introduction

A collective adaptive system (CAS) is a very complex system that evolves under un-
certainty and is composed of a set of heterogeneous, autonomous and self-adaptive
entities that exchange information and coordinate their actions with one another in
order to improve the effectiveness with which they can accomplish their individual
goals [1]. The incomplete and uncertain knowledge entities have for the actions of
other entities, affects their decisions that change dynamically, and as result also their
interactions with each other. These aspects may in principle be handled by decision
theory which is used to analyze which options should be taken in the presence of un-
certainty.

Game theory [2] is the dominant approach used in decision making to model the
strategic interactions of entities. There are two kinds of games, called the non-
cooperative and cooperative games. In non-cooperative games, individual players
take actions and obtain a payoff (strategic analysis). In cooperative games, groups of
players (coalitions) take actions and allocate the joint benefits derived from their co-
operation. The main objective of a cooperative game is to determine a binding con-
tract among all players that specifies how to divide the total generated value.

141

In this paper we provide the description of a cooperative game that is used to mod-
el the behavior of passengers and journey planners in the process of journey selections
in an urban mobility system as well as the cost structure of a route and investigates
cost allocation rules among passengers that share a common route.

Cooperative game theory [3] has a wide range of applications to cost allocation
problems in which people with conflicting interests decide to work together to save
costs [4], [5], [6]. In [4], it is shown that a cost allocation problem is identical to the
determination of the value of a cooperative game with transferable utilities and vari-
ous allocation rules (the Shapley value, the Nucleolus and others) are described. In
[5], [6] reviews on the applications of transferable utility cooperative games to cost
allocation problems are performed. Especially, the authors in [5] emphasize on game
practical aspects rather than theoretical ones and concentrate in three specific areas:
transportation, natural resources and power industry.
A few studies that apply concepts from game theory in transport analysis have been
reported in the literature. Most of them use non-cooperative games to model interac-
tions between travelers, between authorities, or between travelers and authorities with
no concerns for gains through sharing [7], [8], [9]. Mode, route, or departure time
choice are some of the travelers’ strategies whereas time or gas consumption minimi-
zation, traffic control settings or capacity policies are some of the strategies for trans-
portation authorities. A systematic review performed in [10] presents various trans-
portation models and the respective games used to analyze them.

A few studies analyze the effect of collaboration in transportation networks high-
lighting the cost savings that result from the efficient utilization of transportation
resources [11]. Samet et al [11] present an economic transportation model that uses
the Aumann-Shapley prices to allocate costs among destinations in a way that each
destination will pay its real part in the total transportation costs.

In this paper, we analyze a model of collaboration in a multi-modal transportation
system seen as a collective adaptive system in which collaboration is performed at all
levels of transportation decision-making; passengers collaborate to co-create routes
dynamically according to the collective benefit they get and share costs according to
the individual contribution in the total cost.

2 Scenario

We consider the multi-modal Urban mobility System (UMS) described in detail in
[12] that supports citizens mobility providing customized transport facilities that inte-
grate a regular bus system, a FlexiBus system and a car pooling system. The FlexiBus
Management System (FBMS) described in [1] as part of the UMS scenario supports
the management and operation of FlexiBuses and provides citizens’ mobility services
within a predefined network of pickup points. A FlexiBus combines the features of
taxi and regular bus providing transportation between any two pickup points in a more
convenient manner than regular buses but being less expensive than taxis. Within
FBMS we can distinguish the following set of entities: Passenger, FlexiBus Driver,
Route Manager, Route Planner and FlexiBus Manager. They cooperate with each

142

other to achieve both individual and collective goals. The system must be able to
manage different routes at the same time set by passengers by allowing pre-booking
of pick up points. More specifically, each Passenger can request a trip to one of the
predefined destinations in the system, asking to start at a certain time and from a pre-
ferred pickup point. Each Bus Driver is assigned by the FBMS a precise route to exe-
cute, including the list of passengers assigned to it, and a unique final destination.
During the route realization, each FlexiBus can also accept passengers that have not
already booked only if there are available seats. Bus drivers communicate with an
assigned Route Manager to ask for the next pick-up point and to communicate infor-
mation like passengers check-in. Different routes are created by a Route Planner that
organizes them to satisfy all passenger requirements (i.e. arrival time and destination)
and to optimize bus costs (i.e. shorter distance, less energy consumption, etc.). To find
the set of possible routes, the Route Planner communicates with the FlexiBus Manag-
er in order to collect necessary information (i.e. traffic, closed roads, events, etc.) and
available resources (i.e. available buses), and to generate alternative routes.

