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ON SOME SPANNING TREE GAMES

MOURAD BAÏOU AND FRANCISCO BARAHONA

Abstract. We investigate four games related to spanning trees in a graph. First
we study a two-person zero-sum game where an evader every few minutes chooses
a spanning tree in a network and sends a signal. Then an inspector also every few
minutes chooses an edge to inspect. The evader needs a tree selection strategy that
minimizes the average probability of being detected. The inspector seeks to maximize
this probability. We show that finding the evader’s optimal strategy reduces to finding
a maximum packing of spanning trees, and finding the inspector’s strategy reduces to
computing the strength of a graph. Then we treat another game where an attacker
chooses a set of edges to destroy, and an inspector chooses an edge to find the attacker.
We show that finding the inspector’s strategy reduces to finding a minimum spanning
tree, and the attacker strategy is given by a maximum packing of partitions of the
node-set.

Then we study two cooperative games in a graph. In the first game each coalition
corresponds to a set S of edges, and the value of it is the maximum number of disjoint
spanning trees included in S. In the second game each coalition also corresponds to a set
of edges S, and the value of the coalition is the number of new connected components
created after removing the edges in S. For these two games we show that testing
whether the core is non-empty, finding an element of the core, and testing membership
to the core can be done in polynomial time.

1. Introduction

We consider some two-person zero-sum games and some cooperative games related
to spanning trees in a graph. Our work on two-person games has been motivated by
the following two-person game studied in [22]. Each day an ”evader” selects a path
from a node s to a node t in a network. Also each day an ”inspector” selects an arc
a in the network, and sets up an inspection site there. If the evader traverses arc a,
he is detected with probability pa, otherwise he goes undetected. The inspector has
to find a probabilistic arc-inspection strategy which maximizes the average probability
of detecting the evader, called the interdiction probability. The evader has to find a
path-selection strategy which minimizes the interdiction probability. It is shown in [22]
that finding the evader’s strategy reduces to a maximum flow problem, and finding the
inspector’s strategy reduces to a minimum cut problem. In our case we assume that
the evader every few minutes picks a spanning tree in a graph and sends a signal to all
nodes. Then the inspector every few minutes chooses an edge e and inspects it. If edge
e is being used to send the signal, this is detected with probability pe. The inspector has
to find a probabilistic edge-inspection strategy which maximizes the average probability
of detecting the signal. The evader has to find a tree-selection strategy that minimizes
the probability of being detected. Here we show that the evader’s strategy is given
by a maximum packing of spanning trees, while the inspector’s strategy is obtained by
computing the strength of a graph. Then we study a second two-person game where an
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attacker chooses a set of edges to disconnect a network, then an inspector chooses edges
trying to detect the attacker. Here attacker’s optimal strategy is given by a maximum
packing of partitions of the node-set, and the inspector’s strategy is given by a minimum
weighted spanning tree.

We also study two cooperative games in a graph. In the first game each coalition
corresponds to a set S of edges, and the value of it is the maximum number of disjoint
spanning trees included in S. In the second game each coalition also corresponds to a
set of edges S, and the value of the coalition is the number of new components created
after removing the edges in S. For these two games we study the algorithmic aspects
of testing whether the core is non-empty, finding an element of the core, and testing
membership to the core. The core is one of the most important concepts in cooperative
game theory. Other cooperative games related to combinatorial optimization have been
studied in [18], [16], [15], [9], [8], [7], [10], [14], see also [6] and the references therein.

This paper is organized as follows. In Section 2 we define some notation, and review
some polyhedral results related to spanning trees. In Section 3 we study two-person
games, and in Section 4 we treat cooperative games.

2. Preliminaries

In this section we define some notation and review some results from polyhedral com-
binatorics related to spanning trees.

2.1. Notation. Consider a graph G = (V,E), for a partition {S1, . . . , Sp} of V , let
δ(S1, . . . , Sp) be the set of edges with both endpoints in different sets of the partition.
Throughout this paper we assume that p ≥ 2 each time that we refer to a partition
{S1, . . . , Sp} of V . We use n to denote |V | and m to denote |E|.

For F ⊆ E the incidence vector of F , xF : E → ℜ, is defined by xF (e) = 1 if e ∈ F ,
and xF (e) = 0 otherwise. For a function w : E → ℜ and S ⊆ E, we use w(S) to denote
∑

e∈S w(e).

