
RC25567 (WAT1510-067) October 21, 2015
Computer Science

Research Division
Almaden – Austin – Beijing – Brazil – Cambridge – Dublin – Haifa – India – Kenya – Melbourne – T.J. Watson – Tokyo – Zurich

IBM Research Report

Dynamic Load Balancing for Ordered Data-Parallel Regions
in Distributed Streaming Systems

Scott Schneider, Joel Wolf, Kirsten Hildrum*, Kun-Lung Wu,
Rohit Khandekar1

IBM Research Division
Thomas J. Watson Research Center

P.O. Box 218
Yorktown Heights, NY 10598 USA

*Currently at Google
1Knight Capital Group

Dynamic Load Balancing for Ordered Data-Parallel
Regions in Distributed Streaming Systems

Scott Schneider
IBM Research

scott.a.s@us.ibm.com

Joel Wolf
IBM Research

jlwolf@us.ibm.com

Kirsten Hildrum∗
IBM Research

Kun-Lung Wu
IBM Research

klwu@us.ibm.com

Rohit Khandekar
Knight Capital Group

rkhandekar@gmail.com

ABSTRACT
Distributed stream computing has emerged as a technology
that can satisfy the low latency, high throughput demands
of big data. Stream computing naturally exposes pipeline,
task and data parallelism. Meeting the throughput and la-
tency demands of online big data requires exploiting such
parallelism across heterogeneous clusters. When a single
job is running on a homogeneous cluster, load balancing is
important. When multiple jobs are running across a het-
erogeneous cluster, load balancing becomes critical. The
data parallel regions of distributed streaming applications
are particularly sensitive to load imbalance, as their overall
speed is gated by the slowest performer. We propose a dy-
namic load balancing technique based on a system artifact:
the TCP blocking rate per connection. We build a func-
tion for each connection based on this blocking rate, and
obtain a balanced load distribution by modeling the prob-
lem as a minimax separable resource allocation problem. In
other words, we minimize the maximum value of these func-
tions. Our model achieves local load balancing that does
not require any global information. We test our model in
a real streaming system, and demonstrate that it is able to
detect differences in node capacities, determine the correct
load distribution for those capacities and dynamically adapt
to changes in the system.

Categories and Subject Descriptors
H.3.4 [Information Storage and Retrieval]: Systems
and Software—Distributed systems

Keywords
stream processing; automatic parallelization; dynamic load
balancing

1. INTRODUCTION
The amount of data that must be processed and analyzed

is increasing past the ability of conventional means to han-
dle it, a phenomenon commonly referred to as big data. On
a systems level, processing big data online requires highly
parallel runtimes that can maintain low latencies and high
throughput. For application developers and system adminis-
trators, such systems must provide meaningful abstractions

∗Kirsten Hildrum is now at Google, and can be reached at
hildrum@google.com.

that allow writing high performance, massively parallel ap-
plications which can be easily deployed to large, heteroge-
neous clusters.

Distributed stream computing has emerged as a technol-
ogy which can meet these needs, with many examples from
industry and academia [20, 25, 1, 16, 3]. Developers can
express applications as dataflow graphs, which naturally ex-
poses the inherent pipeline, task and data parallelism in the
solution. The distributed runtime system is then responsible
for executing the application in an efficient manner.

In IBM Streams [14], developers express their dataflow
graphs in SPL [12], using the high-level abstractions of op-
erators, streams and tuples. Operators are the logical unit of
computation which process structured data items called tu-
ples. Operators within an application communicate through
streams of tuples. Through these abstractions, application
developers are saved from having to directly deal with the
complexity of distributed, heterogeneous clusters. Instead,
they can depend on the high performance runtime that is a
part of Streams, which can automatically exploit the vari-
ous levels of parallelism exposed by the stream programming
model.

The Streams runtime must be able to dynamically adapt
to a variety of cluster types and loads. The runtime ex-
ecutes operators in processing elements (PEs). Of critical
importance are the data parallel regions, where the runtime
replicates these PEs. Inside data parallel regions, each PE
processes a subset of the total tuples. These subsets are de-
termined by a splitter, which is responsible for routing tuples
to parallel worker PEs. In the presence of imbalanced ca-
pacities among the compute nodes, the splitter must balance
the load among worker PEs to maintain high performance.

Dynamic load balancing in a distributed streaming sys-
tem has several unique challenges. The data parallel regions
must maintain sequential semantics [18]. In a streaming
context, sequential semantics means that tuples must exit
the data parallel region in the same order that they would
have if they had all been processed by a single PE. Enforcing
sequential semantics requires performing an in-order merge
as tuples exit the parallel region. As a result, the perfor-
mance of the entire region is gated by the performance of its
slowest worker. Because of this merge, all connections will
see the same throughput, which means that per-connection
throughput at the splitter is not a useful metric for our prob-
lem. Instead, we must find another metric to infer PE ca-
pacity.

As we are in a distributed system, the splitter can only

communicate with its worker PEs over TCP connections.
We use an artifact of the system itself as our fundamental
metric: each connection’s blocking rate.

Calculating the blocking rate is cheap, which means that
we are not harming performance while trying to improve it.
However, the blocking rate itself does present an additional
challenge: only one connection is likely to block during a
sampling period. Hence, we will receive very little data dur-
ing each such period.

We have designed, implemented and tested a model that
overcomes all of these challenges. First, we build a blocking
rate function, Fj , for each connection j. The value of Fj(wj)
yields the amount of blocking that connection j either ex-
perienced or is predicted to experience when it is given a
fraction wj of the total tuples by the splitter. We model
load balancing as a minimax separable resource allocation
problem where we minimize the maximum across all Fj such

that
∑N
j=1 wj = 1 while respecting any minimum and max-

imum change constraints in wj per connection. The work
of Diao et al. [5] showed that such systems can be accu-
rately modeled with either control theory or optimization
techniques.

Our experimental results show that this technique works
well in practice as a part of a distributed streaming system.
We show that our model can detect differences in capacity
due to both exogenous load and imbalance caused by het-
erogeneous compute nodes. It achieves stability with both
load imbalance and equal capacity. Further, through an ex-
ploration mechanism, we show that it adapts to changes in
the system.

This paper makes the following contributions:

• The blocking rate metric, both in how we derive it from
our system and in how it behaves. As far we know, this
paper is the first to propose using the blocking rate of
the underlying transport layer in a distributed system
to perform load balancing.

• Analysis and description of a model based on the block-
ing rate.

• Experiments in a real system which demonstrate the
stability and correctness of our model.

2. DISTRIBUTED STREAM COMPUTING
Our platform is a research prototype of IBM Streams [14],

a high performance streaming system which executes asyn-
chronous, distributed streaming applications. The program-
ming language for Streams is SPL [12], a language that nat-
urally exposes pipeline and task parallelism.

SPL applications are expressed in terms of operators and
streams, where the operators express a computation, and
different operators are connected by streams. Each stream
contains tuples of the same type. Tuples are structured data
items, similar to a row in a relational database. Operators
consume a tuple from an input stream, perform some com-
putation on it, then potentially emit a result tuple on an
output stream, to be processed by a downstream operator.

Different operators can execute different tuples in parallel.
Hence, by arranging operators in simple chains, developers
can naturally express pipeline parallelism. If developers split
their streams, and send the same tuples to different opera-
tors, they have expressed task parallelism. The compiler

and runtime system in our research prototype of Streams 1

are further able to determine where there are data parallel
regions.

F1

E
F2

FN

G Src Sink D A

B

C
F...

Figure 1: Sample streaming application running on IBM Streams.