In this paper, we model the interactions of the entities that are involved when a
passenger request is received by UMS. The lifecycle of a request involves two phases:

• The mode of transformation phase (phase 1) in which the UMS sends a set of or-
dered alternatives to the passenger and the passenger selects the appropriate one
according to his own preferences and utility.

• The route confirmation phase (phase 2) in which the passenger makes a request to
the transportation company selected in phase 1 and the route manager of the com-
pany accepts or rejects the passenger request and sets the rules and conditions of
the transfer.

Each phase is characterized by a set of entities that interact with each other and a
set of actions the entities take in order to accomplish the individual goals of the re-
quest. In phase 1, the entities involved are the passenger and UMS. UMS coordinates
the transportation by various modes of transportation such as regular bus, FlexiBus,
taxi and car-pooling. A passenger sends a request to UMS for a specific trip specify-
ing the origin, the destination, the departure and arrival time, and his preferences.
UMS replies by sending all appropriate alternative routes specifying the estimated
travel time, the estimated cost and the mode for each route. The passenger chooses the
optimal route such that his expected utility function is maximized (decision point 1).

In phase 2, a specific route has a predefined origin and destination, not necessarily
the same as that of the passengers. The intermediate pick-up points of the route are
specified dynamically according to travel demand and may change during the trip. At
any time before or during the execution of the route, the route manager calculates the
estimated travel time between any two pick-up points taking into account the current
passengers of the route, the itinerary and current congestion. The route manager also
calculates the total current cost of the route which is shared among all passengers of
the route. Each estimation of the individual cost is calculated according to the specific
itinerary between the origin and destination of the respective passenger. Each individ-
ual cost is finalized and paid at the end of the individual trip for each passenger. As

143

more passengers come to the route, the individual costs tend to decrease but the esti-
mated travel times tend to increase.

The passenger sends a request R for a specific route to the manager of the transpor-
tation company selected in phase 1. The route manager updates the route (to include
the current request) and calculates the new estimated travel time for all remaining
pairs of origin and destination and the total cost of the route. According to this infor-
mation and his utility function, the passenger either accepts or rejects the request (de-
cision point 2). In case of acceptance, the route manager sends the estimated travel
time and estimated individual cost and confirms the transportation. In the above pro-
cedure the route manager has to take into account the initial desired travel times de-
fined by the passengers (in order to have small deviations) and the initial individual
costs (in order to limit the final payments to the promised ones).

In this paper, we take phase 1 as given, that is, the passenger has already made his
choice about the mode of transportation. In the next section we model the interactions
of phase 2 as a cooperative game.

3 A Cooperative Game

We model the interactions among entities involved in phase 2 of the scenario intro-
duced in Section 2 as a cooperative game aiming to highlight the collective benefits
they get by sharing a common mode of transportation. We assume that the outcome of
phase 1 after a request arrives at UMS (which is the route the passenger has chosen
for his transit) is known and does not affect our formulation.

We define a route between an origin and a destination as a number of pick-up
points assigned to a number of passengers that share a common bus in order to de-
crease transportation costs and benefit from cooperating. We define the cooperative
game consisting of a number of players being the passengers of the route (regardless
of when they entered the route) who make coalitions and create a cost (the cost of the
route) that is to be allocated to them according to their utilization of the route.

We introduce a simple static case with the following assumptions:

1. The route consists of a predefined and fixed number of pick-up points.
2. The set of passengers that will use the specific route and the respective pick-up

points are known prior to the beginning of the route.
3. All passengers have the same destination.
4. The number of passengers is less than bus capacity, so that there is no need for oc-

cupying another bus.

Formally, the game ! = (!, !) is described by the set ! = {1,… , !} of passengers
that share the route and have the same destination (but not the same origin) and the
cost function !:!2! → ℝ of a route, where !(!) is the joint cost of the route used by
the set ! ⊆ ! of users (! ∅ = 0). The objective is to determine the coalition that
will eventually be formed and the allocation rule for the total cost incurred for this
coalition.

144

A required property for ! is sub-additivity: for every two disjoint sets of users the
cost of the route if they merge is smaller than or equal to the costs of the route they
would used separately. That is

! !! ∪ !! ≤ ! !! + ! !! , !"#!!""!!!, !! ⊂ ! (1)

Costs are shared in such a way such that individual users each have an incentive to
cooperate. In the FBMS scenario, this corresponds to the facts that a) the cost of run-
ning one bus along a route is in principle cheaper than having two buses doing differ-
ent routes between the same origin and destination points, and b) the cost of having
two passengers in the bus is less than the sum of the costs of having each one of the
passengers alone in the bus. In a sub-additive game: !(!) ≤ !(!)!"# . If this condi-
tion holds: with strict inequality then each player gains from the cooperation. If sub-
additivity property does not hold, coalitions other than the grand coalition might real-
ize.