2.2. The strength problem. Given a graph G = (V,E) and a capacity function w :
E → ZZ+, a solution of the integer program

max
∑

T

yT(1)

∑

{yT | e ∈ T} ≤ w(e) for each edge e ∈ E(2)

yT ≥ 0, integer valued, for each spanning tree T ,(3)

is called an integral packing of spanning trees. A min-max relation for (1)-(3) was given
by Tutte [21] and Nash-Williams [19], as follows.

Theorem 1. A graph G = (V,E) has k disjoint spanning trees if and only if for every

partition {S1, . . . , Sp} of V ,

|δ(S1, . . . , Sp)| ≥ k(p− 1).

Notice that if an edge e has a integer nonnegative capacity w(e), we can make w(e)
parallel copies of the edge e, then this theorem implies that the value of the maximum
in (1)-(3) is

(4) min
⌊w(δ(S1, . . . , Sp))

p− 1

⌋

,
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where the minimum is taken among all partitions of V , and ⌊z⌋ denotes the largest
integer less than or equal to z. Polynomial algorithms for finding a maximum integral
(and fractional) packing of spanning trees have been given in [3] and [12].

If we relax the integrality condition in (3), and we only ask for variables y to be
nonnegative, we obtain a linear program. It also follows from Theorem 1 that the optimal
value is

(5) min
w(δ(S1, . . . , Sp))

p− 1
,

where the minimum is taken among all partitions of V . The value of this minimum was
called the strength of the network in [5]. The dual problem is

minwx(6)

x(T ) ≥ 1, for each spanning tree T ,(7)

x ≥ 0.(8)

This implies that the extreme points of the polyhedron defined by (7)-(8) are among
the vectors that are obtained as follows: for each partition {S1, . . . , Sp} of V , take the
incidence vector of δ(S1, . . . , Sp) and divide it by (p−1). However one should notice that
not all vectors obtained in this way are extreme points. For instance, assume that the
graph consists of just one tree, then the extreme points are obtained only when p = 2.

Cunningham [5] gave an algorithm for finding the minimum in (5) and (4), it requires
O(nm) minimum cut problems. Later an algorithm that requires n applications of the
preflow algorithm was given in [4].

2.3. Minimum spanning trees. Here we use some results of the theory of Blocking
polyhedra [11]. Consider the polyhedron defined by (7)-(8), its Blocking polyhedron
is defined as follows. Let B be a matrix whose columns correspond to the edges, and
whose rows are the incidence vectors of δ(S1, . . . , Sp), divided by p−1, for each partition
{S1, . . . , Sp} of V . Thus the rows of B contain all extreme points of the polyhedron
defined by (7)-(8). Then the Blocking polyhedron is defined by the system of inequalities
below.

Bx ≥ 1,(9)

x ≥ 0.(10)

It follows from the theory of Blocking polyhedra that its extreme points are the incidence
vectors of all spanning trees of G. Thus the linear program

min dx(11)

subject to (9)-(10),(12)

can be solved with Kruskal’s algorithm [17] for minimum spanning trees. Now we discuss
how to solve the dual problem

max y1(13)

yB ≤ d,(14)

y ≥ 0.(15)

We call this is a maximum packing of partitions.
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First we consider the linear program below where inequalities (9) have been replaced
by an equivalent form.

min dx(16)

subject to

x
(

δ(S1, . . . , Sp)
)

≥ (p− 1), for all partitions Φ = {S1, . . . , Sp} of V,(17)

x(e) ≥ 0.(18)

The dual is

max
∑

γΦ (pΦ − 1)
∑

{Φ: e∈δ(S1,...,Sp)}

γΦ ≤ d(e), for each edge e,

γ ≥ 0.

Here for each partition Φ = {S1, . . . , Sp} we define pΦ = p. The algorithm below is a
primal-dual version of Kruskal’s algorithm.

