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ABSTRACT

Historical analysis of electrical energy usage data from over 350 High Temperature and Low
Temperature retail refrigeration packs has shown a very high level of variability in pack electrical
energy usage. This noisy big data environment makes the task of detecting anomalous pack behaviour
energy wastage events, a very difficult one. This paper attempts to address this problem, by
presenting a modified process characterization approach that through the meaningful
subcategorisation and statistical analysis of a pack’s annualized energy usage, can give the
practitioner a much better understanding of the relative contributions of baseload, within day
variation, and summer seasonal variation sources, present within a pack. It goes on to show that the
resultant creation of a screening analytic using only electrical usage data, when applied across a
complete estate, can deliver effective pack level anomaly detection, and subsequent cost savings
through the timely detection and avoidance of these significant energy wastage events.
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1. BACKGROUND

Because electrical energy used in Refrigeration accounts for between 4% to 6% of the world’s energy
budget [Goetzler et al., 2009], [US DOE, 2010], gaining a greater understanding of electrical usage
within refrigeration systems, and more specifically pack cooling energy supply systems, through data
analytics, has the potential to deliver significant savings, within this very energy intensive industry.
However because of the compounding effects of the many sources of variability that exist within
many large retailer refrigeration asset estates, and a sample of which is presented in Figure 1 below,
makes the task of identifying energy wastage opportunities, by manually detecting anomalous
behaviour, almost impossible. And so, IBM Research Labs in Dublin, working with the Tesco
Regional Energy Management team, which in the past have shown the effectiveness and potential of
applying big data analytic approaches to underlying large available refrigeration datasets [Brady et
al, 2015], have been applying similar methods to tackle this problem of pack energy variability. This
paper presents some of the early work around this refrigeration pack characterization effort, and
presents the detail of a pragmatic first pass screening analytic approach that was developed aimed at
quickly identifying anomalous pack behaviour in large estates.

Generating aggregation plots for pack electrical usage from sample HT and LT packs, taken over an
extended time period, presented in Figure 1, gives a good appreciation of the overall typical levels of
energy usage variability present within the refrigeration estate.



Figure 1 : Pack energy usage variability for estate samples of HT and LT packs over an 18 month period

From Figure 1, one can clearly see the difference in variability observable between HT and LT pack
type aggregations, with HT pack type aggregations exhibiting variability 4 to 5 times higher than their
LT counterparts. Secondly there is obvious summer seasonality in evidence in both HT and LT pack
types, with this phenomenon being more pronounced in the HT pack type. Consequently, it is hoped,
that by presenting, and demonstrating the subsequent value of the proposed analytical approach, will
offer practitioners a practical means to gain greater understanding of the usage variability within their
estate, and additionally to provide a way to automate the anomaly detection process into the future, by
using only raw pack electrical usage data.

2. ENERGY USAGE ANALYTICS APPROACH OUTLINE

The use of disaggregation techniques for main meter electrical energy analysis has been used for
several years within the Smart Buildings industry [Mathieu et al., 2011]. One such approach uses a
multi parameter cooling 3PC model [Kissock et al., 2015] to model the energy use of a building as a
function of outside ambient air temperature, with the model outlined in Figure 2(a) below, and
defined in Eq (1), as follows;

EBldg = EB + CS . (TOA – Tc) (1)

where EBldg is the building energy usage, EB is considered the baseload usage, CS is cooling slope,
TC is the temperature change point at which there is a usage response with an increase in outside
ambient temperature, and TOA is the ambient temperature

Figure 2(a) : Original 3PC Building Model Figure 2(b) : Proposed 4PC Refrigeration Pack Model

Adopting Equation 1 to make it more applicable to a refrigeration pack environment yields the
updated 4PC model presented in Figure 2(b) above, and defined in Eq (2) as follows:

ERef = EB + EWD + CS . (TOA – TC) (2)



where ERef, the refrigeration pack usage, has the additional term, EWD introduced in the 4PC model,
being defined as the within day variation usage, discussed in further detail below in Section 3.3
below. The presented analytic approach proposes the decomposition of the main terms of this 4PC
model into three separate subcategories to allow separate analysis of the subcategories defined.