The allocation of !(!) among the users in ! is specified by the allocation rule
!: ! ! = !!,… , !! !!. !. !!!"# = !(!) (such as Shapley value for fairness or core
for stability). The desired properties for allocation ! are the following:

1. !!!"# = ! ! : feasibility of the grand coalition (costs are reimbursed).
2. !! ≤ ! ! !∀!"#: no player pays a higher price in the grand coalition than he

would do independently.

An extended version of the above game is the dynamic case in which passengers
may not have the same destination and may not be known from the beginning of the
route. In this case, a new passenger may enter the route during its execution or a can-
cellation may be reported. Thus, the number of passengers sharing the route changes
over time and the recalculation of the total cost and individual costs is needed (repeti-
tion of the game) each time a new request arrives at the FlexiBus system or a cancel-
lation is reported.

In case of a new arrival, the winning coalition might not include the new passen-
ger. The route manager is able to reject the new request if the respective passenger
incurs higher costs than reported for current passengers due to a deviation from the
scheduled itinerary (in this case the grand coalition is not the outcome of the game).

In case of a cancellation, the individual costs might increase since the cost of the
route is currently shared among less passengers. Thus, a charging policy that takes
into account the above situation has to be considered (e.g. introduce penalty fees or
consider no reimbursement fees).

4 Conclusions

On the basis of demonstrating the collectiveness of transport systems, this paper pro-
poses a cooperative game among passengers of a route that pay reduced individual
costs by sharing transportation resources. The objective is to determine the coalition
that will eventually be formed and participate in the route and the allocation rule for
the total cost incurred for this coalition.

145

References

 1. V Andrikopoulos, A Bucchiarone, Gomez S Saez, D Karastoyanova, and C Mezzina,
"Towards Modeling and Execution of Collective Adaptive Systems," in Ninth
International Workshop on Engineering Service-Oriented Applications, Berlin, 2013.

 2. Kevin Eric Leyton-Brown and Yoav Shoham, Multiagent Systems: Algorithmic, Game-
Theoretic, and Logical Foundations, Cambridge University Press, 2009.

 3. C Montet and D Serra, Gaem Theory and Economics, Palgrave Macmillan, Ed. New
York, 2003.

 4. Jean Lemaire, "An application of game theory: cost allocation," ASTIN Bulletin, vol. 14
(1), pp. 61-81, 1984.

 5. Gloria M Fiestras-Janeiro, Ignacio Garcia-Jurado, and Manuel A Mosquera, "Cooperative
Games and Cost Allocation Problems," Top, vol. 19, pp. 1-22, 2011.

 6. S H Tijs and T S H Driessen, "Game theory and cost allocation problems," Management
Science, vol. 32 (8), pp. 1015-1028, 1986.

 7. C S Fisk, "Game theory and transportation systems modelling ," Transport Res. B, vol.
18B(4/5), pp. 301-313, 1984.

 8. D Levinson, "Micro-foundations of congestion and pricing: a game theory perspective ,"
Transport. Res. A , vol. 39, pp. 691-704, 2005.

 9. A Roumboutsos and S Kapros, "A game theory approach to urban public transport
integration policy," Transport Policy , vol. 15, pp. 209-215, 2008.

 10. Y Hollander and J N Prashker, "The applicability of non-cooperative game theory in
transport analysis," transportation , vol. 33, pp. 481-496, 2006.

 11. D Samet, Y Tauman, and I Zang, "An application of the Aumann-Shapley prices for cost
allocation in transportation problems," Mathematics of Operations Research , vol. 9(1),
pp. 25-42, 1984.