Our runtime system executes collections of operators in
a Processing Element, which we will refer to as a PE. Each
PE maps to an OS process, and can be executed on different
physical machines in a network.

Figure 1 shows a sample application as it would execute
on the Streams runtime. PEs are represented as rounded
squares, and streams are represented by the arrows connect-
ing them. The arrows point in the direction of the flow of
tuples, hence, in Figure 1, the tuples flow from Src to Sink.
All of the PEs, A–G, execute in parallel, exploiting pipeline
parallelism. PEs B and C are an example of task paral-
lelism, because they receive the same tuples, yet perform
different operations.

PEs F1–FN are a data parallel region. We assume that all
copies of F are stateless; the other PEs in the application
may have state. In our context, stateless means that the
PE does not “remember” anything about each tuple it pro-
cesses; stateless PEs are pure functions that, given a partic-
ular input tuple, will always produce the same output tuple.
There is a splitter at E which splits the tuple stream. Each
Fi receives only a subset of the total tuples, thus exploiting
data parallelism. There is a merger before G. The merger
ensures that the tuples, which may have been processed out-
of-order, are put back in-order. Said differently, the merger
is required to maintain sequential semantics: Tuples must
exit the parallel region in the same order they would if there
was only one replica of F .

Problem Statement
Assuming that all Fi are stateless PEs, we want to balance
the load across them in the presence of load external to
the application and/or assignments to heterogeneous proces-
sors. In the context of our streaming system, load balancing
means that the splitter must decide which Fi to send each
tuple to based on the load and capacity of the node assigned
to that PE. We want to accomplish load balancing locally
at the splitter, without querying the worker PEs about their
status. Instead, we must only use information locally avail-
able on the machine on which the splitter is executing—in
distributed systems, solutions that do not require global in-
formation and control are easier to implement and scale.
Finally, the means by which we accomplish load balancing
must not itself negatively impact performance.

3. BLOCKING TIME AND RATE
The metric that our model uses is the blocking rate per

TCP connection, which we calculate from the cumulative
1
The production version of IBM Streams enables programmers to an-

notate their operator invocations to indicate parallel regions. Because
programmers manually create parallel regions, the production version
of Streams does not maintain tuple order.

blocking time. In this section, we explain how we measure
cumulative blocking time, and how we use it to calculate the
blocking rate.

The data transport layer establishes a TCP connection
for every connected PE. The splitter uses these TCP con-
nections to send all tuples to the PEs in the parallel region.
If the parallel worker PEs process tuples slower than the
splitter sends them, then eventually an attempt to send a
tuple on a TCP connection will block. When a TCP send
blocks, we record how long it blocks.

We use two mechanisms to record the blocking time. First,
when sending a tuple, we issue a send system call on a TCP
socket with the flag MSG DONTWAIT. This flag ensures
that if the kernel would block while trying to write data into
that socket’s buffer, it immediately returns with a value in-
dicating so. If a send would have blocked, we record that,
and then issue a select system call on that socket, passing in
a valid time-out object. When the socket’s buffers are free so
that it can send data, the select call returns. On Linux sys-
tems, select also writes the amount of time the process was
blocked into the time-out object. We maintain a counter for
each connection which tracks the cumulative blocking time
on that connection. After each call to select, we increase this
counter by the amount of time the system call blocked. In
this manner, we are able to track the cumulative blocking
time per each TCP connection.

0.5s%
1.0s%

1.5s%
2.0s%

2.5s%

seconds'into'experiment'

the%change%in%the%cumula2ve%%
blocking%2me%over%2me%
=%ΔB%/%Δt%

cu
m
ul
a3

ve
'b
lo
ck
in
g'
3m

e'
(B
)'

Figure 2: Idealized calculation of per-connection blocking rate.

Figure 2 shows the idealized behavior of the cumulative
blocking time over time for a particular connection. The
cumulative blocking time is reported every second, and con-
stantly increases until it is periodically reset by the data
transport layer. These increases are not actually useful for
our model per se, but the rate of increase is. So to cal-
culate the blocking rate over time, we periodically sample
the cumulative blocking time from the data transport layer.
We then take the differences between subsequent cumulative
blocking values to obtain estimates of the blocking rate over
that period. These turn out to be quite stable for a partic-
ular system load, and can be thought of as first derivatives
of the cumulative blocking time with respect to time, as
shown in idealized form in Figure 2. We use an appropri-
ately smoothed single blocking rate value in our model.

4. DESIGN CHALLENGES
Each of the following challenges are present in a distributed

streaming system. They informed the direction we took in
order to model the problem, as the model needed to address
them directly, or be robust to them.

4.1 In-order merges
Most parallel regions have an in-order merge at the end, 2

2
Some parallel regions end without merges, in parallel sinks.

F1

Split F2

F3

Merge

Figure 3: Parallel region with three PEs. The boxes on the edges
are queued tuples, implying that F2 is slower than F1 and F3.

as shown in Figure 3. Even though the splitter sends tuples
to worker PEs to be processed in parallel, when those tuples
exit the parallel region, they must do so in the same order
they arrived at the splitter. In-order merges are required
to maintain sequential semantics. That is, the tuples should
appear downstream in the same order that they would if the
PEs in the parallel region were not replicated and executed
in parallel.

As a result of the in-order merge at the back of parallel
regions, the splitter’s connections in the front are not in-
dependent. Figure 3 demonstrates the implication of the
merge. The boxes on the edges represent tuples that have
been sent but not yet processed by the receiving PE. In our
example, F2 is much slower than the other parallel worker
PEs. As a result, even though workers F1 and F3 have com-
pleted processing many tuples, those tuples are stuck in the
merger’s queues—the merger can only send tuples from F1

and F3 downstream when it has received the corresponding
tuples from F2 that preserve the sequential order.

The presence of the in-order merge makes load balancing
even more important, as the overall performance of a parallel
region is gated by its slowest performer.

4.2 Drafting
One difficulty with using the blocking rate as a metric is

the phenomenon we call drafting. The splitter has a single
thread of control; the same kernel thread is used to send
tuples to all worker PEs in the parallel region. As we shall
see, this implies that during a measurement period only one
connection is likely to experience blocking, even if all of the
connections can handle the same amount of load.

To understand why drafting happens, consider the sim-
ple example of a round-robin splitter sending tuples to three
parallel workers, each worker capable of handling the same
amount of load. Eventually, the splitter may block when
trying to send a tuple on its TCP connection to a paral-
lel worker. Suppose, for example, that connection 2 blocks.
While the splitter is blocked waiting for the buffers for con-
nection 2 to clear, all of the other buffers for the other
connections also have the opportunity to clear. When the
buffers for connection 2 are finally clear, the splitter success-
fully sends a tuple on connection 2. The splitter next sends
a tuple on connection 3, and it is very unlikely to block
on that connection—any amount of time that is sufficient
for the buffers of connection 2 to clear is sufficient for the
buffers of connection 3 to clear, given equal capacity. The
same is true for connection 1, next in the round-robin or-
der. Eventually, as the splitter once again distributes tuples,
the probability of blocking will start to increase. However,
connection 2 has had the least amount of slack-time since
the first tuple being sent, so when the splitter does block,
it is most likely to block on connection 2. The splitter and
connection 2 are in a synchronized rhythm, and we call con-
nection 2 the draft leader. The point is that the draft leader
is likely to change less frequently than the measurement pe-

riods.
This phenomenon is similar to how cyclists and race-car

drivers will draft behind a leader, with the leader bearing
the brunt of the drag.