These subcategories are defined as follows;
1. Part A (EB) : the pack energy baseload usage and an estimate of packs hourly base usage

365x24x7
2. Part B (EWD) : the within day pack energy usage over and above the baseload observed

within the hourly usage profiles
3. Part C (CS .(TOA – TC)) : the additional energy usage observed within the energy profiles

over and above the baseload and within day variation, and due exclusively to the increase in
ambient temperatures

3. ENERGY USAGE CHARACTERISATION BY SUBCATEGORY

Following on from the analytic approach outlined in the previous section, this section attempts to
detail some technical background behind the subcategorisation, and calculations involved, and some
useful observed commentary highlighting the value and effectiveness of the approach in extracting
useful insight as to pack performance from using the approach.

3.1 Part A Pack Baseload Usage
Pack baseload is primarily a function of the design and size of the actual pack components, i.e. the
number and type of compressors, the condenser size, and what the pack services, and as such it’s
energy usage is effectively “baked in”, running 24 x 7 x 365, and therefore not considered to be a
good source of opportunity for energy saving. However while accepting that pack energy usage is
heavily influenced by initial pack design (size and quantity of compressor), it is in the maintaining of
proper system setup that is probably the most significant factor in achieving consistent and lower
baseloads. Having the ability to detect peer-to-peer energy usage baseload differences for equally
designed packs is one way therefore such a screening analytic approach could be used to first pass
detect packs with poor setup conditions.

3.2 Part A Baseload Usage Calculation and Observations
For paper definition purposes Part A Baseload Usage will be defined as the 4am morning hourly
aggregate energy usage for the winter months of November through to March. It is contended that
this definition allows for the legitimate exclusion of ambient temperature impacts on high summer
condensing temperature and daily variation effects. Summation of the annualized Part A baseload
impact on the packs energy budget then subsequently becomes a straightforward exercise.

Figure 3(a) and 3(b) below are some comparative aggregated hourly time series plots of some sample
HT and LT packs respectively, taken from 2013 raw ½ hourly energy usage meter data.



Figure 3(a) : Sample HT Aggregated 24 Hourly Usage Figure 3(b) : Sample LT Aggregated 24 Hourly Usage

With reference to the four comparable estate sample aggregate HT baseloads presented in Figure 3
above, and focusing on the 4am minima values as per definition, it can be seen that large differences
can exist in baseloads. In the HT example in Figure 3(a) one can see that pack MAY_HT2 varies by
almost 30% from its peers (with similar pack design and loads) and thus would be flagged for further
investigation as it may represent an energy saving opportunity. Similarly for LT packs plots in Figure
3(b), CAR_LT1, would be flagged as anomalous, due to a much lower baseload than its comparable
pack peers, although in this case this is possibly due to a meter problem given its such low value.

3.3 PART B Within Day Variation Usage
Part B is primarily a function of daily pack demand variation and how it may vary throughout the day,
and is an attempt to understand the underlying significant factors contributing to these levels of
variability observed within the day. From Figure 3(b) it can be clearly seen that the daily demand
usage variation profiles for LT and HT types are quite different, but both showing evidence of
periodicity to a larger or lesser extent, with the LT packs displaying generally lower levels of
variability, which would again be in support of the observed lower overall variation previously seen
in the LT pack type as referenced in Figure 1 earlier.

3.4 Part B Within Day Usage Calculation and Observations
For paper definition purposes Part B within day variation is defined as the daily summation of
additional hourly usage beyond the previously calculated baseload hourly usage, again taken for the
winter month period only, from November through to March. Taking this approach allows for the
isolation of the within day energy usage variation and protect the reporting from the known impacts
of ambient air temperatures on hourly usage which will further discussed in the followon section.
It is accepted that this may be a simplification of the calculation of the within day usage variation, and
as the following use case appears to show an interaction between HT refrigeration cases, and the
stores HVAC operations, but for the purposes of analytic approach demonstration is considered
acceptable from a first pass screening analytics perspective. And again by adopting this approach,
allows for the summation calculation of the annualized Part B within day usage variation impact to
become a straightforward exercise.



