
RC25577 (WAT1511-047) November 16, 2015
Computer Science

Research Division
Almaden – Austin – Beijing – Brazil – Cambridge – Dublin – Haifa – India – Kenya – Melbourne – T.J. Watson – Tokyo – Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report for
early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After
outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties). Many reports are available at http://domino.watson.ibm.com/library/CyberDig.nsf/home.

IBM Research Report

Enhancing Performance and Robustness of ILU
Preconditioners through Blocking and Selective Transposition

Anshul Gupta
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598 USA

ENHANCING PERFORMANCE AND ROBUSTNESS OF ILU

PRECONDITIONERS THROUGH BLOCKING AND SELECTIVE

TRANSPOSITION

ANSHUL GUPTA∗

Abstract. Incomplete factorization is one of the most effective general-purpose preconditioning
methods for Krylov subspace methods for solving large sparse systems of linear equations. Two
techniques for enhancing the robustness and performance of incomplete LU factorization for sparse
unsymmetric systems are described.

A block incomplete factorization algorithm for incomplete factorization based on the Crout vari-
ation of dense LU factorization is presented. The algorithm is suitable for incorporating threshold-
based dropping as well as partial pivoting. It is shown that blocking has a three-pronged impact:
it speeds up the computation of incomplete factors and the solution of the associated triangular
systems, it permits denser and more robust factors to be computed economically, and it permits a
trade-off with the restart parameter of GMRES to further improve the overall speed and robustness.

A highly effective heuristic for improving the quality of preconditioning and subsequent con-
vergence of GMRES is presented. The choice of the Crout variant as the underlying factorization
algorithm enables efficient implementation of this heuristic, which has the potential to improve both
incomplete and complete sparse LU factorization of matrices that require pivoting for numerical
stability.

Key words. sparse solvers, iterative methods, preconditioning, incomplete factorization, GM-
RES

AMS subject classifications. 65F10, 65F50

1. Introduction. This paper presents two highly effective techniques for en-
hancing both the performance and robustness of threshold-based incomplete LU (ILU)
factorization.

It is a well known fact that the nature of computations in a typical iterative
method for solving sparse linear systems results in poor CPU-utilization on cache-
based microprocessors. In contrast, static symbolic factorization and the use of su-
pernodal [17] and multifrontal [14, 37] techniques typically enable highly efficient
implementations of direct methods. The problem of poor CPU-utilization in iterative
methods relative to the CPU-utilization of a well-implemented direct solver is evident
in varying degrees for almost all preconditioners [18]. In the context of incomplete fac-
torization, which has long been used to precondition Krylov subspace methods [1, 43],
the primary culprits are indirect addressing and lack of spatial and temporal locality
during both the preconditioner generation and solution phases. As a result, incom-
plete factorization runs at a fraction of the speed of complete factorization [26], and
for many problems, a direct solution turns out to be faster than an iterative solution,
even when complete factorization involves significantly more memory and floating-
point operations than incomplete factorization [18, 19, 20]. Conventional methods to
compute an incomplete factor much smaller than its complete counterpart can cost
as much or more in run time as complete factorization. Therefore, only very sparse
incomplete factors can be practically computed, and the resulting preconditioning is
often not effective for hard problems. Performing sparse operations on dense blocks
instead of individual elements during incomplete factorization and the solution phases
can potentially close the performance gap with complete factorization.

∗IBM T.J. Watson Research Center, Yorktown Heights, NY 10598 (anshul@us.ibm.com).

1

2 ANSHUL GUPTA

We present a practical algorithm that uses either natural or induced blocking
of rows and columns to significantly increase the speed of incomplete factorization.
This algorithm, first presented at the 2012 SIAM Conference on Applied Linear Alge-
bra [21], is based on the Crout variation of LU factorization and supports threshold-
based dropping for fill reduction as well as partial pivoting for numerical stability.
Li et al. [34] proposed a Crout version of ILU factorization that they refer to as
ILUC, and highlighted several advantages of the approach over traditional row- or
column-based ILU. Our block variant, which we will henceforth refer to as BILUC
(block ILU in Crout formulation), follows a similar approach, but incorporates several
enhancements described in Section 3.

Blocked incomplete factorization has several benefits other than the obvious time
saving in the preconditioner set-up phase of the solution process. First, denser and
more robust factors, which would have been impractical to compute with conventional
methods, can now be computed economically. Secondly, blocking in the factors im-
proves spatial and temporal locality, and therefore the computation speed, when the
preconditioner is used to solve triangular systems during the iterative phase. Finally,
the ability to practically compute faster and denser incomplete factors results in a
somewhat less obvious way to further improve the speed and robustness of the solu-
tion process. Restarted GMRES [44] is often the algorithm of choice for iteratively
solving large sparse unsymmetric linear system arising in many applications. The
algorithm is typically referred to as GMRES(m), where m is the restart parameter.
The algorithm restricts the size of the subspace to m. After m iterations, it restarts
while treating the residual after m iterations as the initial residual. This requires a
minimum of (m + 2)n words of storage for solving an n × n system. Although the
exact relationship between m and the overall convergence rate of GMRES(m) is not
well-understood and a reliable a priori estimator for the optimum value of m for a
given system does not exist, it is generally observed than increasing m up to a point
tends to improve convergence. If the density of the preconditioner can be increased
without an excessive run time penalty, then a combination of high-density ILU and
GMRES(m) with a small m can be used instead of a combination of low-density ILU
and GMRES(m) with a large m, without changing the overall memory footprint. On
a diverse suite of test problems, we observed that a value in the range of 30 to 40
appeared to be a good choice for m. Our experiments seem to indicate that it is better
to use the memory in the ILU preconditioner that increasing m beyond this range.
On the other hand, if memory is scarce, then a sparse preconditioner is preferable to
reducing m below this range. Such a trade-off between the value of m and the density
of the ILU preconditioner is possible only if the latter can be increased without undue
increase in the time to compute the preconditioner. We show that this is enabled
by blocking and would not be possible with conventional row- or column-based ILU
factorization.

Dense blocks have been used successfully in the past [4, 15, 28, 31, 32, 35, 41] to
enhance the performance of incomplete factorization preconditioners. However, with
a few exceptions [35, 41], these block algorithms have been applied to relatively sim-
pler level-based incomplete factorization of matrices that have a naturally occurring
block structure. The BILUC algorithm employs the more powerful threshold-based
dropping, and not only detects and uses dense blocks in matrices in which such blocks
occur naturally, but is also able to realize the benefits of blocking for those matri-
ces that have poor or no block structure to begin with. The algorithm successfully
employs classical complete factorization techniques of partial pivoting within column

ENHANCING PERFORMANCE AND ROBUSTNESS OF ILU PRECONDITIONERS 3

and row blocks (supernodes) [38] and delayed pivoting for numerical accuracy. It
uses a combination of graph-partitioning for parallelism and nested-dissection for fill
reduction. The BILUC algorithm is most similar to Li and Shao’s [35] left-looking
serial algorithm, which itself is similar to our block incomplete Cholesky factorization
algorithm [26].

In addition to using blocking to improve the speed of ILU factorization, we also
introduce an effective and reliable heuristic to reduce extra fill in due to pivoting and
to improve convergence. Note that the solution x to a system of linear equations
of the form Ax = b can be obtained by either factoring A as L.U , where L is unit
lower triangular and U is upper triangular, or by factoring AT into UT .LT , where U
is unit upper triangular and L is lower triangular. Although there is some numerical
advantage to using A = LU factorization (because the first of the two solution phases
uses a unit triangular matrix), often the quality of AT = UTLT factorization can be
vastly superior, making it more attractive. When A is sparse, there are two merit
criteria for pivoting quality—pivot growth and extra fill in due to pivoting. The
choice of factorization; i.e., whether A or AT is factored effects both. In fact, when
factorization is incomplete and is used for preconditioning, the impact is magnified
because a poorer preconditioner may increase the cost of each iteration and result
in an increase in the number of iterations. We show that it is possible to make a
reliable and inexpensive a priori determination of whether A = LU or AT = UTLT

factorization is likely to be superior. The Crout formulation, in addition to its other
benefits, permits an implementation that can seamlessly switch between factoring A
or AT , partly because U and L are treated identically.

In the paper, wherever practical and useful, we present experimental results on
matrices derived from real applications to demonstrate the benefits of the newly intro-
duced techniques. All experiments were performed on four cores of a 4.2 GHz Power
6 system running AIX with 96 GB of memory. In all our experiments, the right-hand
side vector b of the sparse system Ax = b to be solved is set such that the solution x is
all ones. A maximum of 2000 inner iterations of restarted GMRES [44] were permit-
ted in any experiment, and were terminated when the relative residual norm dropped
below 10−8. This choice of threshold for the residual norm was based on the largest
value that resulted in a reasonable (typically, in the range of 10−3 to 10−6) error norm
for the problems in our test suite. Our GMRES implementation adds approximate
eigenvectors corresponding to a few smallest eigenvalues of the matrix to the subspace
in order to mitigate the impact of restarting on convergence [39]. The software im-
plementation is a part of the Watson Sparse Matrix Package (WSMP) library [25],
whose object code and documentation is available for testing and benchmarking at
http://www.research.ibm.com/projects/wsmp.

The remainder of the paper is organized as follows. Section 2 contains an overview
of the entire BILUC-based preconditioning scheme, including the preprocessing steps
that must precede the incomplete factorization. In Section 3, we describe the BILUC
algorithm in detail and present some experimental results to demonstrate the effec-
tiveness of the blocking scheme. In Section 4, we discuss a reasonably effective way
of boosting the robustness of BILUC (or any ILU) preconditioner, and present exper-
imental results to demonstrate the effectiveness of the heuristic. Section 5 contains
concluding remarks.