Drafting presents a challenge to load balancing. Suppose
we only look at instantaneous information, and we observe
a connection that experiences a high blocking rate. It is im-
possible to determine if that connection has a lower capacity
than its siblings, or if it is merely the draft leader. This fact
implies that any attempt to model our system must have a
notion of history to overcome this limitation in the available
data.

4.3 Per-connection throughput
Most people’s intuition is to use throughput as the funda-

mental metric, but throughput is not useful for our problem.
If, say, the splitter is distributing tuples by basic round-
robin, then the throughput on all connections will be the
same. If the splitter sends 3 tuples to one connection for
every 1 tuple to another, their relative throughputs will al-
ways be 3:1. This counter-intuitive result is a consequence of
having to merge the tuples at the end of the parallel region.

To understand why per-connection throughput has no ex-
tra information, once again consider the situation in Fig-
ure 3, where the splitter sends the same amount of tuples to
each connection. As explained in the previous subsection,
the splitter has a single thread of control. This thread will
periodically block when trying to send tuples to F2. Because
F2 is slow, its TCP queues for receiving tuples will fill up,
causing the splitter’s TCP queues for sending tuples to that
connection to also fill up. We call this phenomenon back
pressure: in a streaming pipeline, the steady-state through-
put of the entire pipeline is that of its slowest member.

In any given period of time, the splitter will spend a dis-
proportionate amount of time blocked on connection 2. It
will easily send tuples on connections 1 and 3. But even
though it easily sends tuples on connections 1 and 3—it
rarely ever blocks on those connections—it will send the
same number of tuples to all connections in a given period
of time. Hence, throughput is not useful for our problem,
but blocking time is.

A different, but equally correct, implementation could in-
stead block at the merger; it is an artifact of our implemen-
tation where we block. But we fundamentally have to block
somewhere in order to maintain order. It is the requirement
to maintain tuple order that causes per-connection through-
put to have no information.

4.4 Blocking is a rare event
A curious consequence of how we record blocking time (as

explained in Section 3) is that we actually elect to block.
That is, we detect when a TCP send will block, and then
we block anyway, just making sure to record how long we
block.

The obvious question is: Why block? Why elect to do
nothing? Instead, we could send tuples to the other con-
nections, thus achieving load balancing at the data trans-
port level. We experimented with a data transport level
re-routing approach that does exactly that.

The intuition behind the re-routing approach is appeal-
ing: only send tuples to connections that can currently han-
dle them. If a connection blocks, try sending that tuple
to another connection, hence distributing the load based on

current capabilities.
This intuition, however, is naive. The fundamental prob-

lem with the approach is that blocking is a late indicator
of congestion. In an experiment with two PEs, where the
base cost of processing a tuple is 1,000 integer multiplies,
and one of the PEs is 100× more expensive than the other,
the re-routing approach makes no discernible difference in
throughput versus basic round-robin. It only re-routes 0.5%
of the tuples. When the base tuple cost is 10,000 integer
multiplies, it does make about a 20% improvement in total
throughput, while re-routing about 7.5% of the total tuples.
This improvement, however, is not nearly enough, and it
only appears when the base tuple cost is high. We require a
more general solution with larger improvements.

The reason that the data transport level re-routing ap-
proach does not work in general is that blocking is a rare
event, even in the presence of hugely disparate capacities.
This fact is caused by the numerous system buffers between
two processes that execute on different hosts in a network.
By the time a TCP connection for an overloaded PE blocks,
it already has at least two system buffers worth of unpro-
cessed tuples (locally on the splitter and remotely on the
worker). Those tuples still take 100× as long to process, and
because of the ordered merge at the end, overall throughput
suffers.

There are two lessons we draw from this experiment. One,
because blocking is rare, we have to build a model that can
function with a paucity of data. Two, we need to re-route
tuples before a low-capacity connection becomes overloaded.
The data transport re-routing approach does too little, too
late. It re-routes too few tuples to make a difference, and it
only does so when the connection is already overloaded. It
does not learn from its mistakes. We need an approach that
can predict how much load a connection can handle.

5. LOCAL LOAD BALANCING
In this section we describe the local load balancing prob-

lem we are solving for each parallel PE region. First we
will describe the computation of the blocking rate functions
themselves. These functions are the components of the ob-
jective function we will optimize. Then we describe the load
balancing optimization itself, including both the formulation
and the solution algorithm. Finally, we describe the way
in which we encourage periodic exploration of the problem
space, in order to react swiftly to dynamic changes in the un-
derlying scenario. Failing to do this may result in relatively
static blocking rate functions and thus to less adaptation
than should occur in the optimization.

Figure 4 pictorially sketches the steps we take to achieve
local load balancing.

5.1 Blocking Rate Function
We begin this section by describing the construction of

the blocking rate function to be used as input to our load
balancing optimization. There will be one such blocking rate
function Fj per connection. The x-axis of this function will
correspond to potential round robin allocation weights3 wj
allotted to the connection by the splitter, in units of 0.1%.
In other words, the x-axis for the jth blocking rate function
will consist of 1001 discrete values between 0 and 100%.

3
The name allocation weight is inspired by weighted round-robin,

where the weights are determined by our model.

for$each$channel,$$
measure$cumula&ve)blocking)&me$
atwj

1"

for$each$channel,$
compute$blocking)rate$atwj

2"

for$each$channel,$
create$Fj(wj)$from$
monotonized$data$

w)

5"

op9mize$across$all$Fj(wj)$
w) w) w)

6"

for$each$channel,$
incorporatenewblocking$
rateatwj$into$history$

w)

3"

for$each$channel,$
monotonizetheraw$data$

w)

4"

Figure 4: The steps to achieve local load balancing.

The y-axis will correspond to the blocking rate Fj(wj) if the
connection is allocated weight wj .

Figure 5: Blocking rates for fixed allocation weights.

To see that this function even makes sense we begin with a
simple experiment designed to compare reality with the ide-
alized example shown in Figure 2. Consider a two-connection
scenario on a pair of homogeneous processing nodes. We ex-
perimented with dividing this load statically in four separate
distributions. The first is an unvarying split with connection
1 getting 80% of the load and connection 2 getting the re-
maining 20%. In this case connection 1 was the draft leader,
and connection 2 was the draftee. Figure 5(a) illustrates the
blocking rate for connection 1 as a function of time. Note
the stability (flatness) of this function—its behavior mimics
that of Figure 2 quite closely. Figure 5(b) illustrates the
corresponding connection 1 blocking rate in a 70%-30% un-
varying split. Again the figure is quite flat, and notice that
the blocking rate at 70% is less than that at 80%. Similarly,
Figures 5(c) and (d) show the blocking rate for a 60%-40%
split and a 50%-50% split, respectively. Note the mono-
tonicity of the blocking rates across the 4 subfigures. As the
allocation weight decreases from 80% to 50% the blocking
rates consistently decrease as well. Note also the stability
of each blocking rate over time, with the exception of Fig-
ure 5(d). What is happening here? The answer is simple.
In a 50%-50% split the draft leader has become the draftee
at some arbitrary point in time, and vice versa. A similar
graph for connection 1 would show that this connection is
now receiving blocking rate data.

Our goal now becomes to construct a single function Fj(wj)
per connection j. It is important to observe that data for
these functions will typically arrive infrequently. Specifi-
cally, changes in draft leaders will occur far less frequently
than data collection intervals, which occur every second. At
most data collection intervals this means that there will be
only a single new data value for precisely one of the connec-
tions, and it will correspond to only one possible allocation
weight, the current weight for that connection.