 12. ALLOW Ensembles, "Deliverable 8.1 - Specification of Prototype and Architecture,"
2013.

146

E�cient Attribute Based Access Control

Marc Hü�meyer

Furtwangen University of Applied Sciences, Germany

Abstract. Today’s information systems often handle large amounts of
data and users and perform complex operations. The potentials of infor-
mation systems grow more and more and so does the need for flexible and
e�cient access control mechanisms. Traditional access control mechanisms
were built to support basic security concepts. For example Access Control
Lists (ACL) have been designed to specify who may access a single re-
source (e.g. a network interface or a file in an operating system) while Role
Based Access Control (RBAC) groups multiple subjects together under a
role property, reducing the amount of rules required to describe who may
access a resource. Having applications that support complex processes
requires more fine-grained mechanisms that can handle questions like who,
what, how, why, when or where and that are capable to adapt to frequent
changes. In times of social media, smart objects and the Internet of things
users and systems often create and share new content within applications.
A substantial need to control access to this content is the consequence. In
an environment where large amounts of subjects provide large amounts
of data and specify multiple access rights, a flexible, high-performance
access control mechanism is required. Because traditional access control
mechanisms have been designed for a di�erent purpose, e�cient access
control mechanisms and models must be found, that o�er flexibility and
guarantee high performance even in complex environments.

Attribute Based Access Control (ABAC) seems to be a suitable candidate
that o�ers the flexibility to create fine-grained access control policies [5]. The
core idea of ABAC is that any property of an entity can be used to determine
access decisions. This idea o�ers the opportunity to cover existing access control
mechanism as well as extending them to build more flexible access control
solutions. For example Role Based Access Control can be easily simulated using
an attribute named role which is assigned to users and checked during the
evaluation of an access request.

Currently there is only one main standard that addresses ABAC: the eXtensi-
ble Access Control Markup Language (XACML) [2]. XACML defines three parts.
The first part describes an architecture that shows how access control can be
built as a dedicated component of an information system instead of building it
into the core of such a system. The second part describes a policy language which
enables to build hierarchical access control policies based on security relevant
properties of any entity in the system. Finally, the third part of XACML is a
request/response language that can be used to formulate access control requests,
send them to the access control component and receive the access decision.

147

XACML is a very powerful mechanism that allows creating fine-grained
access control policies. On the other hand XACML has some drawbacks. One
of these drawbacks is that, due to the design of XACML, access decision must
be computed at runtime. That means that with a growing policy complexity
also the computation complexity for an access decision grows and either more
computation capabilities are required or the computation takes longer.

Smart algorithms, data structures and techniques are required to address this
problem, so that access decisions can be found in a short time even in complex
environments with large amounts of security relevant data.

The first step on a way to E�cient Attribute Based Access Control was to an-
alyze the requirements of a dedicated environment and to find suitable techniques
and guidelines so that fast access decisions can be found. Representational State
Transfer (REST) is an architectural style for distributed systems and services
[1]. The guidelines given for RESTful services can also be used to build access
control policies in a resource oriented environment in a way that access requests
can be evaluated very fast. We created guidelines how to write e�cient XACML
policies for RESTful services [4] and derived an Attribute Based Access Control
Model for RESTful services [3].

The next step is to find data structures that enable fast access decisions in a
more general environment. Therefore, the use of databases instead of in-memory
data structures is targeted. Thereby the challenge is to find a suitable model
that o�ers enough flexibility to handle access control policies of any kind on
the one hand and on the other hand allows utilizing fast search algorithms and
techniques.

In a second approach the precomputation of access decisions is examined.
Precomputation of access decisions may allow performing only a lookup to find
an access decision instead computing the decision at runtime. On the other hand
an approach like that may require large computation resources to create the
lookup table and to handle changes to the security policy.

References

1. T. R. Fielding. Architectural Styles and the Design of Network-based Software
Architectures. University of California, Irvine, 2000.

2. Organization for the Advancement of Structured Information Standard. eXtensible
Access Control Markup Language (XACML) Version 3.0. OASIS Standard, 2013.

3. M. Hü�meyer and U. Schreier. An Attribute Based Access Control Model for
RESTful Services. SummerSOC ’15, 2015.

4. M. Hü�meyer and U. Schreier. E�cient Attribute Based Access Control for RESTful
Services. ZEUS ’15, 2015.

5. D. Sandhu. The authorization leap from rights to attributes: maturation or chaos?
SACMAT ’12, 2012.

148

Low Latency Cloud Data Management through

Consistent Caching and Polyglot Persistence

Felix Gessert

Database and Information Systems Group
University of Hamburg

gessert@informatik.uni-hamburg.de

The ongoing increase of complexity, mobility and scale in modern applications
triggered a paradigm shift towards distributed, cloud-based data management.
The expanding field of NoSQL and cloud data stores encompasses a rich variety
of systems that deal with non-functional requirements of these applications such
as latency, throughput, availability and elastic scalability. However, two central
problems remain unsolved. First, the performance of mobile and web applications
is governed almost exclusively by latency. Since the recent shift to smarter clients
and single-page applications, dynamic database content is mostly requested in
end devices directly. This makes data requests extremely latency critical, as
they block the user experience . Thus, performance cannot be solved at the
database level alone but end-to-end latency has to be addressed, too. Second,
the heterogeneity and complexity of di↵erent data stores make it tremendously
di�cult for application developers to choose an appropriate system and reason
about its performance and functionality implications. The situation is frequently
complicated when no one-size-fits-all solution satisfies all requirements. Until
now, the overhead and required know-how to manage multiple database systems
prevents many applications from employing polyglot persistence.