2. Overview of Preconditioning Scheme. Figure 2.1 gives an overview of the
shared-address-space parallel preconditioning scheme based on BILUC factorization.
Note that the parallelization strategy is aimed at exploiting only a moderate degree of

4 ANSHUL GUPTA

No

Yes

Partition graph into p parts and
perform symmetric permutation

Yes

Perform fill−reducing ordering
in each partition

No

Preprocessing Numerical Factorization

Input Coefficient Matrix

Is sufficiently

maximum weight bipartite matching

BILUC factorization
in independent subtrees

Construct Schur complement
matrix corresponding to

separator vertices

Sparsify Schur complement

Complete factorization of
sparsified Schur complement

Finish

diagonally dominant?

2

3

7

6

5
Unsymmetric permutation based on

Is number of threads (p) > 1

4

1

Fig. 2.1. An overview of BILUC-based preconditioning

parallelism, suitable for up to 8–16 cores, depending on the problem size. A scalable
distributed-address-space parallel ILU-based preconditioning would require additional
algorithmic techniques [30, 33] and is being pursued as a continuation of the work
reported in this paper. Therefore, parallelism is not the primary concern in this
paper, and after the overview, the remainder of the paper will focus on enhancing the
robustness and performance of BILUC factorization. However, this mildly parallel
implementation will still be relevant in a highly-parallel distributed scenario because
we expect this algorithm to be used in each of the multithreaded MPI processes.

The overall solution process consists of three major phases, namely, preprocess-
ing, numerical factorization, and solution. We use standard preconditioned Krylov
subspace solvers such as GMRES [44], BiCGStab [46], and TFQMR [16]. In this
paper, we primarily focus on preprocessing and preconditioner generation.

2.1. Preprocessing. The preprocessing phase consists of multiple steps, as
shown in Figure 2.1.

First, if the matrix has poor diagonal dominance, then it is subject to an unsym-
metric row or column permutation to improve its diagonal dominance. This step uses
maximum weight bipartite matching [12, 27] to compute a permutation of rows or
columns of the matrix to maximize the product of its diagonal entries.

ENHANCING PERFORMANCE AND ROBUSTNESS OF ILU PRECONDITIONERS 5

Next, an undirected graph of the matrix is constructed and partitioned [23] into
p parts, where p is the number of parallel threads being used. The partitioning seeks
to divide the graph into p subgraphs of nearly equal size while minimizing the total
number of edges crossing the partition boundaries. This enables each thread to in-
dependently factor block-diagonal submatrices corresponding to each partition. Sim-
ilarly, portions of forward and backward substitutions corresponding to the interior
vertices of the partitions can be performed independently by the threads when apply-
ing the preconditioner withing the chosen Krylov subspace solver. The partitioning is
also useful for minimizing the interaction among threads during sparse matrix-vector
multiplication steps of the solver.

After partitioning the overall matrix, a fill reducing ordering is computed for each
of the submatrices corresponding to the p partitions. This step can be performed
independently, and in parallel, for each submatrix. Reverse Cuthill-McKee (RCM) [6,
11] ordering is used if the incomplete factors are expected to be relatively sparse
(based on the dropping criteria); otherwise, nested dissection [17, 23] ordering is
used. The choice of ordering is based on our and others’ [13] observation that RCM
generally performs better with low fill in and that nested dissection performs better
with relatively higher fill in.

Note that the initial coefficient matrix may undergo up to three permutations be-
fore numerical factorization. The first of these is a possible unsymmetric permutation
to improve diagonal dominance. Next, a symmetric permutation is induced by graph
partitioning for enhancing parallelism, which is performed if more than one thread is
used. Finally, the portion of the graph to be factored by each thread is reordered for
fill reduction via another symmetric permutation. During the preprocessing phase, we
construct single composite row and column permutation vectors that are applied to
the right-hand side (RHS) and solution vectors in the solution phase. While the sec-
ond and the third permutations depend solely on the sparsity pattern of the matrix,
the first step of unsymmetric permutation to enhance diagonal dominance depends
on the numerical values of the nonzero entries in it. This permutation, if performed,
affects the two symmetric permutations that follow.

After all the permutations have been applied to the input matrix, the final step of
the preprocessing phase is to construct elimination trees [36] from the the structures
of Bi + BT

i , where Bi is the i-th diagonal block corresponding to the i-th domain
(1 ≤ i ≤ p) of the coefficient matrix. An elimination tree defines the task and data
dependencies in the factorization process, and along with symbolic factorization [17],
its construction is a critical preprocessing step in complete factorization. In the con-
text of incomplete factorization with threshold-based dropping, an a priori symbolic
factorization to determine the location and number of nonzeros in the factor matrices
is not performed. It is not useful because only a small fraction of nonzeros entries
are saved and the location of discarded and saved entries is unpredictable before the
actual factorization.

Figure 2.2 shows the correspondence between the partitioned (symmetrized) graph,
the elimination tree, and the reordered matrix for the case of 4 threads. Note that in
the case of a single thread, there would be only one elimination tree corresponding to
the entire matrix.

2.2. Numerical Factorization. The numerical factorization phase has two
main steps. The first step employs the BILUC algorithm independently on each
of the domains that the graph corresponding to the coefficient matrix has been par-
titioned into during the preprocessing phase. Each thread follows its own elimination

6 ANSHUL GUPTA

64

1
4

5

6

7

8

92

B1

B2

B3

B4

S

Elimination tree for
block B1

1 2 4 5

3 6
7

8

9

3
B1

B2

B3

B4

S

1

10

19

28

37

Fig. 2.2. Correspondence between the partitioned (symmetrized) graph, the elimination tree,
and the reordered matrix.

tree to factor its diagonal block using the BILUC algorithm, which is described in
detail in Section 3.

After all the rows and columns corresponding to the interior vertices of the parti-
tions are factored in the first step, a Schur complement matrix is formed corresponding
to the remaining graph vertices that have edges traversing partition boundaries. This
Schur complement (matrix S in Figure 2.2) is then further sparsified through a round
of dropping, and the sparsified matrix is factored using a parallel direct solver [24].
The sparsification of the Schur complement matrix is necessary because it is factored
by a direct solver through complete LU factorization without any further dropping.
This sparsification can use the same drop tolerance as the preceding BILUC phase;
however, we have observed that often a smaller threshold results in better precondi-
tioners with only a slight increase in memory use. WSMP allows the user to define this
threshold. We used half of the drop tolerance of the BILUC phase in our experiments,
which is the WSMP default.

Note that if a single thread is used, then the entire incomplete factorization is
performed in the first step by the BILUC algorithm. In this case, there is no Schur
complement computation or the second factorization step. The proportion of the
matrix factored in the second step increases as the number of threads increases because
relatively more vertices of the graph belong to separators than to interior portion
of the partitions. The second step, which consists of complete factorization of the
sparsified Schur complement, does not introduce a serial component to preconditioner
computation. This factorization step, as well as the triangular solutions with respect
to this factorization, are also multithreaded. Thus, the entire numerical factorization
phase is parallel. However, the two factorization steps do have a synchronization point
between them when the Schur complement matrix is assembled. The computation-

ENHANCING PERFORMANCE AND ROBUSTNESS OF ILU PRECONDITIONERS 7

intensive updates that contribute the numerical values to the Schur complement from
each of the domains are still computed independently in parallel; only their assembly
and sparsification to construct the input data structures for the second step are serial.
Nevertheless, as noted earlier, this approach is suitable for a small or moderate number
of threads operating in a shared address space. This is because a larger portion of
the matrix is presparsified and the factored completely as the number of threads
increases. This results in an increase in the overall number of entries that are stored,
while reducing effectiveness of the factors as preconditioner.

3. The BILUC Algorithm. The BILUC algorithm is at the heart of our over-
all incomplete factorization and solution strategy. While BILUC shares the Crout
formulation with Li et al.’s ILUC algorithm [34], most of its key features are differ-
ent. BILUC can be expressed as a recursive algorithm that starts at the root of an
elimination tree. The elimination tree serves as the task- and data-dependency graph
for the computation. In the parallel case, each thread executes the algorithm starting
at the root of the subtree assigned to it; in the serial case, there is only one tree. In
the remainder of this section, we will drop the distinction between the subtree of a
partition and tree of the whole matrix. Instead, we will discuss the algorithm in the
context of a generic matrix A and its elimination tree.

Strictly speaking, for a matrix A with an unsymmetric structure, the task- and
data-dependency graphs are directed acyclic graphs (DAGs) [22]. However, all the
dependencies can be captured by using the dependency graphs corresponding to the
structure of A + AT . Such a dependency graph is the elimination tree [36]. Using
a tree adds artificial dependencies, and in theory, may be less efficient than using
a minimal dependency graph. On the other hand, the added simplicity and the
reduction in bookkeeping costs afforded by the elimination tree more than make up for
using a suboptimal dependency graph in the case of sparse incomplete factorization,
where the total amount of computation is significantly smaller than in complete LU
factorization.

3.1. Block data structures. The BILUC algorithm uses two types of blocks
that consist of contiguous rows and columns corresponding to straight portions of
the elimination tree. In these straight portions, the parents have one child each, for
example, indices 7, 8, and 9 in Figure 2.2. If a vertex has no child, then it is a leaf,
and when it has more than one child, then the tree branches. The two types of blocks
are assembly blocks and factor blocks. The assembly blocks consist of large sections
of straight portions of the elimination tree. Each assembly block typically consists of
multiple smaller factor blocks. Figure 3.1 illustrates assembly and factor blocks and
their relation to the elimination tree.