With reference to the aggregated hourly time series plots presented in Figure 3(a) above, one can see
clear periodicity observable in the within day energy usage profiles on HT packs, with clear 4am
minima, and 5pm maxima features in evidence. Secondly LT packs presented in Figure 3(b) in
general display much flatter within day variation ranges, although several packs demonstrate specific
patterns, most notably CEL_LT1 which has a clear six hourly periodicity signal, and which the author
contends is linked to the Freezer Room defrost cycle, but not explored further in this paper. Finally
the daily hourly usage pattern observed within HT packs varies significantly across packs, with %
within day variation ranging from 10% in MAY_HT1 to nearly 30% in SAN_HT2 Possible reasons
for this within day variation is discussed in more detail in Section 3.5 below.

3.5 Part B Within Day Variation Investigation Use Case
Again as a valuable demonstration as to how such an analytics approach can be used to garner greater
insight into the refrigeration energy usage variation, and specifically for Part B usage variation which
demonstrates the 4am minima, 5pm maxima characteristic behaviour as outlined previously, further
deeper analysis is possible by exploiting a seasonal feature present in all retail stores, that of the 25th

of December, the only universal non trading day of the year. As a consequence the 25th of December
energy profile is different to the rest of the year, where there is a known noticeable drop in pack
energy usage when compared to other days. And so by conducting an hourly usage aggregation
exercise for the 25th of December day, and by comparing it to another arbitrary day close to the 25th,
it is possible to compare the resultant 24 hour within day usage plots, to see if there any significant
differences present, and particularly if the hourly periodicity seen previously in HT packs, is still
present. Two such sample HT comparative pack energy profiles are presented in Figure 4, where it
can be clearly seen that the within day variation profiles in the Decemeber 25th plots are almost flat.

Figure 4 : Sample Hourly Time series of HT Pack Energy Usage Profiles including 25th December

There is a well known retail refrigeration industry phenomenon where the supermarket’s open HT
chill cases interact to a greater or lesser extent with a store’s air conditioning systems [Evans et al.,
2015], [Woradechjumroen et al., 2014]. From this it can reasonably concluded, from the data
analysis conducted on the 25th of December feature therefore, that the lack of within day variation
observed, is as a result of the non-interaction of the stores’ HVAC and the open case HT refrigeration
systems during the time when the store is closed for the 24 hour period. Furthermore it can therefore
be concluded that detecting packs exhibiting high within day usage variation, may be a useful



indicator in identifying packs with negative HVAC and HT interactions, with consequential high
energy wastage conditions in operation.

3.6 Part C Summer Season Pack Variation Usage
From the preliminary analysis presented earlier, in Figure 2 above, it is clear that there is annual
seasonality in evidence in the both LT and HT pack energy usage. It has been well documented the
impact of ambient air temperature on refrigeration pack energy usage, and more specifically on a
refrigeration pack’s ability to cope with the pack’s continued ongoing heat rejection requirements
during the warmer summer months with higher ambient conditions [Motta et al., 2015]. In effect Part
C variation usage analysis is an overall assessment of the pack’s condenser performance, and its
ability to reject heat efficiently.

3.7 Part C Summer Season Pack Variation Usage Calculation and Observation
An hourly energy usage plot versus ambient OAT temperature profile of a typical HT packs is
presented in Figure 5 below.