We introduce an integrated solution to both the latency and diversity prob-
lem as Orestes [1], a database-as-a-service middleware capable of exposing dif-
ferent data stores through a uniform REST interface and database-independent
data model [2]. To solve the latency problem we propose the Cache Sketch [3]. It
is the first approach to exploit the web’s expiration-based caching model and its
globally distributed content-delivery infrastructure which were previously con-
sidered irreconcilable with dynamic workloads. Cache Sketches guarantee rich
tunable consistency (�-atomicity [6, 7]) using Bloom filters to create compact
representations of potentially stale records to shift the task of cache coherence to
clients. Furthermore, the number of invalidations on caches that support them
(e.g., CDNs) is minimized. With di↵erent age-control policies the Cache Sketch
achieves very high cache hit ratios with arbitrarily low stale read probabilities.
The Constrained Adaptive TTL Estimator complements the Cache Sketch by
a statistical framework for inferring cache expiration dates (TTLs) that opti-
mize the trade-o↵ between Cache Sketch size, cache hit ratio and the number
of invalidations. The YCSB Monte-Carlo Caching Simulator o↵ers a generic
framework for simulating the performance and consistency characteristics of any
caching and replication topology. Simulations as-well-as real-world benchmark-
ing provide empirical evidence for the e�ciency of the Cache Sketch and the

149

2 Felix Gessert

considerable latency reductions it achieves. To provide even stronger safety guar-
antees we propose Scalable Cache-Aware Transactions [4] that attain optimistic
ACID transactions over a wide range of unmodified data stores, relying on Cache
Sketches to minimize the abort rates of optimistic concurrency control.

Instead of prescribing the use of one particular data store, we propose the
Polyglot Persistence Mediator (PPM) [5] that automates polyglot persistence
based on service level agreements (SLAs) defined over functional and non-func-
tional requirements. In a three-step process, tenants first annotate schemas with
SLAs (e.g., latencyread < 30ms). In the second step, the schema annotations are
recursively scored against available data stores, yielding a routing model com-
prised of a mapping from schema elements to data stores. In the third step, the
PPM in Orestes employs the routing model to delegate requests to appropriate
data stores, manages replication and collects metrics for scorings. Preliminary
experimental results show drastic performance improvements for scenarios with
high write throughput and complex queries.

In our ongoing work we are extending the Cache Sketch approach to query
result caching. In particular we are designing a scalable stream processing sys-
tem to detect required query result invalidations and Cache Sketch additions.
The TTL estimator is extended to an integrated reinforcement learning process
that predicts TTLs of single records as well as query results. We are also broad-
ening the scope of the cache-aware transaction scheme by providing transparent
selection of either general-purpose optimistic concurrency control or specialized
transaction protocols for certain workloads like write-only transactions. For the
PPM we are currently introducing active request scheduling and multi-tenant
workload management, as well as improved scoring through machine learning
techniques. The research results around Orestes also form the technological
basis of a backend-as-a-service startup called Baqend.

References

1. F. Gessert and F. Bücklers, ORESTES: ein System für horizontal skalierbaren Zu-
gri↵ auf Cloud-Datenbanken, in Informatiktage, 2013.

2. F. Gessert, S. Friedrich, W. Wingerath, M. Schaarschmidt, and N. Ritter, Towards
a Scalable and Unified REST API for Cloud Data Stores, Workshop Data Manage-
ment in the Cloud, 2014, Bd. 232, S. 723734.

3. F. Gessert, M. Schaarschmidt, W. Wingerath, S. Friedrich, and N. Ritter, The Cache
Sketch: Revisiting Expiration-based Caching in the Age of Cloud Data Management,
in Datenbanksysteme für Business, Technologie and Web (BTW), 2015.

4. F. Gessert, F. Bücklers, and N. Ritter, Orestes: A scalable Database-as-a-Service
architecture for low latency, in CloudDB Workshop, ICDE, 2014, S. 215222.