Although assembly and factor blocks consists of multiple vertices in straight por-
tions of the tree (and therefore, multiple consecutive matrix rows and columns), in
BILUC, we identify a block by its starting (smallest) index; i.e., block j refers to block
starting at index j. Therefore, in our implementation we store only the starting index
as the sole identifier of an assembly block, along with supplementary information such
as the size of the assembly block and the number and sizes of its constituent factor
blocks.

The size of the assembly blocks is user-defined. It is currently set to 40, but the
algorithm chooses a value close to 40 for each assembly block such that it contains
a whole number of factor blocks. Figure 3.1 shows one such assembly block and the
typical BILUC dense data-structure corresponding to it in detail. This block of size
t starts at row/column index j. The rows and columns of this block correspond to

8 ANSHUL GUPTA

j

 kU’
 F

A
jL

A
jU

F
kU

kL
F

LA
jI

UA
jI

F
k

j k k+s−1 j+t−1

t

k k+s−1

l − t

l − s

u − t

j

j+t−1

k

k+s−1

Assembly
Blocks

F
ac

to
r

B
lo

ck
s

F
kL’

(b) Assembly and Factor Block data−structures

Primary Factor Blocks

Reduced
Factor
Block

(a) Section of Elimination Tree

Factor and
drop

A

u − s

j

F
k

A

Fig. 3.1. A section of an elimination tree and related assembly and factor blocks.

contiguous vertices j, j + 1, . . . , j + t − 1 in the elimination tree. In this assembly
block, lAj is the number of nonzero entries in column j after the block has been fully
assembled. This assembly requires contribution from factor blocks containing rows
and columns with indices smaller than j. Note that due to sparsity, only a subset
of such rows and columns will contribute updates to this assembly block. Similarly,
uA
j is number of nonzeros in row j. The nonzeros in an assembly block can have

arbitrary indices greater than j in the partially factored coefficient matrix, but the
assembly blocks are stored in two dense matrices: (1) lAj × t matrix LA

j with columns

j, j+1, . . . , j+t−1, and (2) t×uA
j matrix UA

j with rows j, j+1, . . . , j+t−1. Note that

the t× t diagonal block is a part of both LA
j and UA

j . In the actual implementation,

this duplication is avoided by omitting this block from UA
j . Furthermore, UA

j is stored
in its transposed form in the actual implementation so that elements in a row reside
in contiguous memory locations. In addition to LA

j and UA
j , the assembly block data

structure includes two integer arrays, IAL
j and IAU

j of sizes lAj and uA
j , respectively.

These integer arrays store the global indices of the original matrix corresponding to
each row of LA

j and each column of UA
j .

The factor blocks are smaller subblocks of the assembly blocks. The factor blocks
can either correspond to natural blocks in the coefficient matrix, or can be carved
out of assembly blocks artificially. Some applications yield matrices whose adjacency
graphs have natural cliques. The clique vertices are assigned consecutive indices.
For such matrices, each straight portion of the elimination tree would consist of a

ENHANCING PERFORMANCE AND ROBUSTNESS OF ILU PRECONDITIONERS 9

Data structure Symbol Starting Length Width Index
index array

Assembly block (L part) LA
j j lAj t IAL

j

Assembly block (U part) UA
j j uA

j t IAU
j

Primary factor block (L part) LF
k k lAj + j − k s IAL

j

Primary factor block (U part) UF
k k uA

j + j − k s IAU
j

Reduced factor block (L part) L′F
k k lFk s IFL

k

Reduced factor block (U part) U ′F
k k uF

k s IFU
k

Table 3.1

BILUC data structures and the conventions used for their representation in this paper.

whole number of sets of vertices corresponding to these cliques. The groups of con-
secutive rows and columns corresponding to the cliques would then serve as natural
factor blocks. For matrices without natural cliques, each assembly block is artificially
partitioned into smaller factor blocks of a user-specified size.

Figure 3.1(b) shows one such factor block, its relationship with its assembly block,
and the typical BILUC dense data-structures corresponding to typical assembly and
factor blocks. The block shown in the figure is of size s and corresponds to row and
column indices k, k + 1, . . . , k + s − 1 of the coefficient matrix. The primary factor
block is a part of the assembly block. It consists of two dense matrices, (lAj + j−k)×s

matrix LF
k with columns k, k+ 1, . . . , k+ s− 1, and s× (uA

j + j − k) matrix UF
k with

rows k, k + 1, . . . , k + s− 1. LF
k and UF

k are submatrices of LA
j and UA

j , respectively.

After factorization, entries in the primary factor block are dropped (Section 3.3)
based on the dropping criteria, and the result is a reduced factor block. In this reduced
factor block, lFk is the number of nonzero entries remaining in column k after the
primary factor block has been factored and rows of LF

k with small entries have been
dropped. Similarly, uF

k is the number of nonzero entries remaining in row k after
factorization and dropping in UF

k . As a result of dropping, lFk ≤ lAj + j − k and

uF
k ≤ uA

j + j − k. Like the assembly and primary factor blocks, the resulting reduced

factor block is stored in two dense matrices: (1) lFk × s matrix L′F
k with columns

k, k + 1, . . . , k + s − 1, and (2) s × uF
k matrix U ′F

k with rows k, k + 1, . . . , k + s − 1.
In the implementation, the transpose of U ′F

k is stored. Accompanying integer arrays,
IFL
k and IFU

k of sizes lFk and uF
k , respectively, store the global indices in the original

matrix corresponding to each row of L′F
k and each column of U ′F

k .

Table 3.1 summarizes the key BILUC data structures and the convention used in
this paper to denote their generic sizes and indices. Note that the table’s convention
applies to the case when factor block k is a part of assembly block j. The lengths
and the index arrays of the primary factor blocks given in this table are not valid for
unrelated assembly and factor blocks.

3.2. Incomplete factorization with pivoting. The I arrays described in Sec-
tion 3.1 store the mapping between the indices of the global sparse coefficient matrix
and the contiguous indices of the dense assembly and factor block matrices. There-
fore, entries in the assembly and factor blocks can be referred to by their local indices
during the factorization and dropping steps. Figure 3.2 shows the assembly and factor
blocks corresponding to Figure 3.1(b) with local indices only.

LU factorization within an assembly block proceeds in a manner very similar to
that in complete supernodal [38] factorization. Partial pivoting is performed based on
a user-defined pivot threshold α. For most matrices that are not strictly diagonally

10 ANSHUL GUPTA

U
A

A
jL

 F
 kU’

0 s−1

Factor block
Reduced

F
kL’

FU
kI

kI
FL

Pivot
search
region

Factor and Drop

0 t−1

Previously factored

Just factored

To be factored

0

t−1

Primary factor blocks

Assembly block

F

k−j

kL

kU
F

j

Fig. 3.2. A typical assembly and factor block in the BILUC algorithm.

dominant, pivoting plays an important role in maintaining stability of the ILU process,
and in many cases, may be necessary even if a complete LU factorization is stable
without pivoting [5].

When attempting to factor column i (0 ≤ i < t) in an assembly block, the
BILUC algorithm scans column i of LA

j to determine g = maxi≤m<t |LA
j (m, i)| and

h = maxt≤m<lAj
|LA

j (m, i)|. If the maximum magnitude g in column i within the

pivot block is greater than or equal to α times the maximum magnitude h beyond
the pivot block (i.e., g > αh), then a suitable pivot has been found in column i.
The pivot element is brought to the diagonal position via a row interchange and the
factorization process moves to column i + 1. If a suitable pivot is not found within
the pivot block in column i, then subsequent columns are searched. If a suitable pivot
element is found, then it is brought to the diagonal position LA

j (i, i) via a column
and a row interchange. It is possible to reach a stage where no suitable pivots can be
found within the assembly block. In this situation, the unfactored rows and columns
of the current assembly block are merged into its parent assembly block. Such delayed
pivoting is commonly used in complete multifrontal factorization, and increases the
number of rows and columns eligible to contribute the pivot element. The reason is
that some rows of LA

j and columns of UA
j with indices greater than or equal to j + t

would become part of the pivot block in the parent assembly block. Any row-column
pair can potentially be delayed until it reaches the root of the elimination tree, where
all elements are eligible pivots.

Excessive delayed pivoting can increase fill in and the computation cost of fac-
torization. A smaller pivot threshold α can reduce the amount of delayed pivoting
at the cost of pivot growth. In WSMP’s BILUC implementation, we use two piv-

ENHANCING PERFORMANCE AND ROBUSTNESS OF ILU PRECONDITIONERS 11

oting thresholds in order to strike a balance between minimizing growth and fill in
due to delayed pivoting. A secondary pivot threshold β is defined to be equal to
0.1α. The pivot search within the pivot block proceeds as described earlier with the
threshold α. However, while searching for the first pivot that satisfies the α threshold,
the algorithm keeps track of the largest magnitude element encountered in the pivot
block that satisfies the relaxed β threshold. If the end of the pivot block is reached
without any element satisfying the α threshold, then the largest entry satisfying the
β threshold is used as pivot, if such an entry is encountered at all. The algorithm
resorts to delayed pivoting only if the β threshold too cannot be satisfied within the
current pivot block. In our experiments, we observed that the fill in resulting from
this dual threshold pivoting strategy was close to the fill in when only β was used as
a single pivoting threshold. However, the quality of the preconditioner with the dual
threshold preconditioner was significantly better, and was only slightly worse than in
the case when only α was used as a single threshold.