Algorithm A

• Step 0. Start with γ̄ = 0, x̄ = 0, d̄(e) = d(e) for all e ∈ E. Also start with the
partition Φ consisting of all singletons.
• Step 1. Compute ǭ = min{d̄(e) : e ∈ δ(S1, . . . , Sp)}. Update γ̄Φ ← γ̄Φ + ǭ,
d̄(e)← d̄(e)− ǭ for all e ∈ δ(S1, . . . , Sp). Here Φ = {S1, . . . , Sp}.
• Step 2. Let ē be an edge giving the value of ǭ, in Step 1. Set x̄(ē) = 1. Let Si and
Sj the sets in Φ containing the endnodes of ē. Set Φ′ = Φ \ {Si, Sj} ∪ {Si ∪ Sj},
this means shrink Si and Sj into one set.
• Step 3. If Φ′ = {V } stop. Otherwise set Φ← Φ′ and go to Step 1.

This algorithm performs exactly n− 1 iterations. It is easy to see that γ̄ is feasible at
every step, and if the edge weights d are integer valued, then γ̄ and d̄ are integer valued
at every step. At the end x̄ is the incidence vector of a spanning tree. It is also easy
to see that at the end the pair (x̄, γ̄) satisfy the complementary slackness conditions.
Thus (x̄, γ̄) are optimal solutions. Let ȳ be defined as ȳΦ = γ̄Φ(pΦ− 1) for each partition
Φ = {S1, . . . , Sp} of V . Then ȳ is a solution of (13)-(15). Notice that if d is integer
valued, then γ̄ and ȳ are also integer valued.

For a family of inequalities F , the separation problem consists of given a vector x̄, find
an inequality in F that is violated by x̄ if there is one, or prove that none exists. For
inequalities (17), an algorithm for the separation problem was given in [5], it requires
m minimum cut problems. Later an algorithm requiring n minimum cut problems was
given in [2]. This will be used in Section 4.

3. Two-person games

In this section we study two two-person zero-sum games related to spanning trees.

3.1. The network strength game. Consider an undirected graph G = (V,E), and
suppose that every few minutes a player (the evader) picks a spanning tree and sends
a signal to all nodes. Then a second player (the inspector) every few minutes chooses
an edge e and inspects it. If edge e is being used to send the signal, this is detected
with probability pe. The inspector has to find a probabilistic edge-inspection strategy
which maximizes the average probability of detecting the signal. The evader has to find a
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tree-selection strategy that minimizes the average probability of being detected. Here we
show that the inspection strategy is obtained by computing the strength of an associated
graph, while the evader’s strategy is given by a maximum packing of spanning trees in
the same graph. The special case when pe = 1 for each edge e, has been treated in [1]
and called the ”Wiretap game.” The inspector’s strategy was studied in [1], but finding
the evader’s strategy was left as an open question.

Let yT be the probability that the evader chooses the tree T . For the inspector,
let xe be the probability of choosing the edge e. If the inspector chooses an edge e,
there is a probability pe of detecting the signal if this is at this edge. Let P be a
diagonal matrix that contains the probabilities {pe}, and x a row vector, then xP is a
row with components {xepe}. Let D be a matrix whose rows correspond to the edges,
and whose columns are the incidence vectors of all trees. Let y be a column vector whose
components are {yT }. Then Dy is a column whose component associated with an edge e
is the probability that the signal can be found at edge e. Thus xPDy is the probability
that the signal will be detected. We have to concentrate on the following two-person
game:

max
x

min
y

xPDy(19)

∑

e

xe = 1,(20)

∑

T

yT = 1,(21)

x ≥ 0,(22)

y ≥ 0.(23)

A reference on this type of games is [20]. If we fix y we have

max
x

xPDy
∑

e

xe = 1,

x ≥ 0.

And its dual is

min
µ

µ

µ ≥ pe
∑

{yT | e ∈ T}, for each edge e.

Then (19)-(23) is equivalent to

min
µ,y

µ

µ− pe
∑

{yT | e ∈ T} ≥ 0, for each edge e,
∑

T

yT = 1,

y ≥ 0.
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This can be written as

min
µ,y

µ(24)

∑

{yT | e ∈ T} ≤
µ

pe
, for each edge e,(25)

∑

yT = 1,(26)

y ≥ 0.(27)

Here we are looking for the minimum value of µ such that there is a packing of spanning
trees of value one, and edge capacities {µ/pe}.

Consider now the following linear program

max
∑

T

yT(28)

∑

{yT | e ∈ T} ≤
1

pe
, for each edge e,(29)

y ≥ 0.(30)

Here we are looking for a maximum packing of spanning trees, with edge capacities
{1/pe}. This was discussed in Sub-section 2.2. Let {ŷT } be a solution of (28)-(30). Let
λ =

∑

T ŷT , then if we set

µ =
1

λ
,

and ȳT = 1
λ
ŷT for each spanning tree T , we obtain a solution of (24)-(27).