5. M. Schaarschmidt, F. Gessert, and N. Ritter, Towards Automated Polyglot Persis-
tence, in Datenbanksysteme für Business, Technologie and Web (BTW), 2015.

6. S. Friedrich, W. Wingerath, F. Gessert, and N. Ritter, NoSQL OLTP Benchmarking:
A Survey, in Workshop Data Management in the Cloud, 2014, Bd. 232, S. 693704.

7. W. Wingerath, S. Friedrich, and F. Gessert, Who Watches the Watchmen? On the
Lack of Validation in NoSQL Benchmarking, in Datenbanksysteme für Business,
Technologie and Web (BTW), 2015.

150

An Architecture for an Internet of Things

Platform for Secure Storage and Analysis of

Sensor Data

Frank Steimle

University of Stuttgart,

Institute of Parallel and Distributed Systems,

Universitätsstr. 38, 70569 Stuttgart, Germany

frank.steimle@ipvs.uni-stuttgart.de
http://ipvs.uni-stuttgart.de

1 Motivation

Everyday-objects which contain sensors and posses the ability to communicate
build a network called the Internet of Things. Since sensors get smaller and
cheaper, more and more such intelligent objects exist. Therefore, the Internet of
Things (IoT) gains more and more attention. Also the variety of sensors increases.
Because of this it is possible to develop IoT-Applications for various domains,
e.g., health care domain or smart environment domain. Each domain has its
own set of requirements to the storage and analysis of the occurring sensor data
and they have to be applied to the IoT-Application. Therefore there are many
di↵erent implementations of IoT-Platforms. The downside of this is that it is
very di�cult to access the knowledge of two di↵erent domains or to combine it.

2 Components of the Architecture

This work aims at creating an architecture for an IoT-Platform for secure storage
and analysis of sensor data. In order to achieve this, there are several challenges
to cope with.

Sensor data has to be stored using a secure storage system. The storage
system has also to make sure that the data can only be accessed by authorized
users. The platform also has to deal with data from di↵erent sensors from di↵erent
vendors. Therefore the platform also needs to cope with di↵erent formats for
the same data. To connect many di↵erent sensors with the platform a sensor

API is needed. This API needs to provide an interface which supports a broad
variety of sensors. Furthermore, it needs to support security mechanisms to store
and query sensor data. Maybe there is also need for a registry component, where
sensors can be registered. This registry could be used to recognize sensors who
are allowed to send data to the platform and to store metadata, like information
about the data format.

Since applications domains have di↵erent requirements to the analysis of
the data, the platform needs to support many di↵erent analysis types, like data

151

2

flow analysis, data mining, event processing, and text analysis. The analysis
component has also to deal with security and privacy of the data. To customize
the platform there has to be an analysis API which can be used to configure the
analyses that will be executed on the data.

Finally, the whole system has to be secure and has to guarantee the security
of the data.

3 Examples

This architecture could be applied, e.g, to the ECHO (Enhancing Chronic patients
Health Online) project1, which is a german-greek research project. This project
aims at monitoring patients who su↵er from chronic obstructive pulmonary disease
(COPD). The patients enter data about their health on a daily basis. Every time
a patient enters new data, the system analyses the data to check whether the
condition of the patient worsens. Since health data can be misused in many ways,
the ECHO system also needs a secure storage of sensor data. Furthermore, the
analysis component could be used to improve the monitoring of the patients by
enabling physicians to create individual analysis for their patients.

The architecture could also be applied to the smart environment domain, e.g,
to build a monitoring and analysis system for plants. In this system the user
could assign a sensor to a predefined set of information which describes a plant
species. If the plant doesn’t get enough water or not enough light, the system
would alert the user who can water the plant or put it in a brighter place. Since
the data recorded by this platform could be used to find out when the users
are not at home, a secure storage is important, too. In order to deal with many
di↵erent plant species, an adaptable analysis component is also needed.

Finally these two systems could be managed by one platform. This would
enable physicians to monitor the air humidity of their chronic lung patients using
the sensors which are part of the plant monitoring system.