Factorization in an assembly block takes place in units of factor blocks. When
a complete primary factor block is factored, then it undergoes sparsification via the
dropping strategy discussed in Section 3.3. New column and row index sets IFL and
IFU , which are subsets of the corresponding IAL and IAU , respectively, are built.
Finally, the data structure for the reduced is stored for future updates and for use
in the preconditioning steps of the iterative solver. After all the factor blocks in
an assembly block are factored and any delayed pivots are merged with the parent
assembly block, the memory associated with the current assembly block is released.

3.3. Dropping and downdating. WSMP implements a dual dropping strategy
of the form introduced by Saad [42]. Two user-defined thresholds τ and γ are used.
Threshold τ determines which entries are dropped from the factor blocks based on
their magnitudes. Threshold γ is the desired fill factor; i.e., the BILUC algorithm
strives to keep the size of the incomplete factor close to γ times the number of nonzeros
in the original matrix.

The factorization process described in Section 3.2 is essentially the same as the one
used is used in WSMP’s general direct solver [24]. It is used in the BILUC algorithm
in conjunction with the dropping and downdating strategy described below.

After factoring the rows and columns corresponding to a factor block, the BILUC
algorithm performs a dropping and downdating step before moving on to the next
factor block in the same assembly block. The s × s diagonal block is kept intact.
Beyond the diagonal block, a drop score dscrL is assigned to each row of LF

k and
dscrU to each column of UF

k in the primary factor block. Specifically,

dscrL(i) =
1

s

∑

m=0,s−1

∣

∣LF
k (i,m)

∣

∣ , 0 ≤ i < lAj − (k − j) (3.1)

and

dscrU (i) =
1

s

∑

m=0,s−1

∣

∣

∣

∣

UF
k (m, i)

UF
k (m,m)

∣

∣

∣

∣

, 0 ≤ i < uA
j − (k − j). (3.2)

An entire row i of LF
k is dropped if dscrL(i) < τ . Similarly, an entire column i

of UF
k is dropped if dscrU (i) < τ . Essentially, rows and columns of primary factor

blocks are dropped if the average relative magnitude of these rows and columns is

12 ANSHUL GUPTA

below drop tolerance τ . Note that, for computing the contribution of an element of a
factored row or column to the drop score, we consider its magnitude relative to that
of the corresponding diagonal entry. Since factorization is performed column-wise,
each diagonal entry LF

k (m,m) in Equation 3.1 is 1; therefore, dscrL(i) is simply the
average magnitude of entries in row i of LF

k . On the other hand, dscrU (i) for column
i of UF

k is the average of the magnitude of UF
k (m, i)/UF

k (m,m) for 0 ≤ m < s.
Other dropping strategies have been used for incomplete factorization. These include
dropping based on the magnitude of an element relative to the 2-norm or∞-norm of its
column [42, 43], or dropping based on Munksgaard’s criterion [40]. We found dropping
based on magnitude relative to the corresponding diagonal entry to be slightly better
than the other two on an average for the problems in our test suite. The BILUC
algorithm is well-suited for incorporating dropping based on the growth of inverse of
triangular factors [2], and we plan to include that as an option in a future release.

After dropping rows and columns based on drop scores, the number of remaining
rows and columns in the primary factor block may still exceed γ times the number of
entries in row and column k of the original matrix. If this is the case, then additional
rows and columns with the smallest drop scores are dropped from LF

k and UF
k .

Note that even though factorization is performed in steps of factor blocks of size
s, the pivot search spans the entire remaining assembly block, which typically extends
beyond the boundary of the current factor block . Therefore, columns of the assembly
block beyond the boundary of the current factor block must be updated after each
factorization step if entries from these columns are to serve as pivot candidates. Since
small entries are not dropped until the entire factor block is factored, the columns of
the assembly block beyond the boundary of the factor block may have been updated
by factor block entries that eventually end up being dropped. As Chow and Saad [5]
point out, dropping after the updates results in a higher error in the incomplete factors
than dropping before the updates. Therefore, BILUC needs to undo the effects of the
updates by the dropped entries.

In WSMP’s BILUC implementation, rows of LF
k and columns of UF

k that are
eligible for dropping are first tagged. Then, the portion of assembly block LA

j that

has been updated by the factor block LF
k is downdated by the rows of LF

k that are
tagged for dropping. This ensures that only those entries that are present in the
final incomplete factors effectively participate in the factorization process. After the
downdating step, the reduced factor block L′F

k is constructed from the primary factor
block LF

k by copying only the untagged rows from the latter to the former. The U ′F
k

matrix of the reduced factor block is constructed similarly from UF
k . Index arrays IFL

k

and IFU
k are constructed as subsets of IAL

j and IAU
j , respectively, containing indices

of the rows and columns of the primary factor block retained in the reduced factor
block. The reduced factor block comprising of L′F

k , U ′F
k , IFL

k , and IFU
k is stored as

part of the incomplete factor and for future updates of the ancestral supernodes.

Dropping entire rows and columns of factor blocks instead of individual entries
has an impact on both the size and the quality of the preconditioner because the drop
tolerance is applied inexactly in BILUC. We look at this impact experimentally in
Section 3.6. For the same drop tolerance τ , if fill factor γ is disregarded, then BILUC
results in slightly larger factors than ILUC without blocking. The reason for the extra
nonzeros in the incomplete factors is that the block columns may retain a substantial
number of zero or small entries, which are discarded in the non-blocked version of
incomplete factorization with the same drop tolerance. Small or zero entries, for
example, can be retained in a row of a supernode that has a drop score greater than

ENHANCING PERFORMANCE AND ROBUSTNESS OF ILU PRECONDITIONERS 13

expand
and
subtract

s+q−1

jL

jU
A

 F
 kU’

Contributing Reduced Factor Block
(starting at index k)

kI
FL

FU
kI

0

Ancestor Assembly Block (starting at index j, j > k)

mat−mult

mat−mult

expand and subtract

A

0

t−1

0 s−1

F
kL’

s

s s+r−1

Contribution Matrices

t−1

Fig. 3.3. A reduced factor block updating its first ancestor assembly block.

the drop tolerance due to a single large entry. Similarly, BILUC may drop entries
whose magnitude exceeds the drop tolerance by a factor up to s because a row or
column in a primary factor block with a single entry of magnitude sτ will be dropped
if all other entries in that row or column are zero.

3.4. Constructing assembly blocks. After the elimination tree is constructed,
the global indices of the pivot block of each assembly block are known; for example,
the pivot block of the assembly block shown in Figure 3.1 includes indices j, j +
1, . . . , j + t − 1. However, the sizes lAj and uA

j and the indices in IAL
j and IAU

j are
determined only when the assembly block is actually constructed, which happens just
before it is factored.

As mentioned previously, BILUC is a recursive algorithm. It follows the elimina-
tion tree in depth-first order. So far, we have described the various steps involved in
processing an assembly block; i.e., factorization with pivoting, dropping, downdating,
and constructing the reduced factor blocks. In this section, we describe how new
assembly blocks are constructed using previously computed reduced factor blocks.

If the starting index j of an assembly block is a leaf in the elimination tree, then
the assembly block simply consists of the corresponding rows and columns of the
coefficient matrix. The set of its row indices is simply the union of row indices of
columns j, j + 1, . . . , j + t − 1 of A and the set of its column indices is the union of
column indices of rows j, j + 1, . . . , j + t− 1 of A. All entries in LA

j and UA
j that are

not in A are filled with with zeros.
All assembly blocks that do not start at a leaf have a linked list of contributing

reduced factor blocks associated with them. At the beginning of the BILUC algorithm,
all lists are empty. When a reduced factor block starting at index k is created, then it
is placed in the linked list of the ancestor assembly block whose pivot block contains
the index v = min(IFL

k (s), IFU
k (s)). Here v is the smallest index greater than the

pivot indices of the current assembly block. Note that the first s entries IFL
k (0 : s−1)

and IFU
k (0 : s− 1) are simply k, k + 1, . . . , k + s− 1. The ancestor assembly block is

14 ANSHUL GUPTA

and
subtract

F
kL’

 F
 kU’

t−1

jL

jU
A

Contributing Reduced Factor Block
(starting at index k)

kI
FL

FU
kI

expand

Contribution Matrices

t−10

expand and subtract

mat−mult

mat−mult

Ancestor Assembly Block (starting at index j, j > k)

A

0

0 s−1

Fig. 3.4. A reduced factor block updating an ancestor assembly block.

the first assembly block that the entries in factor block k will update.

When the BILUC process reaches a non-leaf assembly block of size t starting
at index j, the first step is to construct IAL

j and IAU
j . IAL

j is the union of (a)
{j, j + 1, . . . , j + t − 1}, (b) all indices greater than or equal to j + t in columns
j, j + 1, . . . , j + t − 1 of A, and (c) all indices greater than or equal to j + t in IFL

k

for all k such that the reduced factor block starting at k is in the current assembly
block’s linked list. Similarly, IAU

j is the union of (a) {j, j + 1, . . . , j + t − 1}, (b) all
indices greater than or equal to j + t in rows j, j + 1, . . . , j + t − 1 of A, and (c) all
indices greater than or equal to j + t in IFU

k for all k such that the reduced factor
block starting at k is in the current assembly block’s linked list.