This function is derived and updated in three steps. First,

new data is collected and smoothed into the existing “raw”
data. (The value (0, 0) is assumed.) Second, the raw data
points are forced into non-decreasing order by a process
known as monotone regression [7]. Third, the missing data
points in the domain are computed via linear interpolation
or extrapolation.

5.2 Load Balancing Optimization
Our problem can be formulated as a so-called minimax

separable resource allocation problem (RAP). Specifically, we
wish to minimize max1≤j≤N Fj(wj) subject to the two con-

straints
∑N
j=1 wj = 1 and mj ≤ wj ≤Mj for all 1 ≤ j ≤ N .

Note that the objective function max1≤j≤N Fj(wj) corre-
sponds to the blocking rate of the weakest link among the
connections, the one whose blocking rate is largest. The
first constraint is the RAP constraint itself: All the traffic
from the splitter must be allocated. Separability here means
that each term Fj is a function of a single decision variable
wj . The second constraint provides minimum and maximum
bounds for the connection allocation weights, typically in-
crementally from the current weights during each problem
instance. (If there is no lower bound for connection j, then
mj = 0. If there is no upper bound, then Mj = 1.)

The optimization literature on RAPs is well established [13].
In our particular case the problem is discrete in the sense
that we only consider solutions in which each allocation
weight is a multiple of r = 0.001, in other words 0.1%. So es-
sentially, we can say that there are R = 1

r
= 1000 total units

of resource. Our problem is also monotone non-decreasing:
We insist that Fj(wj,1) ≤ Fj(wj,2) whenever wj,1 ≤ wj,2.
This monotonicity should be a logical tautology, but as we
have already stated that we force it to be true in the (rare)
cases where the empirical data does not support it.

Minimax discrete separable RAPs with monotone non-
decreasing functions can be solved exactly by a simple greedy
algorithm generally attributed to Fox [8]. Consider the “ma-
trix” F whose (i, j)th term is Fj(r · i). Each column j is
monotone non-decreasing in i. Assuming the minima are
described in multiples of r, we start by setting w̄j = mj .
At each stage we compute the column j∗ = j for which
w̄j+r ≤Mj and Fj(w̄j+r) is minimum. Then we set w̄j∗ =

w̄j∗ + r. We repeat this greedy process until
∑N
j=1 w̄j = 1

or each w̄j = Mj . A simple interchange argument will show
that this algorithm produces an optimal solution. With
the proper data structures the algorithm has complexity
O(N +R logN). (The number of actual iterations required
is often much smaller than R.)

There do exist faster algorithms which also solve this prob-
lem exactly. For example, a scheme based on binary search
by Galil and Megiddo [10] has complexity
O(N log2R). Frederickson and Johnson [9] designed a scheme
based on geometric search space reduction with complexity
O(max(N,N log(R/N))). But for our problem instances,

cluster(based(on(max(of((
those(values(

Distance)

create(average(func4ons(for(each(cluster(

w)

for(each(channel,(
compare(wj,(Fj(wj,s)(and(Fj(wj,R)(

w) w) w)

4.1$ 4.2$ 4.3$

Figure 6: Clustering steps.

the greedy Fox scheme suffices because both the number of
connections N and the maximum number of iterations R are
modest, and due to the incremental constraints. Hence, we
use it in our implementation.

5.3 Clustering
The prior local load balancing scheme works well in prac-

tice when the number of parallel connections is modest. (In
our experiments, a modest number of connections is 16 or
less.) However, as explained in Section 4, we effectively have
a fixed amount of available data to collect. As we increase
the number of connections, this fixed amount of data gets
spread out more and more. Consequently, as we increase the
number of connections, the amount of data available to each
individual connection’s function decreases. Each function
then becomes less accurate, and the load balancing solution
provided by the optimization process suffers.

We can address this problem by starting with a systems
insight: multiple PEs may reside on the same host. If that
host either experiences external load, or inherently has less
processing capacity than other hosts, the impact will be the
same on all of its PEs. Hence, performance is likely to be
correlated per host. We take advantage of this insight by
using clustering to discover groups with similar performance,
and aggregating their data into a single function for the
group.

Figure 6 sketches the additional steps taken to apply clus-
tering to our local load balancing technique.

To perform clustering on the connection functions, we
must first define a distance function to measure how “close”
two functions are. That is, we require a function Distance(Fj , Fk)
which will yield 0 when Fj and Fk are indistinguishable, and
some large positive value when they are “far.”

In order to define our distance function, we exploit the
characteristics of the predictive connection functions. Fig-
ure 7 shows three examples. The left function in Figure 7
represents a channel which does not see any blocking until it
has about 0.5 of the total load, at which point it experiences
low blocking. The middle function also does not experience
any blocking until it has about 0.5 of the load, at which point
it experiences moderate blocking. The function on the right
experiences severe blocking even with 0.001 of the load.

These functions tend to have a sharp knee at a particular
weight wj,s, which is effectively the service rate for channel
j. For i < wj,s, Fj(i) is 0. That is, until the load on channel
j is equal to its service rate, it experiences no blocking. The
amount of blocking channel j experiences for i >= wj,s is
proportional to how much load it can handle.

We define our distance function with these properties in
mind. In particular, for two given connections j and k,
we want to compare their service rates (wj,s and wk,s),
the amount of blocking they observe at those service rates
(Fj(wj,s) and Fk(wk,s)), and finally, their expected block-
ing with a high fraction of the total load (Fj(wj,R) and
Fk(wk,R)):

0 200 400 600 800 1000
w

0.0

0.1

0.2

0.3

0.4

0.5

b
lo

ck
in

g

0 200 400 600 800 1000
w

0.00

0.05

0.10

0.15

0.20

0.25

0.30

b
lo

ck
in

g

0 200 400 600 800 1000
w

0.0

0.1

0.2

0.3

0.4

0.5

b
lo

ck
in

g

Figure 7: Sample predictive functions, Fj .

Distance(Fj , Fk) =

max

(∣∣∣∣ log
wj,s
wk,s

∣∣∣∣, α∣∣∣∣ log
Fj(wj,s)

Fk(wk,s)

∣∣∣∣, α∣∣∣∣ log
Fj(wj,R)

Fk(wk,R)

∣∣∣∣)
We compare the logarithms of the ratios of these values

to penalize large differences far more than small differences.
We use the max of these values, rather than their sum or
product, to avoid the information loss inherent in aggregat-
ing numbers. The scaling factor, α, ensures that all of the
values are on the same scale. We define it as α = logR

| logRδ|
where R is the maximum discrete value that wj can be, and
δ is the value we introduce when we need to force mono-
tonicity.

With Distance, we can define a distance between any two
functions Fj and Fk. Using these distances, we perform
agglomerative clustering [2] to discover clusters among the
connections. After forming the clusters, we create a new
function for the cluster which incorporates all data from the
individual connections in the cluster. We then solve the
optimization problem presented in the previous section with
these new, clustered functions.

Clustering is effective because it reduces the dimensions of
the problem. Rather than solving, say, a 64-way optimiza-
tion problem, we may end up solving a 3-way optimization
problem. The clustered functions will also tend to be more
robust, because they incorporate more data than is available
to just a single channel.

5.4 Encouraging Exploration
We have noted that distributed streaming systems are in-

herently dynamic. Although we have focussed on a single
parallel region and its corresponding hosts, exogenous load
will arrive, depart and change frequently. Streaming sys-
tems can also be bursty. On the other hand, we have also
seen that new (and thus up-to-date) load balancing data ar-
rives rather infrequently: At any given moment in time, data
is potentially being collected only at the current allocation
weights w̄j for the various connections. In fact, because of
drafting, it is only typically being collected at one of these
connections in a given data collection interval. This paucity
of new data is problematic in a dynamic environment, pre-
cisely because it encourages static optimization decisions.
Handling dynamic behavior implies that we must encourage
exploration rather than hinder it.