Thus at this point we have found the value of the game (19)-(23), this is µ, and the
values for the variables y. Now we have to find the values of the variables x. Let a
partition {S1, . . . , Sq} be a solution of the strength problem (5), with edge capacities
{1/pe}. This was treated in Sub-section 2.2. Recall that λ is the value of a solution of
the strength problem. Then we set

(31) x̄e =

{

1
λpe(q−1) if e ∈ δ(S1, . . . , Sq),

0 otherwise.

Thus
∑

e∈δ(S1,...,Sq)

x̄e =
1

λ

∑

e∈δ(S1,...,Sq)

1

pe(q − 1)
=

1

λ
λ = 1.

The complementary slackness conditions for the linear program (6)-(8) and its dual imply
that for e ∈ δ(S1, . . . , Sq),

∑

{ŷT | e ∈ T} =
1

pe
,

and
∑

{ȳT | e ∈ T} =
1

λpe
.

Then

(32) x̄PDȳ =
∑

e∈δ(S1,...,Sq)

pe
1

λpe(q − 1)

1

λpe
=

1

λ
= µ.

This shows that (x̄, ȳ) are solutions of (19)-(23). Recall that algorithms for packing
spanning trees have been given in [3] and [12], and algorithms for the strength problem
appear in [5] and [4]. Thus we can state the main result of this section.
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Theorem 2. Optimal strategies for both players can be computed in polynomial time.

The evader strategy can be obtained from a maximum packing of spanning trees with edge

capacities {1/pe}. The inspector strategy can be obtained from a solution of the strength

problem, also with edge capacities {1/pe}.

3.2. The network attack game. Let G = (V,E) be an undirected graph. Suppose
that each day, an attacker chooses a set of edges to destroy and disconnect the network.
Each day, an inspector chooses an edge e, and if the attacker is at this edge it will be
intercepted with probability pe. Let D be a matrix whose rows correspond to the edges
and whose columns correspond to edge sets, so that an element associated with an edge
e and a set S is 1/k(S) if e ∈ S, and 0 otherwise. Here we denote by k(S) the number of
new connected components obtained after removing the edges in S. Let P be a diagonal
matrix whose elements are pe for each edge e. We study the two-person zero-sum game

max
x

min
y

xPDy(33)

∑

e

xe = 1,(34)

∑

S

yS = 1,(35)

x ≥ 0,(36)

y ≥ 0.(37)

Here

xPDy =
∑

S

yS
k(S)

∑

e∈S

x(e)p(e).

So for a given inspection strategy x, the attacker chooses an edge set S that minimizes
∑

e∈S x(e)p(e)/k(S). This is the average detection probability per new component cre-
ated. We should notice that the attacker should only use edge sets of the form

(38) T = δ(S1, . . . , Sp),

where {S1, . . . , Sp} is a partition of V . To see this notice that if k(T ) ≥ 1, then there
is a partition {S1, . . . , Sp} of V with δ(S1, . . . , Sp) ⊆ T and p − 1 = k(T ). So in what
follows we assume that all columns of D correspond to edge-sets like in (38).

If we fix y we have

max
x

xPDy
∑

e

xe = 1,

x ≥ 0.

And its dual is

min
µ

µ

µ ≥ pe
∑

{yT /k(T ) : e ∈ T}, for each edge e.

Then (33)-(37) is equivalent to
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min
µ,y

µ

µ− pe
∑

{yT /k(T ) : e ∈ T} ≥ 0, for each edge e,
∑

T

yT = 1,

y ≥ 0.

This can be written as

min
µ,y

µ(39)

∑

{yT /k(T ) : e ∈ T} ≤
µ

pe
, for each edge e,(40)

∑

yT = 1,(41)

y ≥ 0.(42)

Here we are looking for the minimum value of µ such that there is a packing of
partitions of value one, and edge capacities {µ/pe}.