Once IAL
j and IAU

j have been constructed, the size of the assembly block is
known. It is then allocated, and populated with corresponding entries from A, while
the remaining entries are initialized to zeros. Next, contribution matrices from each
of the reduced factor blocks in its linked list are computed and are subtracted from
LA
j and UA

j . Figure 3.3 shows how the contribution matrices are computed from a

reduced factor block. Let q and r be such that IFL
k (s + q) is the first index in IFL

k

greater than or equal to j + t, and IFU
k (s + r) is the first index in IFU

k greater than
or equal to j + t. As shown in the figure, q and r identify the portions of L′F

k and
U ′F
k that would be multiplied to create the contribution matrices to be subtracted

from LA
j and UA

j . The darker shaded portion of L′F
k is multiplied with the lighter

shaded portion of U ′F
k to compute the contribution matrix for UA

j . Similarly, the

darker shaded portion of U ′F
k is multiplied with the lighter shaded portion of L′F

k

to compute the contribution matrix for LA
j . In general, the global row and column

indices associated with the contribution matrices are subsets of the indices associated
with LA

j and UA
j . Therefore, the contribution matrices are expanded to align their

row and column index sets with those of LA
j and UA

j before subtraction.
After extracting the contribution from a reduced factor block starting at k, if both

q and r, as described above, exist (i.e., both IFL
k and IFU

k have at least one index

ENHANCING PERFORMANCE AND ROBUSTNESS OF ILU PRECONDITIONERS 15

1. begin function BILUC (j)
2. for each assembly block i that is a child of assembly block j
3. BILUC (i);
4. end for

5. Initialize row and col index sets IAL
j and IAU

j ;
6. Allocate LA

j and UA
j based on sizes of IAL

j and IAU
j ;

7. Initialize LA
j and UA

j by copying entries from A;
8. for each k, such that reduced factor block k is in j’s linked list
9. Remove k from j’s linked list;
10. Compute contribution matrices from L′F

k and U ′F
k and update LA

j and UA
j ;

11. Insert k in linked list of its next assembly block, if any;
12. end for

13. for each k, such that k is a primary factor block in j
14. Perform factorization with pivoting on block k;
15. Create reduced factor block k after dropping and downdating;
16. v = min(IFL

k (s), IFU
k (s));

17. Insert k in linked list of assembly block containing index v;
18. end for

19. Merge unfactorable portions of LA
j and UA

j in j’s parent assembly block.
20. return;
21. end function BILUC

Fig. 3.5. Outline of the recursive BILUC algorithm. Invoking BILUC with the root assembly
block of an elimination subtree computes a block ILU factorization of the submatrix associated with
the subtree. Block i refers to a block starting at index i for both factor and assembly blocks.

greater than or equal to j+t), then the reduced factor block is placed in the linked list
of an assembly block whose block contains the index v = min(IFL

k (s+ q), IFU
k (s+ r)).

Figure 3.4 illustrates how this reduced factor block will contribute to the next assembly
block. The set of indices in IFL

k and IFU
k corresponding to the dark shaded regions

of L′F
k and U ′F

k are always subsets of the pivot indices j, j + 1, . . . , j + t − 1 of the
assembly block that is being updated. Note that j and t are used generically; the
ones in Figure 3.4 would have different values than the ones in Figure 3.3.

When all the reduced factor blocks in the linked list of the assembly block be-
ing constructed are processed, then the assembly block is ready for factorization as
described in Section 3.2. Some of these reduced factor blocks that contribute to the
current assembly block end up in the linked lists of other assembly blocks. After
factorization, dropping, and downdating, the current assembly block yields its own
fresh set of reduced factor blocks which are placed in the appropriate linked lists.

3.5. BILUC—putting it all together. Figure 3.5 summarizes the BILUC
algorithm whose various steps are described in detail in Sections 3.2–3.4. The recursive
algorithm has the starting index of an assembly block as its primary argument. It is
first invoked simultaneously (in parallel) in each domain with the root assembly block
of the elimination tree corresponding to the respective submatrix. The starting index
of an assembly block is either a leaf of the elimination tree, or it has one or more
children. It has one child in the straight portion of the elimination tree, and when it
has more than one child, then the tree branches.

The first key step in the BILUC algorithm for a given assembly block j of size

16 ANSHUL GUPTA

Matrix Dimension Nonzeros Application

1. Jacobian 137550 9050250 Circuit simulation

2. af23560 23560 484256 CFD

3. bbmat 38744 1771722 CFD

4. ecl32 51993 380415 Semiconductor device simulation

5. eth-3dm 31789 1633499 Structural engineering

6. fullJacobian 137550 17500900 Circuit simulation

7. matrix-3 125329 2678750 CFD

8. mixtank 29957 1995041 CFD

9. nasasrb 54870 2677324 Structural engineering

10. opti andi 41731 542762 Linear programming

11. poisson3Db 85623 2374949 3D Poisson problem

12. venkat50 62424 1717792 Unstructured 2D Euler solver

13. xenon2 157464 3866688 Material science

14. matrix12 2757722 38091058 Semiconductor device simulation

15. matrixTest2 10 1035461 5208887 Semiconductor device simulation

16. seid-cfd 35168 14303232 CFD

Table 3.2

Test matrices and their basic information.

t is to recursively invoke itself for all the children assembly blocks (lines 2–4). It
then assembles the row and column index sets IAL

j and IAU
j , followed by actually

constructing the assembly block LA
j and UA

j , as described in Section 3.4. LA
j and

UA
j are constructed from the entries of A that lie within these blocks and from the

contribution matrices from reduced factor blocks of some of j’s descendants in the
elimination tree. A reduced factor block k contributes to assembly block j if and only
if IFL

k or IFU
k contain at least one index within j, j + 1, . . . , j + t− 1. All such reduced

factor blocks would have already been placed in the linked list of assembly block j
by the time the BILUC algorithm reaches this stage. Figures 3.3 and 3.4 illustrate
the computation of contribution matrices from the contributing reduced factor blocks
and their assimilation into the assembly block. After the contribution from reduced
factor block k in the linked list of assembly block j is used in the construction of LA

j

and UA
j , the factor block is placed in the linked list of the next assembly block that

it will contribute to, if such an assembly block exists. Next, the assembly block is
factored in units of its factor blocks. The end result of this process, described in detail
in Sections 3.2 and 3.3, is a set of fresh reduced factor blocks. These are placed in
the linked lists of their respective first target assembly blocks that they will update.
Finally, any unfactorable portions of LA

j and UA
j in which a suitable pivot could not

be found, are merged with the assembly block that is the parent of j in the elimination
tree. This completes the BILUC process for a given assembly block identified by its
first index j.

3.6. Experimental results. We now describe the results of our experiments
with the BILUC algorithm highlighting the impact of blocking and block sizes on
memory consumption, convergence, factorization time, solution time, and overall per-
formance. Table 3.2 lists the matrices used in our experiments. Most of these matrices
are from the University of Florida sparse matrix collection [7]. The remaining ones
are from some of the applications that currently use WSMP’s general sparse direct
solver [24]. The experimental setup is described in Section 1. Recall that we use

ENHANCING PERFORMANCE AND ROBUSTNESS OF ILU PRECONDITIONERS 17
M

ea
n

ra
tio

 to
 th

e
un

bl
oc

ke
d

ca
se

Iter. count

Fill−in

Total time

Solve time

Factor time

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

2 3

Maximum block size

unlimited4

Fig. 3.6. Some performance metrics as functions of maximum block size relative to the un-
blocked case.

Morgan’s GMRES variant [39] that augments the saved subspace with approximate
eigenvectors corresponding to a few smallest eigenvalues of the matrix. For our imple-
mentation, GMRES(k,l) denotes restarted GMRES with at least k subspace vectors
and at most l eigenvectors. The total space allocated for subspace and approximate
eigenvectors is m = k + 2l. The reason why l eigenvectors require 2l space is that
each eigenvector can have a real and an imaginary part. Unused eigenvector space
is used for storing additional subspace vectors; therefore, the actual number of inner
GMRES iterations before a restart is triggered is between k and m.

For our first experiment, we solved systems using the matrices in Table 3.2 and
right-hand side vectors containing all ones. Other than the maximum block sizes,
default values of all other parameters were used. We first turned blocking off by
setting the maximum factor block size to 1, which would result in an algorithm similar
to Li et al.’s ILUC algorithm [34]. Note that WSMP would still use assembly blocks
of size 10 in this case, and therefore, is likely to be faster than completely unblocked
ILUC. We then solved the systems with the maximum factor block size set to 2, 3, 4,
and “unlimited.” The assembly block size is 10 times the size of the maximum factor
block or 40, whichever is smaller. In the “unlimited” case, the factor block sizes are
limited by the sizes of the natural cliques in the graphs of the matrices. This is the
default setting in WSMP. GMRES(100,9) was used with at least 100 subspace vectors
and at most 9 approximate eigenvectors. The default for the maximum number of
approximate eigenvectors to be added to the subspace is set to

√
m−1 in WSMP. We

observed the preconditioner generation (incomplete factorization), solution (GMRES

18 ANSHUL GUPTA

iterations), and the total time, as well as factorization fill in and the number of
GMRES iterations. For each of these metrics, we computed the ratio with respect
to the unblocked case. Figure 3.6 shows the average of these ratios over the 16 test
matrices.

Blocking has the most significant impact on preconditioner generation time, as
shown by the blue bars in Figure 3.6. During incomplete factorization, blocking
helps in two ways. First, the use of blocks reduces the overhead due to indirect
addressing because a single step of indirect addressing affords access to a whole block
of nonzeros instead of a single element. Since a static symbolic factorization cannot be
performed for incomplete factorization, updating a sparse row (column) with another
requires traversing the index sets of both rows (columns). Consider the updating of
an assembly block of width t by a reduced factor block of width s. This would require
a single traversal of a pair of sets of indices. The same set of updates in a conventional
non-blocked incomplete factorization can require a traversal of up to st pairs of index
sets because each of the t rows and columns of the assembly block could potentially
be updated by all s rows and columns of the factor block. The second benefit of
blocking is that it permits the use of higher level BLAS [9, 10], thus improving the
cache efficiency of the implementation. Note that when we refer to the use of higher
level BLAS, we do not necessarily mean making calls to a BLAS library. Typically,
the blocks in sparse incomplete factors are too small for BLAS library calls with high
fixed overheads to be efficient. The key here is to use the blocks to improve spatial
and temporal locality for better cache performance, which we achieve through our
own implementation of lightweight BLAS-like kernels, instead of making calls to an
actual BLAS library. Figures 3.3 and 3.4 show how matrix-matrix multiplication is
the primary computation in the update process.