We deal with this issue in a simple but effective manner.
Encouraging exploration means that some allocation weights
must rise and some must fall. So our intuition is to “flat-
ten” the blocking rate function for all weights beyond the
current allocation weight of each connection. Specifically, if
w̄j represents the current allocation weight for connection j,
we reduce the blocking rate Fj(wj) for each wj > w̄j by a
fixed amount (chosen to be 10%) during each iteration of the
algorithm. Reducing such values geometrically in this fash-
ion, together with the enforced monotone regression scheme,

0 100 200 300 400 500
seconds

0

20

40

60

80

100
a
llo

ca
ti

o
n
 w

e
ig

h
t

Connection 1
allocation weight

0.0

0.5

1.0

b
lo

ck
in

g
 r

a
te

∆B / ∆t

0 100 200 300 400 500
seconds

0

20

40

60

80

100

a
llo

ca
ti

o
n
 w

e
ig

h
t

Connection 2
allocation weight

0.0

0.5

1.0

b
lo

ck
in

g
 r

a
te

∆B / ∆t

0 100 200 300 400 500
seconds

0

20

40

60

80

100

a
llo

ca
ti

o
n
 w

e
ig

h
t

Connection 3
allocation weight

0.0

0.5

1.0

b
lo

ck
in

g
 r

a
te

∆B / ∆t

0 50 100 150 200 250 300
seconds

0

20

40

60

80

100

a
llo

ca
ti

o
n
 w

e
ig

h
t

Connection 1
allocation weight

0.0

0.5

1.0

b
lo

ck
in

g
 r

a
te

∆B / ∆t

0 50 100 150 200 250 300
seconds

0

20

40

60

80

100

a
llo

ca
ti

o
n
 w

e
ig

h
t

Connection 2
allocation weight

0.0

0.5

1.0

b
lo

ck
in

g
 r

a
te

∆B / ∆t

0 50 100 150 200 250 300
seconds

0

20

40

60

80

100

a
llo

ca
ti

o
n
 w

e
ig

h
t

Connection 3
allocation weight

0.0

0.5

1.0

b
lo

ck
in

g
 r

a
te

∆B / ∆t

Figure 8: Top: experiment with 3 PEs, base tuple cost of 1,000 integer multiplies, 1 PE is 100× more expensive. Bottom: experiment
with 3 PEs, base tuple cost of 10,000 integer multiplies, all PEs have same capacity.

causes the blocking rate to become essentially flat beyond w̄j
over time. Given this scenario, the optimization scheme will
automatically start the exploration process quickly, causing
fresh data collection.

6. EXPERIMENTAL RESULTS
To demonstrate the effectiveness of our load balancing

scheme, we present two kinds of experiments. The first set
show the in-depth behavior of a single run. The second set
show total execution time and final throughput for many
runs as we vary the number of PEs, with some PEs experi-
encing simulated load.

Our in-depth experiments show one graph per connection.
Observing how the system adapts in the presence and ab-
sence of external load shows how our model is able to over-
come the challenges presented in Section 4. The x-axis is
the number of seconds into the experiment. The left y-axis
is the allocation weight, which is the percentage of tuples
that connection is receiving at that moment in time. The
right y-axis is the blocking rate for that connection.

Observing a single run is not enough to demonstrate that
our model works, or is better than the alternatives in a va-
riety of conditions. To that end, we present experimental
results which compare the total execution time and final
throughput of runs where half the PEs are experiencing sim-
ulated external load. These graphs have four different alter-
natives: Oracle* is the best distribution for the configura-
tion, determined offline and by-hand; LB-static is our model
without the decay mechanism which encourages exploration;
LB-adaptive is our model with the decay mechanism to en-
courage exploration; and RR is naive round-robin with no
dynamic load balancing. The purpose of Oracle* is to pro-
vide a best case for the performance. However, we name it
Oracle* because in the dynamic case, it will change the al-
location weights earlier than is optimal. The purpose of RR
is to show what would happen without any load balancing.

All execution times are normalized to Oracle* for that run,
and all final throughputs are in millions of tuples processed
per second.

Unless otherwise mentioned, all of our experiments were
run on machines with 2 Intel Xeon X5365 processors at 3.0
GHz. These processors have 4 cores, yielding 8 cores per ma-
chine. Each machine has 15 GB of RAM, and they are con-
nected with InfiniBand. In our experiments, we distribute
PEs across nodes so that we have one PE per core. The
splitter and merger reside on different machines than the
parallel workers. Hence, when we use 16 PEs, we are using
two machines for the 16 parallel workers, and a third for the
splitter and merger.

6.1 3 PEs with load imbalance
Our first in-depth experiment, top of Figure 8, has a par-

allel region with 3 worker PEs processing tuples with a base
cost of 1,000 integer multiplies per tuple. In the beginning
of the experiment, one PE has a simulated external load
causing it to take 100× longer to process tuples. An eighth
through the experiment, we remove the simulated external
load.

The heavily loaded connection is Connection 1 in the top
of Figure 8. It starts out with its even share of the alloca-
tion weight, and as a result, it experiences a high blocking
rate. To compensate, our model decides to change its alloca-
tion weight to 0. However, we can observe that as a result,
the other connections experience a sharp increase in their
blocking rate. The loaded connection then tries an alloca-
tion weight of 9, which still results in a high blocking rate.
It finally tries an allocation weight of 3, and goes back and
forth a few times between 2 and 3. It still experiences some
blocking at these weights, but giving some allocation to the
loaded connection still yields less total blocking in the whole
system.

At around 100 seconds, the data decay finally forces re-

2 4 8 16
Total number of PEs

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
o
rm

a
liz

e
d
 e

x
e
cu

ti
o
n
 t

im
e

4.0 3.8 3.1 1.5
base1000-10x-static

Oracle*

LB-static

LB-adaptive

RR

2 4 8 16
Total number of PEs

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

N
o
rm

a
liz

e
d
 e

x
e
cu

ti
o
n
 t

im
e

base1000-10x-dynamic

Oracle*

LB-static

LB-adaptive

RR

2 4 8 16
Total number of PEs

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Fi
n
a
l
th

ro
u
g
h
p
u
t

(m
ill

io
n
s

o
f

tu
p
le

s
/

s) base1000-10x-dynamic

Oracle*

LB-static

LB-adaptive

RR

Figure 9: Base tuple cost of 1,000 integer multiplies and half of the PEs are 10× as expensive.

exploration: Connection 1 tries an allocation weight more
than 3, but it still sees a severely high blocking rate, and
backs off. At the next re-exploration, around 175 seconds,
Connection 1 does not see increased blocking because at this
point in the experiment, we have removed the 100× load.
That connection then starts a slow climb back up to an
even tuple distribution—slow because its function still indi-
cates that blocking is probable at higher allocation weights,
and the new data is slowly changing that function to indi-
cate otherwise. The spikes around 275, 375 and 475 seconds
are further re-explorations, but at this point, all of the con-
nections have the same capacity, so no significant changes
occur.

This experiment demonstrates three important behaviors.
First, our model is able to quickly detect and adapt to se-
vere load imbalance. Just 15 seconds into the experiment,
we settle on a sustainable load distribution. Second, if re-
exploration shows that the system has not changed, our
scheme recovers. Finally, if re-exploration shows that the
system has changed, our scheme adapts.