Consider now the following linear program

max
∑

T

yT(43)

∑

{yT /k(T ) : e ∈ T} ≤
1

pe
, for each edge e,(44)

y ≥ 0.(45)

This is problem (13)-(15) in Sub-section 2.3, so we are looking for a maximum packing
of partitions, with edge capacities {1/pe}. Let {ŷT } be a solution of (43)-(45). Let
λ =

∑

T ŷT , then if we set

µ =
1

λ
,

and ȳT = 1
λ
ŷT for each edge-set T , we obtain a solution of (39)-(42).

Thus we have the value of the game (33)-(37), this is µ, and we have the values of the
variables y. Now we have to find the value of the variables x. As seen in Sub-section 2.3,
a solution of the dual of (43)-(45) is a minimum weighted spanning tree T , with edge
weights {1/pe}.

Recall that λ is the weight of T . We set

(46) x̄e =

{

1
λpe

if e ∈ T ,

0 otherwise.

Then
∑

e∈T

x̄e =
1

λ

∑

e∈T

1

pe
=

1

λ
λ = 1.

The complementary slackness conditions for (11)-(12) and its dual imply that for e ∈ T ,

∑

{ŷT /k(T ) : e ∈ T} =
1

pe
,
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and
∑

{ȳT /k(T ) : e ∈ T} =
1

λpe
.

Then

(47) x̄PDȳ =
∑

e∈T

pe
1

λpe

∑

{ȳT /k(T ) : e ∈ T} =
∑

e∈T

pe
1

λpe

1

λpe
=

1

λ
= µ.

This shows that (x̄, ȳ) are solutions of (19)-(23). Recall that x̄ can be obtained with
Kruskal’s algorithm [17], and ȳ can be obtained with the algorithm of Sub-section 2.3.
Thus we can state the main result of this Sub-section.

Theorem 3. Optimal strategies for both players can be computed in polynomial time.

The attacker strategy can be obtained from a maximum packing of partitions with edge

capacities {1/pe}. The inspector strategy can be obtained from a minimum weighted

spanning tree, also with weights {1/pe}.

4. Cooperative Games

Now we use similar techniques to investigate two cooperative games.

4.1. The tree-packing game. First we study a cooperative game in an undirected
graph G = (V,E). Each player is associated with an edge e ∈ E, and we have a value
function v : 2E → ℜ. For each coalition of players S ⊆ E, v(S) is the revenue that
the subset S of players can obtain by forming a coalition of the players in S only. In
the tree-packing game (E, v), for each coalition S ⊆ E, v(S) is the maximum number of
disjoint spanning trees included in S.

The income distributed to individual players is a vector x : E → ℜ+, satisfying
x(E) = v(E). Next we study the core of this game.

4.1.1. The core. This is a concept introduced by Gillies [13]. It is based on the following
stability condition: no subgroup of players will do better if they break away from the
joint decision of all players to form their own coalition. The core of the game is the
following polyhedron

C(v) = {x ∈ ℜE |x(E) = v(E), x(S) ≥ v(S), for S ⊆ E}.

Next we show how to test if the core is nonempty, how to find an element of the core,
and how to decide if a vector is in the core. The core of other combinatorial optimization
games has been studied in [18], [16], [15], [9], [8], [7], [10], [14], and others. We need the
following lemma.

Lemma 4. For S ⊆ E, the inequality x(S) ≥ v(S) is implied by

x(T ) ≥ 1, for each spanning tree T ⊆ S,

x(e) ≥ 0, for each edge e ∈ S.

Proof. If S does not contain a spanning tree, then x(S) ≥ 0 is implied by x(e) ≥ 0, for
each edge e ∈ S.

If S contains a spanning tree consider the inequalities

x(T ) ≥ 1, for each spanning tree T ⊆ S,

x(e) ≥ 0, for each edge e ∈ S.



10 M. BAÏOU AND F. BARAHONA

As seen in Sub-section 2.2, this system implies x(S) ≥ f(S), where f(S) is the value
of a maximum fractional packing of spanning trees included in S. Since the value of a
fractional packing is at least the value of an integral packing we have f(S) ≥ v(S), and
x(S) ≥ v(S). �

This lemma shows that the core can be written as

x(E) = v(E)(48)

x(T ) ≥ 1, for each spanning tree T ⊆ E,(49)

x(e) ≥ 0, for each edge e ∈ E.(50)

We also have that x(E) ≥ f(E), where f(E) is the value of a maximum fractional packing
of spanning trees. Since f(E) ≥ v(E), we have that the core is nonempty if and only if
f(E) = v(E). This and the results of Sub-section 2.2 imply the following.