1
http://chroniconline.eu/

152

Flexible Modeling and Execution of Data

Integration Flows

Pascal Hirmer
Institute of Parallel and Distributed Systems, Universität Stuttgart

Summary of the Research Problem

For my PhD, I am working towards an approach for data flow-based, ad-hoc
data integration based on cloud computing technologies. I started my work
roughly one year ago. In the following, I will present the research problem and
introduce a plan how to cope with the introduced issues: Today, the highly
advanced connectivity of systems as well as their increasing collaboration lead
to new challenges regarding data exchange and data integration. Especially
the emerging topics Internet of Things (IoT), advanced manufacturing or case
management are in need of a distributed, flexible processing and integration of
heterogeneous data. Furthermore, the possibility to integrate data sources ad-hoc
is pursued to enable high flexibility. In this context, ad-hoc means: (i) enabling
an iterative and explorative trial-and-error-like data integration using di↵erent
data sources without the need of creating, e.g., complex Extract-Transform-Load
(ETL) processes, (ii) the flexible adding and removing of data sources with
low e↵ort (preferably automatically), and (iii) the automatic adaptation of the
data integration considering the newly added or removed data sources. However,
this flexibility also leads to a high complexity compared with statically defined
data integration techniques such as ETL processes. Those flexible scenarios
are oftentimes realized using data flow and streaming technologies based on
di↵erent execution models. The use of a data flow model enables its flexible
generation based on dynamic needs. That is, if a new data source is added to
an existing integration, the flow model can be re-generated and re-executed in
order to include it. Currently, existing solutions are tailor-made for a specific
use case scenario and do not o↵er a generic solution. Another issue in this
research area is coping with unstructured data. Most systems do not support
the simultaneous processing and integration of structured and unstructured data.
However, integrating unstructured data can lead to valuable information. For
example, in advanced manufacturing environments, the natural language input of
a worker or textually described manuals can lead to higher-level information which
can e.g., be used for an automatic dissolving of occurring problems. In conclusion,
the main challenges of this research area are: (i) automatic tethering of di↵erent
data sources, both structured and unstructured, (ii) integrating heterogeneous
data formats in an ad-hoc manner, (iii) reducing the technical expertise of the
involved users, and (iv) achieving a high e�ciency of the data processing.
Proposed Plan

I plan to address these issues in multiple steps, which are shown in Figure 1.
In the first step, I concentrate on the definition and tethering of data sources
to be processed by my approach. I additionally want to provide a means to
automatically add data sources without human interaction. To do so, I plan to

153

2 PhD Session - Abstract Pascal Hirmer

2
Definition of

Data Operations
(Modeling Patterns)

1
Definition of
Data Sources

Domain-specific Modeling Model Transformation
Pattern-based Transformation

Model Execution
Automated execution

Time-
Critical

Robust

…
5

Data Extraction and
Execution of

Data Operations

6
Result Storage

R

7
Result Utilization

Optional Repetition

Transformation-
Pattern Selection

?

Domain-specific
Model

4
Transformation

3

Executable
Dataflow Model

Fig. 1. Pattern-based Integration Approach [2]

use an ontology-based approach. In step 2, data operations are defined, i.e., a data
flow is modeled that contains operations that alter or integrate the data. To ease
the modeling for non-expert users, I will introduce modeling patterns. In the next
step 3, transformation patterns are selected to ensure an implementation suitable
for the use case scenario. For example, the Time-Critical Pattern ensures the best
possible runtime, whereas the Robust Pattern ensures a robust execution. Next,
step 4 transforms the domain-specific model into an executable model based on
the selected transformation pattern. In step 5, this executable model is executed
in a suitable engine. The result can then be stored and used for visualization,
analysis or other value-adding scenarios. To enable important aspects such as
scalability, availability and high performance, I create a cloud-ready approach.
That is, I enable an easy provisioning in a cloud environment due to the use of
web-based technologies and stateless services, exclusively.
Progress to Date

Until today, I worked on an overview paper of the introduced concepts that will be
presented at DATA2015 [2]. Furthermore, I contributed to the Internet-of-Things
(IoT) project SitOPT by implementing a prototype for a specific IoT scenario that
is based on my approach. The paper containing these results will be presented at
SummerSOC2015 [1]. In this paper, I introduced an approach for an automated
sensor integration to derive high-level situations in a smart environment. By
doing so, I achieved to integrate my concepts in a specific use case scenario as
proof-of-concept. In the future, I plan to concentrate on the details of the single
steps presented. In the next step, I am working on an approach for the ad-hoc,
automatically processed adding and removing of data sources based on ontologies.