6.2 3 PEs with no load imbalance
Our second in-depth experiment, bottom of Figure 8, uses

3 parallel PEs which process tuples with a base cost of 10,000
integer multiplies, and no external load. The purpose of this
experiment is to observe the behavior of our scheme when
all connections have equal capacity, but a high blocking rate
is unavoidable.

In the beginning, Connection 3 in the bottom of Figure 8
is the drafting leader; it experiences most of the blocking
even though all of the connections have equal capacity. As a
consequence, its allocation weight drops to 0. Connection 2
observes some blocking, and its allocation weight drops to 8.
Connection 1 experiences very little blocking, and picks up
over 90% of the total allocation weight. For the remainder
of the first 100 seconds, Connection 1 and 2 remain rela-
tively even while Connection 3 recovers from dropping to an
allocation weight of 0.

At 100 seconds, Connection 2 and 3 are induced to explore
higher allocations weights, taking weight from the drafting
leader, Connection 1. However, the resulting distribution re-
sults in too much blocking, and Connection 1 starts taking
allocation from the other two connections until they stabi-
lize at an even split. Note that after 150 seconds, which
connection is the drafting leader changes several times. (For
example, from 200–250 seconds, the drafting leader is again
Connection 1.) But, at this point, all of the connections have
explored enough of the allocation weight space to build es-
sentially the same functions. Thus, even in the presence of

drafting, our model is able to detect equal capacity.

6.3 Varying PEs with medium-cost tuples
The experiment on the left in Figure 9 uses a variable

number of PEs where the base cost of a tuple is 1,000 in-
teger multiplies. Half of the PEs in each experiment have
a simulated load which causes them to take 10× as long to
process tuples. The load remains unchanged (it is static)
throughout the run.

With 2-16 PEs, our load balancing scheme is 1.5-4× better
than basic round-robin. Since the load is kept at a constant
during the experiment, the load balancing does not need to
be adaptive. However, the marginal difference between LB-
static and LB-adaptive demonstrates that with medium-cost
tuples, there is only a marginal cost to being adaptive.

The experiments on the middle and right in Figure 9 are
the same as the previously discussed experiment, with one
difference: an eighth through the experiment, we remove the
simulated load from half the PEs. The middle graph in Fig-
ure 9 shows the normalized execution time; the right graph
shows the absolute final throughput. Dynamically removing
the load an eighth through the experiment demonstrates the
importance of adaptation. It also means that total execu-
tion time does not tell the whole story, since it includes the
period of time when the load was present. Hence, we include
the final throughput, which is well after the load has been
removed. This throughput is indicative of the performance
the configuration would achieve if it ran longer—which is
important for streaming systems that are designed to run
continuously.

Perhaps surprisingly, LB-adaptive outperforms Oracle*.
This result is caused by the fact that while we know the
best distribution to use when there is load and when there
is no load, in order to get an optimal run, we have to time
the change-over exactly. The technique we use for Oracle*
changes distributions too quickly. For that reason, we do
not call it Oracle.

At 2 and 4 PEs, the benefit of adaption is apparent in
both the total execution time and the final throughput. At 8
PEs, however, we have reached the point where the workload
stops scaling; for a base cost of 1,000 integer multiplies per
tuple, 8 PEs is the point at which additional parallelism
does not improve performance. This point is reached in the
dynamic experiments because once the load is removed, all
PEs can operate at full capacity. The Oracle* schedule for
16 PEs with 10× load only uses 8 of the PEs.

2 4 8 16
Total number of PEs

0.0

0.5

1.0

1.5

2.0
N

o
rm

a
liz

e
d
 e

x
e
cu

ti
o
n
 t

im
e

46.5 45.6 45.9 45.7
base10000-100x-static

Oracle*

LB-static

LB-adaptive

RR

2 4 8 16
Total number of PEs

0.0

0.5

1.0

1.5

2.0

N
o
rm

a
liz

e
d
 e

x
e
cu

ti
o
n
 t

im
e

10.6 10.5 10.5 10.4
base10000-100x-dynamic

Oracle*

LB-static

LB-adaptive

RR

2 4 8 16
Total number of PEs

0.0

0.2

0.4

0.6

0.8

Fi
n
a
l
th

ro
u
g
h
p
u
t

(m
ill

io
n
s

o
f

tu
p
le

s
/

s) base10000-100x-dynamic

Oracle*

LB-static

LB-adaptive

RR

Figure 10: Base tuple cost of 10,000 integer multiplies and half of the PEs are 100× as expensive.

6.4 Varying PEs with heavy-cost tuples
The experiments in Figure 10 use a base tuple cost of

10,000 integer multiplies, using a 100× load on half of the
PEs. The graph on the left of Figure 10 represents a static
experiment, where the 100× load remains unchanged for the
entire experiment. The load balanced approaches take about
1.3–1.8 longer than Oracle*. However, basic round-robin,
which naively sends an even amount of tuples to all worker
PEs, takes 45× as long to complete as Oracle*. Dynamic
load balancing is clearly needed in this case.

As the number of PEs increases, the gap between LB-
static and LB-adaptive grows from marginal to about 30%.
This gap is the cost of being adaptive.

The benefit of being adaptive can be seen in the middle
and right graphs of Figure 10. Both graphs represent an ex-
periment where the 100× load is removed an eighth through.
The middle graph is the total execution time normalized to
Oracle*, and the graph on the right is the final throughput
in millions of tuples per second. During the first eighth of
the experiment, both LB-static and LB-adaptive build se-
vere blocking rate functions for the PEs with 100× the load.
However, because LB-static is never induced to re-explore,
it also never discovers that the load has been removed. LB-
adaptive does discover that the load has been removed, and
as a result, its final throughput is almost twice that of LB-
static. In the dynamic experiments, the final throughput
for RR is always roughly that of Oracle* and LB-adaptive.
However, note that RR took at least 10× as long to reach
this throughput.

6.5 PEs on heterogeneous hosts
So far, all of our experiments have run on the same kind

of host machines with simulated load. Our final set of ex-
periments uses hosts with different capabilities, and no sim-
ulated load. Thus, these experiments will require dynamic
load balancing solely because of the inherent capacities of
the systems. Our “slow” hosts are those used in all prior ex-
periments. Our “fast” hosts are machines with 2 Intel Xeon
X5687 processors at 3.6 GHz and 62 GB of RAM. The pro-
cessors on the fast hosts have 4 cores, and 2 SMT threads
per core, which means that the fast hosts can support 16
threads.

The top of Figure 11 shows an in-depth experiment with
two PEs, where Connection 1 is to the fast host, and Con-
nection 2 goes to the slow host. The initial behavior is the
same to the other in-depth experiments, in that there are
some brief oscillations as the two connections explore the
allocation weight space and the model builds its functions.

0 50 100 150 200 250 300 350 400
seconds

0

20

40

60

80

100

a
llo

ca
ti

o
n
 w

e
ig

h
t

Connection 1
allocation weight

0.0

0.5

1.0

b
lo

ck
in

g
 r

a
te

∆B / ∆t

0 50 100 150 200 250 300 350 400
seconds

0

20

40

60

80

100

a
llo

ca
ti

o
n
 w

e
ig

h
t

Connection 2
allocation weight

0.0

0.5

1.0

b
lo

ck
in

g
 r

a
te

∆B / ∆t

2 4 8 16 24
Total number of PEs

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

N
o
rm

a
liz

e
d
 e

x
e
cu

ti
o
n
 t

im
e

twospeed-base20000

All-Fast

All-Slow

Even-RR

Even-LB

2 4 8 16 24
Total number of PEs

0.0

0.2

0.4

0.6

0.8

1.0

Fi
n
a
l
th

ro
u
g
h
p
u
t

(m
ill

io
n
s

o
f

tu
p
le

s
/

s) twospeed-base20000

All-Fast

All-Slow

Even-RR

Even-LB

Figure 11: Experiments with “fast” and “slow” hosts using a tuple
cost of 20,000 integer multiplies. Top: in-depth with 2 PEs; one
on “fast”, one on “slow.” Bottom: varying the number of PEs.