Theorem 5. The core is nonempty if and only if

(51) min
|δ(S1, . . . , Sp)|

p− 1

is an integer number. This minimum is taken among all partitions {S1, . . . , Sp} of V .

Theorem 6. We can test whether the core is nonempty in polynomial time.

Given a vector x̄, testing if x̄ satisfies inequalities (49) reduces to a minimum weight
spanning tree problem. Thus we have the following.

Theorem 7. Given a vector x̄, we can decide in polynomial time if x̄ belongs to the core.

As seen in Sub-section 2.2, we can also describe the core as the convex hull of a set of
vectors as follows.

Theorem 8. Let λ be the value of the minimum in (51). If the core is nonempty, it is

the convex hull of all vectors obtained as follows:

• Pick a partition {S1, . . . , Sp} with

|δ(S1, . . . , Sp)| = λ(p− 1).

• Let x̄ be the incidence vector of this partition. Pick x̄/(p− 1).

Since we can find a solution of (51) in polynomial time, we have the following.

Theorem 9. If the core is non-empty, we can find a member of the core in polynomial

time.

4.1.2. A relaxation of the core. If the core is empty, the multiplicative ǫ-core is a relax-
ation proposed in [9]. Given ǫ ∈ [0, 1], it is defined by the following set of inequalities.

x(E) = v(E)(52)

x(S) ≥ (1− ǫ) v(S), for S ⊂ E.(53)

We need the following lemma.

Lemma 10. For S ⊆ E, the inequality x(S) ≥ (1− ǫ)v(S) is implied by

x(T ) ≥ 1− ǫ, for each spanning tree T ⊂ S,

x(e) ≥ 0, for each edge e ∈ S.
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Proof. If v(S) = 0, then x(S) ≥ 0 is implied by x(e) ≥ 0, for all e ∈ S.

If v(S) ≥ 1, let k = v(S). There are k disjoint spanning trees T1, . . . , Tk included in
S. Then

x(S) ≥ x(T1) + . . .+ x(Tk) ≥ k(1− ǫ) = v(S)(1 − ǫ).

�

Then we have the following system.

x(E) = v(E)

x(T ) ≥ 1− ǫ, for each spanning tree T ,

x(e) ≥ 0, for each edge e ∈ E.

We can look for the minimum value of ǫ so that this set is not empty as follows. Define
x′ = x/(1− ǫ), then we have

x′(E) = v(E)/(1 − ǫ)

x′(T ) ≥ 1 for each spanning tree T ,

x′(e) ≥ 0, for each edge e ∈ E.

Thus the minimum value of ǫ is obtained minimizing x′(E) subject to

x′(T ) ≥ 1 for each spanning tree T ,

x′(e) ≥ 0, for each edge e ∈ E.

This reduces to the strength problem as seen in Sub-section 2.2. Thus we can state the
following.

Theorem 11. The smallest value of ǫ so that the multiplicative ǫ-core is non-empty, can

be found in polynomial time.

4.2. The network disconnection game. For a connected graph G = (V,E), this is
a cooperative game (E, v), where for each coalition S ⊆ E, v(S) is the number of new
connected components obtained after removing the edges in S. Before giving a system
of inequalities that defines the core we need the lemma below whose proof is omitted.

Lemma 12. In the definition of the core we only need inequalities x(T ) ≥ v(T ) when

T = δ(S1, . . . , Sp), for each partition {S1, . . . , Sp} of V , and x(e) ≥ 0 for each edge e.

Thus the core is defined by

x(E) = n− 1,

x(δ(S1, . . . , Sp)) ≥ p− 1, for all partitions {S1, . . . , Sp} of V ,(54)

x(e) ≥ 0.

As seen in Sub-section 2.3, this is the spanning tree polytope, i.e., the convex hull of
incidence vectors of spanning trees of G. Since the graph is connected, the core is
non-empty, and the incidence vector of any spanning tree is an element of the core.
The separation problem for inequalities (54) can be solved in polynomial time with the
algorithms of [5] and [2]. We summarize all this in the following theorem.

Theorem 13. The following problems can be solved in polynomial time:

• Finding an element of the core.

• Deciding if a given vector belongs to the core.
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