References

1. Hirmer, P., et al.: SitRS - A Situation Recognition Service based on Modeling and
Executing Situation Templates. In: Proceedings of the 9th Symposium and Summer
School On Service-Oriented Computing (SUMMERSOC15) (2015)

2. Hirmer, P., et al.: Extended Techniques for Flexible Modeling and Execution of Data
Mashups. In: Proceedings of 4th International Conference on Data Management
Technologies and Applications (DATA) (2015)

154

Secure Data Erasure

in Untrusted Storage Systems

Tim Waizenegger

University of Stuttgart,

Institute of Parallel and Distributed Systems,

Universitätsstr. 38, 70569 Stuttgart, Germany

tim.waizenegger@ipvs.uni-stuttgart.de
http://www.ipvs.uni-stuttgart.de

Abstract. The secure deletion of data in untrusted storage-systems is

a widely overlooked aspect of data management, although both individ-

uals and corporations regularly face this issue. The two current solutions

to secure deletion are to physically destroy storage media or overwrite

data. Given the widespread use of outsourced and cloud-based storage

systems, these solutions are no longer viable [1]. I evaluated the known

concept of cryptographic deletion and identified the problems it causes

with large storage-systems. I present a mechanism which, with the help of

a key-management algorithm, enables secure deletion in large, untrusted

storage-systems by means of cryptography. I measured the performance

of a large object-store running a prototype implementation of this mech-

anism that showed promising runtime overheads. This demonstrates that

cryptographic deletion is a feasible solution in large object stores, and

suggests applications in other storage systems, such as databases and file

systems.

1 Motivation

Cloud Computing is an established technology for outsourcing It resources. For
individuals as well as corporations, it o↵ers cheaper and often more advanced
services than they could provide by themselves. The technology faces many chal-
lenges that prevent its widespread adoption. some of those, like network band-
width, can be overcome with improvements to existing technologies. But secu-
rity and data privacy is the major problem, which remains largely unsolved. The
paradigm shift of moving from ones own, trusted infrastructure to third party
cloud-o↵erings, creates these new security concerns which can only be addressed
with new approaches instead of linear improvements.

The area of Cloud Computing security is a highly researched topic today
for these reasons, but I have identified a research gap in the secure, and irre-
vocable deletion of data on untrusted storage-systems. We lose control over our
data by trusting them to third parties like cloud-storage providers. They will
usually provide some degree of confidentiality, reliability, and prevent unautho-
rized access to customers data. But the assured, secure deletion of data is rarely

155

2 Tim Waizenegger

considered, neither during the use of their service, nor after. In order to o↵er
reliability, providers keep backup copies of customers data which can remain
accessible long after they deleted the data, or terminated the service. Future
security breaches at these providers can make this data accessible to anyone.
Furthermore, providers often keep such deleted data on purpose to enable fu-
ture analysis [2].

2 Cryptographic Deletion

Cryptographic deletion describes the concept of deleting data by keeping it in
an encrypted form, and removing any access to the encryption keys. Conceptu-
ally this follows the “divide and conquer” approach, i.e. it divides the primary
problem of securely deleting data into the subproblems of encrypting the data
and the subproblem of securely deleting the encryption key. The subproblem of
encrypting data has been su�ciently solved by existing encryption algorithms
[3]. The second subproblem of securely deleting the encryption key is an easier
problem than the primary one, because the challenge is the same but with a
smaller data size. With this approach, I reduce the problem of securely deleting
large amounts of data to the problem of securely deleting a small encryption key.

3 Context

The “Secure Data Erasure in Untrusted Storage Systems” describes the core
topic of my Ph.D. thesis titled “Security Aspects for Cloud Services”. In this
thesis I present 1) a mechanism for formally describing security requirements
towards cloud services in the context of TOSCA-based cloud-service templates,
as well as 2) concepts and implementations of di↵erent security aspects that
can be used with these cloud services. I gave an overview of this Ph.D. topic
at the 2013 SummerSOC and presented part one, the formal definition of secu-
rity requirements, as well as four initial security aspects from part two. In my
presentation I will briefly introduce my framework (part one from above) and
describe my current work on the security aspect for secure data erasure in more
detail. I will present the theoretical background for cryptographic deletion and
show, based on complexity calculations, how the existing approaches are insu�-
cient. I will introduce my solution and present my current work on a prototypical
implementation as well as first results from performance measurements.

References

1. Gutmann, P.: Secure deletion of data from magnetic and solid-state memory. In:

Proceedings of the 6th Conference on USENIX Security Symposium, USENIX As-

sociation, Berkeley, CA, USA (1996)

2. Schneier, B.: File deletion (Sept 2009), https://www.schneier.com/blog/archives/2009/09/file

deletion.html

3. Ferguson, N., Schneier, B.: Practical Cryptography. John Wiley & Sons, Inc., New

York, NY, USA, 1 edn. (2003), p. 83 ↵

156