The oscillations stabilize by 30 seconds into the experiment,
where they settle on about a 65%-35% split, with small vari-
ations because of the exploration mechanism. And again,
once the connections have explored enough of the allocation
weight space, the model is robust to changes in who is the
drafting leader.

In the bottom of Figure 11, we vary the number of PEs
distributed across the heterogeneous hosts. There are four
alternatives: All-Fast distributes all of the PEs to the fast
node, using basic round-robin; All-Slow distributes all of the
PEs to the slow node, using basic round-robin; Even-RR
distributes half of the PEs to the slow node, half to the fast
node, using basic round-robin; and Even-LB distributes half
of the PEs to the slow node, half to the fast node, using our
load balancing scheme. All execution times are normalized
to Even-RR and all throughputs are in millions of tuples
processed per second.

Up to 8 PEs, All-Slow and Even-RR perform the simi-
larly, which is expected: overall performance will be gated
by the slowest PE because of the merge. All-Fast outper-
forms Even-LB because even good load balancing cannot
make up for the fact that half of its PEs are executing on
slower hosts.

The slow host can only execute 8 PEs simultaneously; any
more than 8 PEs, and the slow host becomes an oversub-
scribed system. Hence, performance degrades with All-Slow
with 16 and 24 PEs. The fast host, however, can execute 16

0 50 100 150 200 250 300 350
seconds

0

1

2

3

4

5

6

7

8

a
llo

ca
ti

o
n
 w

e
ig

h
t

All allocation weights (64)
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

Figure 12: Experiment with 64 PEs and a base tuple cost of 60,000 integer multiplies; 20 PEs are 100× as expensive; 20 PEs are 5× as
expensive; and the remaining 24 PEs just use the base tuple cost. On the left are the allocation weights per channel over time, and on
the right is the “heatmap” for how channels were clustered. Matching colors are in the same cluster; one row represents one time step,
so the x-axis is channel number and the y-axis is time, with t = 0 at the top.

PEs simultaneously, since each core is a two-way SMT and
our workload is integer multiplications. Because the fast
host can handle 16 threads, its throughput increases when
going from 8 to 16 PEs, but it does not improve with 24
PEs.

The fastest overall throughput is when 16 PEs are on the
fast host, 8 PEs are on the slow host, and we use dynamic
load balancing. Up until this point, Even-LB was at a dis-
advantage compared to All-Fast because half of its PEs were
on the slow host. But the final configuration with 24 total
PEs shows how adding a slow host to the system can improve
performance if we use load balancing that can dynamically
detect capacity.

6.6 Clustering
Our prior results did not include clustering, as explained

in Section 5.3, as it only becomes necessary as the number
of channels scales to 32 and higher PEs. The experiments in
Figure 13 use a base tuple cost of 60,000 integer multiplies,
and half of the PEs start with 100× the load, but that load
was removed an eighth through the experiment. At 16 PEs
and below, the experiments in Figure 13 behave similarly to
the experiments in Figure 10. At 32 and 64 PEs, however,
the total execution time for LB-static and LB-adaptive are
similar, yet are both still close to 9× better than RR. The
trend in final throughput, however, remains. Because LB-
adaptive learns that the 100× initial load was removed, it
is able to use more of the total number of PEs to achieve
higher final throughput than LB-static.

However, total execution times and final throughputs only
tell part of the story. In order to understand the dynamics of
clustering and load balancing across 64 channels, we present
the experiments in Figure 12. This experiment uses 64 PEs
with a base tuple cost of 60,000 integer multiplies per tu-
ple. This time, however, there are three classes of load: 20
PEs are at 100× the base cost, 20 PEs are at 5× the base
cost, and the remaining 24 PEs just use the base cost. The
graph on the left shows the allocation weight per channel
over the course of the experiment. We can see that the PEs
with 100× the load quickly learn they cannot handle much

2 4 8 16 32 64
Total number of PEs

0.0

1.0

2.0

3.0

4.0

5.0

6.0

N
o
rm

a
liz

e
d
 e

x
e
cu

ti
o
n
 t

im
e

11.3 11.5 11.6 11.6 11.8 8.9
60k-100x-dynamic

Oracle*

LB-static

LB-adaptive

RR

2 4 8 16 32 64
Total number of PEs

0.0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Fi
n
a
l
th

ro
u
g
h
p
u
t

(m
ill

io
n
s

o
f

tu
p
le

s
/

s) 60k-100x-dynamic

Oracle*

LB-static

LB-adaptive

RR

Figure 13: With clustering on, base tuple cost of 60,000 integer
multiplies and half of the PEs are 100× expensive.

load. However, it takes longer for the unloaded PEs and
the PEs with 5× the load to figure out which channel be-
longs where. Note that the last “switch” happens at about
220 seconds, where some channels from unloaded clusters
realize they should be clustered with the 5× channels, and
vice-versa. In the end, however, they all sort out where they
should be.

The right graph in Figure 12 is the clustering “heatmap”
for the experiment. Each row, starting at the top with t = 0,
represents a clustering across all channels. Time into the ex-
periment progresses downward from the top. The vertical
slice of each row represents one of the 64 channels. Look-
ing at a single row shows the clustering decision for a single

timestep, and looking at a vertical column shows all cluster-
ing decisions over the lifetime of the experiment for a single
channel.

In this experiment, we expect three classes of clusters to
emerge, but this does not necessarily mean we will only see
three clusters. All channels from, say, the 5× group do not
need to all be in the same cluster. However, it is imperative
that clusters emerge which have only channels from the 5×
group, and the same for the other performance groups. If
this is not the case, then channels will either have too much
or too little work.

We can see this behavior in the heatmap in Figure 12;
even though more three clusters emerge, there are only three
classes of clusters in the end. Comparing the heatmap with
the allocation weight graph, we can also see that the 100×
clusters end up with a minimum allocation weight; the 5×
clusters end up with an allocation weight no greater than 2;
and the unloaded clusters end up with an allocation weight
around 4.

7. RELATED WORK
The literature on load balancing in computer science is

vast. It has been studied for topics as diverse as clustered
web farms [21], cloud [19], grid [15], disk accesses in video-
on-demand systems [22], and disks in general [6]. The con-
straints of a distributed, streaming system make our prob-
lem unique: there is an ordered merge and no global infor-
mation.

Other distributed streaming systems do not perform dy-
namic load balancing for their data parallel regions in a man-
ner similar to our scheme. The work of Nasir et al. [17]
explores load balancing techniques in Storm, but it focused
on the problem of data skew. Spark Streaming implements
streaming through micro-batches of data, and uses delay-
scheduling [24] to determine when and where to launch in-
dividual micro-batches based on data locality. Our scheme
focuses on stateless streaming operations, where data local-
ity is not a consideration, with strict ordering constraints.

Gordon et al. [11] present a compiler for StreamIt that
produces a program with a good speedup on a multicore
processor. By relying on the synchronous dataflow model,
their techniques can take into account instruction-level infor-
mation to target their application to the processor. In con-
trast, our streaming system is distributed and asynchronous:
we have no knowledge of the processing requirements of the
PEs; we do not know the processing capabilities of the hosts;
and we do not know whether the hosts chosen for the PEs
are shared.