Blocking has a less dramatic effect on GMRES iteration time. Some gains in
efficiency are offset by increase in operation count due to slightly larger factors that
result from blocking. On the other hand, the total iteration count tends to drop
slightly as blocks get larger because more nonzeros are stored. In our experiments,
the net effect of all these factors was that solution time increased for very small blocks,
for which the bookkeeping overhead associated with blocking seems to have more than
offset the small gains. For larger block size, the solution time fell. The overall time
to solve the systems recorded almost 50% reduction on an average in our test suite.

Within limits, there is a trade-off between incomplete factorization time and the
iterative solution time in a typical preconditioned Krylov method. Denser, costlier
preconditioners would generally result in fewer iterations, and vice versa, as long as
the added density reduces error due to dropping and the increase in solution time with
respect to the denser preconditioner does not dominate the time saved due to fewer
iterations. There would be an optimum preconditioner density (and a corresponding
optimum drop tolerance) for which the total of factorization and solution time would
be minimum. Since blocking can significantly reduce incomplete factorization time,
but has a more muted effect on GMRES iterations’ time, it has the potential to
change the optimum drop tolerance and preconditioner density for a given problem.
This means that blocking may have the potential to reduce the overall solution time
by more than what Figure 3.6 shows if both BILUC and IIUC use different drop
tolerance values.

In our next set of experiments, we compare incomplete factorization times with
and without blocking for different drop tolerance values. For these experiments, we
chose seven drop tolerance values in the range of 10−2 and 10−5. For each of these

ENHANCING PERFORMANCE AND ROBUSTNESS OF ILU PRECONDITIONERS 19

ILUC

R
el

at
iv

e
fa

ct
or

iz
at

io
n

tim
e

Drop tolerance

1e−2 3e−3 1e−3 3e−4 3e−51e−4 1e−5

0.1

0.2

0.4

0.3

0.5

0.7

1.0

2.0

3.0

4.0
5.0

7.0

10.

BILUC

Fig. 3.7. Relative factorization times of ILUC and BILUC algorithms as functions of drop
tolerance.

drop tolerance values, Figure 3.7 shows the average of the 16 matrices’ incomplete
factorization times of ILUC and BILUC algorithms normalized with respect to the
ILUC time with drop tolerance of 10−3. The results show that BILUC is typically
2–3 times faster than ILUC and its speed advantage over ILUC is more pronounced
at smaller drop tolerances. The figure also shows that BILUC can typically use a
drop tolerance that is at least and order of magnitude lower and still compute an
incomplete factorization in about the same time as ILUC.

A smaller drop tolerance can reduce the number of iterations and help some
hard-to-solve problems converge. However, reducing the drop tolerance increases the
size of incomplete factors and total memory consumption. The BILUC algorithm’s
ability to efficiently work with small drop tolerances has interesting implications for
restarted GMRES [44], which is most often the Krylov subspace method of choice
for solving general sparse linear systems. Consider a sparse n × n coefficient matrix
A with nnzA nonzeros. Let d be the average row-density of A; i.e., nnzA = dn.
Let γ be the effective fill factor; i.e., the number of nonzeros in the incomplete factor,
nnzF = γnnzA = γdn. The number of words of memory M required to solve a system
Ax = b using GMRES(m) preconditioned with the incomplete factor of A, where m
is the restart parameter (or the number of subspace vectors stored) can roughly be
expressed as:

M = n× (K +m+ d+ γd). (3.3)

Here K is a small constant, typically around 3 in most implementations. Now the
drop tolerance can be changed to obtain a denser or a sparser incomplete factorization
with a different effective fill factor of γ′ while keeping the overall memory consumption

20 ANSHUL GUPTA

TFQMR
(36,5) (25,4)

GMRES BiCGStab

No. of iterations

Factor time

Solve time

Total time

5.0

4.5

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

GMRES
(100,9) (81,8)

GMRES GMRES
(64,7) (49,6)

GMRES GMRES

Fig. 3.8. Relative performance of GMRES variants, BiCGStab, and TFQMR under constant
total preconditioner and solver memory.

unchanged if we alter the restart parameter of GMRES to m′ such that:

n× (K +m+ d+ γd) = n× (K +m′ + d+ γ′d)

or

m′ = m+ d(γ − γ′). (3.4)

Similarly, if we change the restart parameter from m to m′, then we can keep the
overall memory constant by changing the effective fill factor to γ′ given by

γ′ = γ + (m−m′)/d. (3.5)

In the last set of experiments for this section, we study the trade-off between
fill in and the restart parameter. For these experiments, we measured the number
of iterations and factorization, solve, and total times while adjusting the GMRES
restart parameter and the drop tolerance (and therefore, the effective γ) according
to Equation 3.4 so that the total memory requirement stayed constant. For these
experiments, we control the fill in by changing only the drop tolerance. The total
memory allocated for subspace and approximate eigenvectors is m = k + 2l, and this
is the m that corresponds to the one in Equations 3.3—3.5. In WSMP, l =

√
k by

default.

ENHANCING PERFORMANCE AND ROBUSTNESS OF ILU PRECONDITIONERS 21

Total time

0.5

No. of iterations

Factor time

Solve time

GMRES
(100,9) (81,8)

GMRES GMRES
(64,7) (49,6)

GMRES GMRES
(36,5)

GMRES
(25,4)

BiCGStab TFQMR

5.0

4.5

4.0

3.5

3.0

2.5

2.0

1.5

1.0

Fig. 3.9. Relative performance of GMRES variants, BiCGStab, and TFQMR under constant
total preconditioner and solver memory.

In addition to GMRES with different restart parameters, our experiments also
include short recurrence methods such as BiCGStab [46] and TFQMR [16] that do
not store the subspace explicitly and use only a small fixed number of vectors for
working storage. We use m = 3 for BiCGStab and TFQMR. We conducted two
sets of experiments with a fixed overall memory. In the first set, for each matrix,
we determined the drop tolerance that (roughly) led to the best overall time for
BiCGStab, and measured the corresponding effective fill factor. We then ran TFQMR
with the same preconditioner that BiCGStab used, and GMRES(k,l) for six different
restart values while increasing the drop tolerance such that γ satisfied Equation 3.5.
The results were normalized with respect to BiCGStab results. Figure 3.8 shows
plot of the geometric means of these normalized values over all 16 test cases. The
results indicate that denser preconditioners combined with small restart parameter
values, or even a short-recurrence method resulted in significantly faster convergence
and overall solution compared to the combination of sparse preconditioners and large
restart parameter values.

In our second experiment, we started with the best drop tolerance for GM-
RES(100,9), and used the corresponding effective fill factor as our base γ. We then
reduced restart parameter and the drop tolerance it such that the effective fill factor
γ′ satisfied Equation 3.5. The results of this experiment are shown in Figure 3.9.
Once again, the results indicate that investing in a denser ILU preconditioner rather
than subspace vectors is a better use of memory. In fact, BiCGStab seems to work
almost as well as GMRES when memory for storing the subspace vectors is used to
create denser ILU preconditioners. Among GMRES variants, moderate restart values
dramatically outperform large restart values when memory is taken into account.

22 ANSHUL GUPTA

In both sets of constant-memory experiments, after bottoming out at m = 46 (i.e.,
k = 36, l = 5), GMRES iteration count starts increasing as more memory is diverted
to the incomplete factors from subspace vectors to the factors. This is probably
because very small subspaces are ineffective in advancing the GMRES algorithm even
with a good preconditioner. As a result, BiCGStab usually outperforms GMRES with
a small restart parameter in the constant-memory scenario.

4. Selective Transposition. The BILUC algorithm performs threshold partial
pivoting, as described in Section 3.2. The worst case pivot growth for Gaussian
elimination with partial pivoting is 2n−1 for an n×n dense matrix [29]. For incomplete
factorization of a sparse matrix, the worst case would be 2l−1, where l is the maximum
number of nonzeros in a row of L or column of U . When using a threshold α < 1, the
worst-case pivot growth could be higher by a factor of 1

αl−1 . Recall that threshold α
permits an entry LA

j (i, i) in the diagonal position as long as its magnitude is greater

than α times the largest magnitude of any entry in column i of LA
j . In practice,

factoring a matrix from a real world problem is unlikely to result in pivot growth
anywhere close to the worst case bounds; however, it is reasonable to expect that a
lower ratio of |LA

j (i, i)| to the largest magnitude of any entry in column i of LA
j is

likely to result in higher growth. This ratio is likely to be lower for matrices with a
smaller degree of diagonal dominance along the columns. Smaller diagonal-dominance
along columns is also likely to increase the number of row interchanges to meet the
pivoting threshold, and therefore result in higher fill-in and overall factorization time.

We conjectured that row pivoting (i.e., scanning columns to search for pivots and
interchanging rows) would yield smaller and more effective incomplete factors for ma-
trices with higher average diagonal dominance along the columns than along the rows.
Similarly, column pivoting (i.e., scanning rows to search for pivots and interchanging
columns) would be more effective if the average diagonal dominance was higher along
the rows than along columns. We verified the conjecture experimentally. Not surpris-
ingly, it turned out to be valid for both complete and incomplete LU factorization
with threshold partial pivoting. Section 4.1 describes how this observation was used
in WSMP to improve the computation time and the quality of the preconditioners.