Figure 5 : Typical Pack Energy Usage versus OAT Ambient Temperature plot

With reference to the 4PC model presented earlier in Section 2, the usage profile presented in Figure
5 is clearly non-linear, with multiple Tc change points (Tc), and varying slopes (CS) , as defined in
Eq(2), in evidence. Therefore in order to properly assess condenser performance behaviour, it is
understood that deeper analytical techniques would be required to calculate the multiple differentiated
rates of change needed to detect these change points over the condenser operating ambient
temperature range. And so for now, to avoid this deeper analytic requirement, and in keeping with the
paper’s overall objective of creating pragmatic screening type analytic approaches to detecting energy
usage anomalies, and equally without the need for ingestion of additional data sources like local
weather station data, the proposed analysis defines and fixes this Part C summer period energy usage
variation as the contribution, over and above the everyday Part A and Part B usage, for the summer
months from May to September. Additionally in this simplified approach there is an assumption
presented, that given the country small size (in this case Ireland) there is no significant variation in
across country temperatures and that all packs within the country operate within generally
homogeneous external environmental operating conditions.

While this is considered a simplified approach, and not entirely accurate, it is contended, and as the
following overall summary will show, that such an approach is still a useful first pass exercise in



comparing pack/condenser behaviours across large estates, and as such can be considered an effective
screening method for detecting possible packs with condenser capacity or operational deficiencies.

4. APPLIED ANALYTIC APPROACH RESULT SUMMARY

And so when the outline screening analytic methodology is applied, using one year’s worth of ½
hourly energy raw data for all available 350 packs within the estate, numbering 200 HT and 150 LT
packs, and using the estimate definitions for the various subcategories detailed earlier, it is possible to
assess the overall estate performance through the generation of pack type summary box plots which
details the percentage contribution of annualized pack energy usage by subcategory, for both HT and
LT packs, and which are presented in Figure 6(a) and Figure 7(a) respectively , with Figures 6(b) and
7(b) giving higher resolution, and therefore a clearer view of the detected Part B and Part C
anomalies.

Figure 6 (a) : 2013 HT Pack Energy Usage Breakdown Figure 6(b) : 2013 HT Pack Energy Usage with Outliers

Figure 7 (a) : 2013 LT Pack Energy Usage Breakdown Figure 7(b) : 2013 LT Pack Energy Usage with Outliers

5. CONCLUSIONS

With reference to Figures 6 and 7 above, the following are some of the summary conclusions from
the application of the presented analytic approach

1. The median for annualized Part A baseload contribution for the LT packs in the estate was
calculated at 91%, and an equally high HT pack median of 80% within the estate, thus
confirming the earlier contention that within either pack types, LT or HT, the energy usage is
almost exclusively dependent on baseload, and influencers here being the initial pack design,
store case load and proper system setup, with the latter offering the best opportunity for



energy savings through low cost interventions. Also it should be noted the baseload pack
outliers (low percentages approaching 60%) that exist in both HT and LT packs, possibly
indicating a metering read problem.

2. The outlined screening analytic has managed to detect a much higher level of HT Part B
within day usage variation packs than LT packs (estimated to be 19 HT systems above the
91% percentile versus 1 LT system above the 99% percentile respectively when using an
arbitrary cutoff limit of 15%), and thus supporting the contention that there is significant
correlation between within day variation and store HVAC and HT Case systems interaction,
with HT packs, with open front cases more likely to have high within day energy usage than
their LT pack counterparts with closed front case types.

3. The Part C effects of ambient air temperature on pack usage for HT packs appears for the
most part to be more sensitive than LT packs when comparing the anomalous pack detections
observed (estimated to be 18 HT systems above the 91% percentile versus 4 LT systems
above the 97% percentile respectively when using an arbitrary cutoff limit of 15%). While
individual root cause analysis would need to be carried out on the anomalous packs for
obvious condenser design issues, like under sizing, or equipment maintenance issues like fan
failures, it is contended that this mismatch may be as a result of the higher levels of heat
rejection required more generally in HT packs than their LT counterparts.

6. NOMENCLATURE

HT : High temperature chill refrigeration pack and case systems
LT : Low temperature freezer refrigeration pack and case systems
HVAC : Heating, Ventilation and Air Conditioning
EB : Pack baseload usage (Kwh)
CS : Cooling slope
TC : Temperature change point at which there is a usage response with an increase in ambient
TOA : OAT ambient temperature (deg C)
EWD :Within day variation usage (Kwh)
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