The flexible filters work by Collins and Carloni [4] is a
load-balancing scheme for working within a single multipro-
cessor. They create alternates for filters that can be bot-
tlenecks. A splitter checks to see whether the destination
filter’s queue is full, and if so, sends the next data token to
a designated alternate. By clever placement of alternates,
they can achieve high throughput. Our approach is in the
same spirit, but a direct application to the distributed sce-
nario would be similar to the failed re-routing approach we
describe in Section 4.4. In a distributed environment, by
the time a queue is full, it is too late to make good load
balancing decisions.

Xia et al. [23] devise a distributed algorithm for dealing
with distributed resource management in a streaming sys-
tem. Their scheme considers load balancing constraints to

a degree, though their level of control is based on admission
control and coarse-grained data routing. Their paper is the-
oretical in nature, not implemented on an actual streaming
system.

8. CONCLUSIONS
We have presented a load balanacing scheme based on a

novel metric, the blocking rate of the underlying data trans-
port layer. We use this metric to construct functions for each
connection, and minimize the maximum value of those func-
tions to arrive at a balanced load distribution. Our model
was implemented and tested in a real distributed streaming
system.

Thus far we have concentrated only on the local version of
our overall cluster load balancing problem. That is, we have
considered a single parallel region of a single application,
assuming that the parallel PEs have already been assigned
to hosts. We have certainly seen that our scheme provides
leverage for load balancing these specific hosts. But what
about the cluster as a whole? How do we encourage this
leverage across as many hosts as possible? Our future work
will consider cluster-wide load balancing by assigning the
parallel PE workers to many nodes. With many parallel
regions, there will be flexibility in the whole system to adapt
to changes.

9. REFERENCES
[1] D. Abadi, Y. Ahmad, M. Balazinska, U. Çetintemel,

M. Cherniack, J.-H. Hwang, W. Lindner, A. Maskey,
A. Rasin, E. Ryvkina, N. Tatbul, Y. Xing, and
S. Zdonik. The design of the Borealis stream
processing engine. 2005.

[2] C. Aggarwal and C. Reddy. Data Clustering:
Algorithms and Applications. CRC Press, 2014.

[3] T. Akidau, R. Bradshaw, C. Chambers, S. Chernyak,
R. J. Fernández-Moctezuma, R. Lax, S. McVeety,
D. Mills, F. Perry, E. Schmidt, and S. Whittle. The
dataflow model: A practical approach to balancing
correctness, latency, and cost in massive-scale,
unbounded, out-of-order data processing. Proc. VLDB
Endow., 8(12):1792–1803, Aug. 2015.

[4] R. L. Collins and L. P. Carloni. Flexible filters: Load
balancing through backpressure for stream programs.
In International Conference on Embedded Software,
Oct. 2009.

[5] Y. Diao, C. Wu, J. Hellerstein, A. Storm, M. Surendra,
S. Lightstone, S. Parekh, C. Garcia-Arellano,
M. Caroll, L. Chu, and J. Colaco. Comparative studies
of load balancing with control and optimization
techniques. In American Control Conference, 2005.

[6] L. W. Dowdy and D. V. Foster. Comparative models
of the file assignment problem. ACM Comput. Surv.,
14(2):287–313, June 1982.

[7] B. Everitt and D. Howell. Encyclopedia of statistics in
behavioral science. J. Wiley, 2005.

[8] B. Fox. Discrete optimization via marginal analysis.
Management Science, 13:210–216, 1966.

[9] G. Frederickson and D. Johnson. Generalized selection
and ranking. In Proceedings of the Symposium on
Theory of Computing, pages 420–428, 1980.

[10] Z. Galil and N. Megiddo. A fast selection algorithm

and the problem of optimum distribution of effort.
Journal of the ACM, 26(1):58–64, 1979.

[11] M. I. Gordon, W. Thies, and S. Amarasinghe.
Exploiting coarse-grained task, data, and pipeline
parallelism in stream programs. In Architectural
Support for Programming Languages and Operating
Systems, Oct. 2006.

[12] M. Hirzel, S. Schneider, and B. Gedik. SPL: An
extensible language for distributed stream processing.
Research Report RC25486, IBM, July 2014.

[13] T. Ibaraki and N. Katoh. Resource Allocation
Problems. MIT Press, 1988.

[14] IBM Streams. http://ibmstreams.github.io/.
Retrieved September, 2015.

[15] Y. Li and Z. Lan. A survey of load balancing in grid
computing. In Proceedings of the First International
Conference on Computational and Information
Science, CIS’04, pages 280–285, Berlin, Heidelberg,
2004. Springer-Verlag.

[16] D. G. Murray, F. McSherry, R. Isaacs, M. Isard,
P. Barham, and M. Abadi. Naiad: A timely dataflow
system. In Symposium on Operating Systems
Principles (SOSP), pages 439–455, 2013.

[17] M. A. U. Nasir, G. D. F. Morales, D. Garcia-Soriano,
N. Kourtellis, and M. Serafini. The power of both
choices: Practical load balancing for distributed
stream processing engines. In International Conference
on Data Engineering, 2015.

[18] S. Schneider, M. Hirzel, B. Gedik, and K.-L. Wu.
Auto-parallelizing stateful distributed streaming
applications. In Parallel Architectures and
Compilation Techniques (PACT), pages 53–64, 2012.

[19] S. Shaw and A. Singh. A Survey on Scheduling and
Load Balancing Techniques in Cloud Computing
Environment. In International Conference on
Computer and Communication Technology, 2014.

[20] A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy,
J. M. Patel, S. Kulkarni, J. Jackson, K. Gade, M. Fu,
J. Donham, N. Bhagat, S. Mittal, and D. Ryaboy.
Storm@twitter. In Proceedings of the 2014 ACM
SIGMOD International Conference on Management of
Data, SIGMOD ’14, pages 147–156, New York, NY,
USA, 2014. ACM.

[21] J. Wolf and P. Yu. Load balancing for clustered web
farms. ACM Transactions on Internet Technology,
28(4):11–13, 2001.

[22] J. Wolf, P. Yu, and H. Shachnai. Disk load balancing
for video-on-demand systems. ACM Multimedia
Systems Journal, 5(6):358–370, 1997.

[23] C. Xia, D. Towsley, and C. Zhang. Distributed
resource management and admission control of stream
processing systems with max utility. In International
Conference on Distributed Computing Systems, 2007.

[24] M. Zaharia, D. Borthakur, J. Sen Sarma,
K. Elmeleegy, S. Shenker, and I. Stoica. Delay
scheduling: A simple technique for achieving locality
and fairness in cluster scheduling. In Proceedings of
the 5th European Conference on Computer Systems,
EuroSys ’10, pages 265–278, New York, NY, USA,
2010. ACM.

[25] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and
I. Stoica. Discretized streams: Fault-tolerant

streaming computation at scale. In Proceedings of the
Twenty-Fourth ACM Symposium on Operating
Systems Principles, SOSP ’13, pages 423–438, New
York, NY, USA, 2013. ACM.

http://ibmstreams.github.io/

	Introduction
	Distributed Stream Computing
	Blocking time and rate
	Design Challenges
	In-order merges
	Drafting
	Per-connection throughput
	Blocking is a rare event

	Local Load Balancing
	Blocking Rate Function
	Load Balancing Optimization
	Clustering
	Encouraging Exploration

	Experimental Results
	3 PEs with load imbalance
	3 PEs with no load imbalance
	Varying PEs with medium-cost tuples
	Varying PEs with heavy-cost tuples
	PEs on heterogeneous hosts
	Clustering

	Related Work
	Conclusions
	References

