
RC25581 (WAT1512-022) December 13, 2015
Computer Science

Research Division
Almaden – Austin – Beijing – Brazil – Cambridge – Dublin – Haifa – India – Kenya – Melbourne – T.J. Watson – Tokyo – Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report for
early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After
outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties). Many reports are available at http://domino.watson.ibm.com/library/CyberDig.nsf/home.

IBM Research Report

How Accurately Should I Solve Linear Systems When
Applying the Hutchinson Trace Estimator?

Jie Chen
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598 USA



HOW ACCURATELY SHOULD I SOLVE LINEAR SYSTEMS WHEN
APPLYING THE HUTCHINSON TRACE ESTIMATOR?

JIE CHEN∗

Abstract. The Hutchinson estimator defines an estimate of the trace of a matrix M , based
on a bilinear form with independent vectors y of zero-mean unit-variance uncorrelated entries. This
technique is particularly useful when M is only implicitly given but the matrix-vector product My
can be efficiently computed without M being explicitly formed. Well-known examples in practice
are M = A−1, and more generally, M = f(A). We study in this paper the conditions under which
the numerical error incurred in computing My is comparable with the statistical uncertainty caused
by the randomness of y. For the purpose of obtaining easily computable conditions, we focus on
the use of random vectors consisting of normal variables, a precursor technique attributed to Girard
by Hutchinson. As demonstrated in many practical scenarios, normal variables are as effective as
symmetric Bernoulli variables (a more common definition under the name of Hutchinson), but are
advantageous in that they enjoy a simultaneous estimation of the estimator variance.
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1. Introduction. The trace of a large, implicit matrix M finds many applica-
tions in scientific computing. In estimation theory, if A is the Fisher information
matrix of an unbiased estimator, then the trace of M = A−1 gives a lower bound of
the total variance of the estimator (see the Cramér–Rao inequality; e.g., [8]). Simi-
larly, the log-determinant of a covariance matrix A, which is equivalent to the trace of
M = logA, appears naturally in the maximization of Gaussian log-likelihoods [1, 27];
across disciplines, this term serves as a barrier in interior point methods for solving
semidefinite programs when A is the semidefinite constraint [28, 7]. In electronic
structures, the trace of the Fermi–Dirac function

fFD(A) =

[
I + exp

(
A− µI
kT

)]−1
(1.1)

gives the average number of electrons of a quantum system at chemical potential µ
and temperature T , where A is the discretized Hamiltonian and k is the Boltzmann
constant [25, 6]. Additionally, applications in lattice quantum chromodynamics [3, 26],
density of states [5, 22, 21], and uncertainty quantification [4, 19] comprise a limited,
yet informative, list that illustrates the importance of trace computation.

When the n × n matrix M is implicitly defined through a given matrix A, it
may not be computationally economic, or even viable, to first form M before ex-
tracting the trace. If, on the other hand, matrix-vector products with M are rela-
tively inexpensive to compute, then n such products suffice the recovery of the trace:
tr(M) =

∑n
i=1 e

T
i Mei, where ei is the ith column of the identity matrix. If, however,

n is so large that even n matrix-vector products are too expensive to form, most of
the existing work approximates the trace based on the following stochastic approach.

Theorem 1.1 (Hutchinson [18]). Let M ∈ Rn×n be symmetric and Y ∈ Rn be a
multivariate random variable of zero mean and unit covariance. Then, for a sample
y of Y ,

E[yTMy] = tr(M) and Var(yTMy) = 2 tr(M2) +

n∑
i=1

(
E[Y 4

i ]− 3
)
M2
ii.
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Remark. The theorem straightforwardly extends to more general cases of M . For
example, if M is unsymmetric, one may symmetrize the matrix to obtain the same
trace: tr(M) = tr(M +MT )/2. As another example, if M is Hermitian but not real,
then tr(M) = tr(<(M)).

Practical uses of Theorem 1.1 form a sample average with N iid samples yi,
i = 1, . . . , N , such that the variance is reduced by a factor of N :

E

[
1

N

N∑
i=1

yTi Myi

]
= E[yTMy] with Var

(
1

N

N∑
i=1

yTi Myi

)
=

1

N
Var(yTMy).

(1.2)
This technique, while extremely useful, poses an often neglected issue on the numerical
accuracy of the evaluation of the Myi’s. Consider, for example, Myi = A−1yi. To
one extreme, if the stochastic approximation (1.2) is highly accurate, meaning that
the variance is sufficiently small, and if A is so ill conditioned that even a stable
direct method for solving Axi = yi leaves a comparably large backward error, then
the overall departure of the estimate from the truth tr(M) is dominated by numerical
bias. Whereas such a scenario rarely occurs in practice, the opposite scenario is
certainly not uncommon: the estimate yields a moderate variance, in the sense that
it agrees with the truth on a small number of digits. Then, it is of little use to solve
linear systems Axi = yi highly accurately (if possible). Instead, it suffices for one
to use an iterative solver (possibly enhanced by using block iterations for improving
convergence [23, 24, 13]) that terminates at a moderate residual.