4.1. Methodology. Recall from Figure 2.1 that if the coefficient matrix is insuf-
ficiently diagonally dominant, then the first preprocessing step is to reorder it via an
unsymmetric permutation based on maximum weight bipartite matching [27] to maxi-
mize the magnitude of the product of the diagonal entries. Let DR

i = |Aii|/
∑

j 6=i |Aij |
be the measure of diagonal dominance of row i and DC

i = |Aii|/
∑

j 6=i |Aji| be the
measure of diagonal dominance of column i of the coefficient matrix. The unsymmet-
ric permutation in Step 1 of the algorithm in Figure 2.1 is performed if the minimum
of all DR

i and DC
i is less than 0.1 or if their geometric mean is less than 0.25. If the

matrix is reordered, then DR
i and DC

i values are recomputed for all 0 < i ≤ n after
the reordering.

Next, we compare the product of min(DR
i) and the geometric mean of all DR

i s
with the product of min(DC

i) and the geometric mean of DC
i s. If the former is smaller,

then we proceed with the conventional incomplete LU factorization with row pivot-
ing. If the opposite is true, then we simply switch to using columns of A to populate
the block rows UA of the assembly blocks and the rows of A to populate the block
columns LA of the assembly blocks. Thus, without making any changes to the un-
derlying factorization algorithm or the code, we factor AT instead of A, effectively
interchanging columns of A for pivoting when needed. To summarize, we use the same

ENHANCING PERFORMANCE AND ROBUSTNESS OF ILU PRECONDITIONERS 23

N: No transpose T: Transpose
Matrix Iter. Factor Factor Solve N or T Iter. Factor Factor Solve

count size time time count size time time

1 57 70415 7.3 5.9 T* 37 63491 6.4 3.3

2 8 4685 .33 .04 N* 9 4779 .34 0.6
3 49 17702 5.6 1.9 N* fail - - -
4 23 4311 .38 .19 T 25 5510 .57 .31
5 20 29937 12.3 .95 T* 27 30423 11.6 1.3

6 44 78981 8.3 5.1 T* 41 67060 6.2 4.3

7 fail - - - T* 27 13971 1.1 1.2

8 12 27740 7.6 .57 T* 12 24579 6.7 .48

9 195 12903 .75 4.6 N* 260 12790 .72 5.1
10 6 27496 9.2 .82 T* 4 26269 8.4 .56

11 22 16411 1.12 .81 N 22 16273 1.12 .81

12 8 11557 .59 .15 T* 8 11880 .58 .15

13 17 41178 4.5 1.3 N* 17 41178 4.5 1.3
14 171 493052 94. 184. T 232 533310 101. 258.
15 fail - - - T* 171 44158 3.90 30.4

16 23 126363 18 3.5 N 29 115984 14.5 4.4

Table 4.1

Impact of selective transposition on number of GMRES iterations, incomplete factor size, fac-
torization time, and solution time for matrices in Table 3.2.

row-pivoting-based algorithm on either A or AT , depending on which orientation we
expect to result in fewer interchanges and smaller growth.

Skeel [45] showed that column pivoting with row equilibration satisfies a similar
error bound as row pivoting without equilibration. The same relation holds between
row pivoting with column equilibration and column pivoting without equilibration.
Therefore, in theory, it may be possible to achieve the same effect as factoring the
transpose by selectively performing row equilibration, followed by standard incomplete
LU factorization with column pivoting. We did not explore selective equilibration,
partly because our Crout-based implementation incurs no cost for switching between
A and AT , and yields excellent results, as shown in Section 4.2 that follows.

4.2. Experimental results. Table 4.1 shows the impact of selective transpo-
sition on the size and effectiveness of BILUC factors of the 16 test matrices in our
suit of diverse test matrices. BILUC factorization of each matrix was computed, both
with and without transposition, and used in restarted GMRES. Number of GMRES
iterations, number of nonzeros in the incomplete factor, factorization time, and so-
lution time were measured and tabulated. The results of the configuration with the
fastest combined factorization and solution are shown in bold. The middle “N or T”
column indicates the choice that the solver made based on the heuristic discussed in
Section 4.1. The cases in which the choice led to the better configuration are marked
with a *. The results show that in 12 out of the 16 cases, our heuristic made the cor-
rect choice. Moreover, it averted all three failures, and the cases in which the heuristic
led to an increase in overall time, the difference between factoring the original or the
transpose of the coefficient matrix was relatively small.

The test matrices used in Table 4.1 come from a variety of applications, and in
many cases, the difference between rowwise and columnwise diagonal dominance in
the coefficient matrix is insignificant. In order to demonstrate the effectiveness of
selective transposition more conclusively, we gathered another set of matrices from
an elctro-thermal semiconductor device simulation tool FIELDAY [3], which solves

24 ANSHUL GUPTA

Matrix Dimension Nonzeros

1. case2 44563 661778

2. m32bitf 194613 2225869

3. matrix12 2757722 38091058

4. matrixTest2 1 345150 2002658

5. matrixTest2 10 1035461 5208887

6. matrixTest2 19 2070922 10774594

7. matrixTest3 1 231300 1364278

8. matrixTest3 10 693904 3500181

9. matrix-0 64042 326339

10. matrix-11 384260 1687754

Table 4.2

FIELDAY matrices and their basic information.

N: No transpose T: Transpose
Matrix Iter. Factor Factor Solve N or T Iter. Factor Factor Solve

count size time time count size time time

1 408 3073 0.13 1.96 T* 158 2988 0.12 0.72

2 fail - - - T* 40 8475 0.95 1.60

3 171 493052 94.1 184. T 232 533310 99.6 257.
4 16 18476 1.26 1.05 T 20 18543 1.27 1.46
5 fail - - - T* 171 44158 3.82 30.5

6 fail - - - T* 177 89700 8.13 63.2

7 28 11675 .79 1.04 N* 29 11766 0.80 1.03
8 fail - - - T* 101 26117 2.13 10.4

9 13 2508 0.18 0.09 T* 13 2502 0.18 0.08

10 fail - - - T* 49 12784 1.42 2.87

Table 4.3

Impact of selective transposition on number of GMRES iterations, incomplete factor size, fac-
torization time, and solution time of FIELDAY problems.

6 coupled PDEs governing carrier mass and energy transport in 3D semiconductor
structures. The details of these matrices can be found in Table 4.2. We chose this
application because it often tends to generate matrices for which transposition is
critical for the success of ILU preconditioning.

Table 4.3 shows the effect of selective transposition on BILUC preconditioning
on 10 linear systems derived from FIELDAY’s application on real 3D semiconductor
device simulation problems. FIELDAY matrices seem to have an overwhelming pref-
erence for transposition. Our heuristic not only made the correct choice in 80% of
the test cases, but it also avoided all the failures. Note that it may be possible to use
column equilibration to achieve performance and robustness improvement similar to
that offered by selective transposition for these matrices [45]. However, a reliable pre-
dictor for when to use column equilibration would still be required, and it seems that
our general-purpose heuristic based on the product of the smallest and the geometric
mean of diagonal dominance in each orientation would be effective.

5. Concluding Remarks and Future Work. We have introduced techniques
to improve the reliability and performance of incomplete LU factorization-based pre-
conditioners for solving general sparse systems of linear equations. Along with its
sister publication [26] for symmetric systems, this paper presents a comprehensive
block framework for incomplete factorization preconditioning. This framework almost

ENHANCING PERFORMANCE AND ROBUSTNESS OF ILU PRECONDITIONERS 25

invariably leads to faster and more robust preconditioning. In addition, it goes a long
way in alleviating the curse of fill-in, whereby, in the absence of blocking, incomplete
factorization time grows rapidly as the density of the preconditioner increases [26].
Blocking makes it practical to compute denser and more robust incomplete factors.
Blocking is also likely to render incomplete factorization-based preconditioning more
amenable to multicore and accelerator hardware. We hope that this block framework,
along with other similar recently proposed blocking approaches [35, 41], would have
a similar effect on the development of future incomplete factorization algorithms and
software that supernodal [17] and multifrontal [14, 37] techniques had on complete
factorization.

In conventional ILU factorization preconditioning, drop tolerance and fill factor
are the typical tuning parameters that control the trade-offs between memory, run
time, and robustness. Since the block version of ILU factorization permits efficient
computation of preconditioners with a wider range of densities (Figure 3.7), it enables
the inclusion of the GMRES restart parameter among the parameters to be tuned
simultaneously to optimize the overall solution time as well as memory consumption.

The selective transposition heuristic proposed in this paper could extend the
results of Almeida et al. [8], who observed that in many cases, judicious use of equili-
bration could help to preserve the original ordering of the sparse matrix by reducing
the amount of pivoting. Combined with Skeel’s results [45] on the relation between
the direction of pivoting and the type of equilibration, we think that it is possible
give more precise guidance on how to use scaling beneficially while factoring general
sparse matrices. It would be interesting to investigate if an effective a priori decision
between row or column equilibration can be made using the same heuristic that we
use for deciding whether or not to transpose the matrix prior to factorization.

One of the goals of this work was to produce an industrial strength iterative
solver for general systems that can reliably replace a direct solver in many real
applications, particularly those in which iterative solvers are not traditionally used
due to robustness or performance concerns. The software can be downloaded from
http://www.research.ibm.com/projects/wsmp for testing and benchmarking. Enhanc-
ing and extending the block framework to distributed-memory platforms is a key piece
of future work.

Acknowledgements. The author would like to thank Haim Avron, Thomas
George, Rogeli Grima, Felix Kwok, and Lexing Ying. Pieces of software written by
them over the years are included in WSMP’s iterative solver package.

REFERENCES

[1] Michele Benzi. Preconditioning techniques for large linear systems: A survey. Journal of
Computational Physics, 182(2):418–477, 2002.

[2] Matthias Bollhöfer. A robust and efficient ILU that incorporates the growth of the inverse
triangular factors. SIAM Journal on Scientific Computing, 25(1):86–103, 2003.

[3] E. Buturla, J. Johnson, S. Furkay, and P. Cottrell. A new 3D device simulation formulation.
In Proceedings of Numerical Analysis of Semiconductor Devices and Integrated Circuits,
1989.

[4] Edmond Chow and Michael A. Heroux. An object-oriented framework for block preconditioning.
ACM Transactions on Mathematical Software, 24(2):159–183, 1998.

[5] Edmond Chow and Yousef Saad. Experimental study of ILU preconditioners for indefinite
matrices. Journal of Computational and Applied Mathematics, 86(2):387–414, 1997.

[6] E. Cuthill and J. McKee. Reducing the bandwidth of sparse symmetric matrices. In Proceedings
of the 24th National Conference of the ACM, pages 152–172, 1969.

26 ANSHUL GUPTA

[7] Timothy A. Davis. The university of Florida sparse matrix collection. Technical report, De-
partment of Computer Science, University of Florida, Jan 2007.

[8] Valmor F. de Almeida, Andrew M. Chapman, and Jeffrey J. Derby. On equilibration and sparse
factorization of matrices arising in finite element solutions of partial differential equations.
Numerical Methods for Partial Differential Equations, 16(1):11–29, 2000.

[9] Jack J. Dongarra, Jeremy Du Croz, Sven Hammarling, and Iain S. Duff. A set of level 3 Basic
Linear Algebra Subprograms. ACM Transactions on Mathematical Software, 16(1):1–17,
1990.

[10] Jack J. Dongarra, Jeremy Du Croz, Sven Hammarling, and Richard J. Hanson. An extended set
of FORTRAN Basic Linear Algebra Subprograms. ACM Transactions on Mathematical
Software, 14(1):1–17, 1988.

[11] Iain S. Duff, Albert M. Erisman, and John K. Reid. Direct Methods for Sparse Matrices.
Oxford University Press, Oxford, UK, 1990.

[12] Iain S. Duff and Jacko Koster. On algorithms for permuting large entries to the diagonal of a
sparse matrix. SIAM Journal on Matrix Analysis and Applications, 22(4):973–996, 2001.

[13] Iain S. Duff and G. A. Meurant. The effect of ordering on preconditioned conjugate gradient.
BIT Numerical Mathematics, 29:635–657, 1989.

[14] Iain S. Duff and John K. Reid. The multifrontal solution of indefinite sparse symmetric linear
equations. ACM Transactions on Mathematical Software, 9(3):302–325, 1983.

[15] Qing Fan, Peter A. Forsyth, J. R. F. McMacken, and Wei-Pai Tang. Performance issues for
iterative solvers in device simulation. SIAM Journal on Scientific Computing, 17(1):100–
117, 1996.

[16] Roland W. Freund. A transpose-free quasi-minimal residual algorithm for non-Hermitian linear
systems. SIAM Journal on Scientific and Statistical Computing, 14(2):470–482, 1993.

[17] Alan George and Joseph W.-H. Liu. Computer Solution of Large Sparse Positive Definite
Systems. Prentice-Hall, NJ, 1981.

[18] Thomas George, Anshul Gupta, and Vivek Sarin. An empirical analysis of iterative solver
performance for SPD systems. ACM Transactions on Mathematical Software, 38(4), 2012.
A detailed version available as RC 24737, IBM T. J. Watson Research Center, 2009.

[19] Thomas George, Anshul Gupta, and Vivek Sarin. An experimental evaluation of iterative solvers
for large SPD systems of linear equations. In 10th Copper Mountain Conference on Iterative
Methods, April 2008. Available at http://www.cs.umn.edu/˜agupta/doc/copper08.pdf.

[20] John R. Gilbert and Sivan Toledo. An assessment of incomplete-LU preconditioners for non-
symmetric linear systems. Informatica, 24(3):409–425, 2000.

[21] Anshul Gupta. Improving performance and robustness of incomplete factorization precondi-
tioners. plenary talk at SIAM Conference on Applied Linear Algebra (SIAM LA), Valencia,
Spain.

[22] Anshul Gupta. Improved symbolic and numerical factorization algorithms for unsymmetric
sparse matrices. SIAM Journal on Matrix Analysis and Applications, 24(2):529–552, 2002.

[23] Anshul Gupta. Fast and effective algorithms for graph partitioning and sparse matrix ordering.
IBM Journal of Research and Development, 41(1/2):171–183, January/March, 1997.

[24] Anshul Gupta. WSMP: Watson sparse matrix package (Part-II: Direct solution of general
systems). Technical Report RC 21888, IBM T. J. Watson Research Center, Yorktown
Heights, NY, November 2000. http://www.research.ibm.com/projects/wsmp.

[25] Anshul Gupta. WSMP: Watson sparse matrix package (Part-III: Iterative solution of sparse
systems). Technical Report RC 24398, IBM T. J. Watson Research Center, Yorktown
Heights, NY, November 2007. http://www.research.ibm.com/projects/wsmp.

[26] Anshul Gupta and Thomas George. Adaptive techniques for improving the performance of in-
complete factorization preconditioning. SIAM Journal on Scientific Computing, 32(1):84–
110, 2010.

[27] Anshul Gupta and Lexing Ying. On algorithms for finding maximum matchings in bipartite
graphs. Technical Report RC 21576, IBM T. J. Watson Research Center, Yorktown Heights,
NY, October 1999.

[28] Pascal Hénon, Pierre Ramet, and Jean Roman. On finding approximate supernodes for an
efficient block-ILU(k) factorization. Parallel Computing, 34(6-8):345–362, 2008.

[29] Nicholas J. Higham and Desmond J. Higham. Large growth factors in Gaussian elimination
with pivoting. SIAM Journal on Matrix Analysis and Applications, 10(2):155–164, 1989.

[30] David Hysom and Alex Pothen. A scalable parallel algorithm for incomplete factor precondi-
tioning. SIAM Journal on Scientific Computing, 22(6):2194–2215, 2000.

[31] Mark T. Jones and Paul E. Plassmann. Blocksolve95 users manual: Scalable library software
for the parallel solution of sparse linear systems. Technical Report ANL-95/48, Argonne
National Laboratory, Argonne, IL, 1995.

ENHANCING PERFORMANCE AND ROBUSTNESS OF ILU PRECONDITIONERS 27

[32] Igor E. Kaporin, L. Yu. Kolotilina, and A. Yu. Yeremin. Block SSOR preconditionings for
high-order 3D FE systems. II Incomplete BSSOR preconditionings. Linear Algebra and its
Applications, 154-156:647–674, 1991.

[33] George Karypis and Vipin Kumar. Parallel threshold-based ILU factorization. Technical Report
TR 96-061, Department of Computer Science, University of Minnesota, 1996.

[34] Na Li, Yousef Saad, and Edmond Chow. Crout versions of ILU for general sparse matrices.
SIAM Journal on Scientific Computing, 25(2):716–728, 2003.

[35] Xiaoye S. Li and Meiyue Shao. A supernodal approach to incomplete LU factorization with
partial pivoting. ACM Transactions on Mathematical Software, 37(4), 2011.

[36] Joseph W.-H. Liu. The role of elimination trees in sparse factorization. SIAM Journal on
Matrix Analysis and Applications, 11:134–172, 1990.

[37] Joseph W.-H. Liu. The multifrontal method for sparse matrix solution: Theory and practice.
SIAM Review, 34(1):82–109, 1992.

[38] Joseph W.-H. Liu, Esmond G.-Y. Ng, and Barry W. Peyton. On finding supernodes for sparse
matrix computations. SIAM Journal on Matrix Analysis and Applictations, 14:242–252,
1993.

[39] Ronald B. Morgan. A restarted GMRES method augmented with eigenvectors. SIAM Journal
on Matrix Analysis and Applications, 16(4):1154–1171, 1995.

[40] N. Munksgaard. Solving sparse symmetric sets of linear equations by preconditioned conjugate
gradients. ACM Transactions on Mathematical Software, 6(2):206–219, 1980.

[41] Esmond G.-Y. Ng, Barry W. Peyton, and Padma Raghavan. A blocked incomplete cholesky
preconditioner for hierarchical-memory computers. In D. R. Kincaid and A. C. Elster,
editors, Iterative Methods in Scientific Computation IV, IMACS Series in Computational
and Applied Mathematics, pages 211–221. Elsevier, 1999.

[42] Yousef Saad. ILUT: A dual threshold incomplete LU factorization. Numerical Linear Algebra
with Applications, 1(4):387–402, 1994.

[43] Yousef Saad. Iterative Methods for Sparse Linear Systems, 2nd edition. SIAM, 2003.
[44] Yousef Saad and M. H. Schultz. GMRES: A generalized minimal residual algorithm for solving

non-symmetric linear systems. SIAM Journal on Scientific and Statistical Computing,
7:856–869, 1986.

[45] Robert D. Skeel. Effect of equilibration on residual size for partial pivoting. SIAM Journal on
Numerical Analysis, 18(3):449–454, 1981.

[46] Henk A. van der Vorst. Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for
the solution of nonsymmetric linear systems. SIAM Journal on Scientific and Statistical
Computing, 13(2):631–644, 1992.