Hence, the subject of this paper is to study the balance of stochastic uncertainty
of the Hutchinson estimator and the numerical error incurred in the evaluation of
M -vector products. We derive practical conditions that make the two sources of
errors comparable. To this end, we first need to establish the concrete meaning of
“comparable” on a statistical basis.

Let h(y) be an unbiased estimator of some quantity µ, with variance σ as in

Ey[h(y)] = µ and Vary(h(y)) = σ2.

Moreover, let yi, i = 1, . . . , N be N independent samples from the same distribution
and define

h0 =
1

N

N∑
i=1

h(yi).

Clearly, h0 as an estimator is also unbiased. The central limit theorem states that√
N(h0−µ) converges to the normal distribution N (0, σ2). Therefore, for large N , h0

approximately follows N (µ, σ2/N). Because the variance of h0 is nothing but σ2/N ,
by applying the three-sigma rule we obtain

Pr
(
|h0 − µ| ≤ 3

√
Var(h0)

)
≈ 99.7%. (1.3)

Although Var(h0) in (1.3) could be replaced by the sample variance of h(yi) scaled by
N , in this paper we consider the case when the h(yi)’s are not computed accurately.
Then, instead, we suppose that an unbiased estimator h1 of Var(h0) is available; that
is,

E[h1] = Var(h0).
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Let h̃0 be the computed result of h0 with error ∆h0 (i.e., h0 = h̃0 + ∆h0). If the error
can be controlled to within an α portion of the estimate of the standard deviation of
h0:

|∆h0| ≤ α
√
h1, α > 0, (1.4)

then, we can maintain a confidence interval for h̃0:

Pr
(
|h̃0 − µ| ≤ 3

√
Var(h0) + α

√
h1

)
≥ Pr

(
|h0 − µ| ≤ 3

√
Var(h0)

)
≈ 99.7%. (1.5)

The numerical interpretation of the quantity s = 3
√

Var(h0) + α
√
h1 is that

with probability (approximately) at least 99.7%, the relative error of the actually
obtainable numerical result h̃0 is bounded by

|h̃0 − µ|
|µ|

≤ s

|µ|
.

In a (possibly crude) approximation, the right-hand side of the above inequality

s

|µ|
≈ σ

|µ|
· 3 + α√

N
.

Therefore, the asymptotics with respect to N is key to the accuracy of h̃0, whereas
the magnitude of α (which controls the part of numerical error) plays a less significant
role. Thus, one may safely consider α as large as 1.0. On the other hand, in order for
h̃0 to be one more digit accurate, one needs to increase the number N of samples by
a factor of 100.

The central contribution of this work is the conditions that ensure (1.4). To mate-
rialize the estimators h0 and h1, we first define the random vector Y in Theorem 1.1.
As oppose to the common use of independent ±1’s (symmetric Bernoulli variables) as
the elements of Y , in Section 2, we justify that normal variables are often as effective.
In fact, the invention of the use of normal variables was attributed to Girard [15] by
Hutchinson [18], before the symmetric Bernoulli variables became popular. One ad-
vantage of symmetric Bernoulli variables is that they minimize the variance in (1.2);
however, we show two examples, motivated by electronic structure calculations with
matrices of structural decay [6], that demonstrate that symmetric Bernoulli variables
often cannot improve the estimation accuracy over normal variables by even one digit.
Normal variables, on the other hand, allow an estimate of the variance with almost
negligible cost, which is challenging for symmetric Bernoulli variables to achieve, un-
less the variance is replaced by sample variance and the evaluation of the samples
(i.e., the Myi’s) is accurate to machine precision.

In Section 3, we establish the condition ensuring (1.4) for the case M = A−1. The
condition is with respect to the absolute residual in the solution of linear equations
Axi = yi. This condition can be straightforwardly used as the absolute residual
tolerance in an iterative solver. Additionally, an example with symmetric tridiagonal
matrices is shown. Similar to the example in the section that follows, these are
“toy” matrices because many properties (e.g., tr(A−1) and the estimator variance)
can be analytically derived. The purpose of the toy examples, however, is to show the
asymptotics with respect to the matrix size n and the sample size N and to give a
flavor of the numerical results under randomness. A numerical example with matrices
from applications is given two sections later.
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In Section 4, we establish the condition ensuring (1.4) in a probabilistic for the
case M = f(A). A general approach for computing matrix-vector products of the form
f(A)y is to replace f by an approximate function p (e.g., a polynomial or a rational
function) such that the evaluation of p(A)y renders to matrix-vector multiplications
with A. This approach should bare no surprise since for the case of linear systems, a
Krylov solver can be interpreted as building a polynomial that interpolates f(x) = x−1

at the approximate eigenvalues of A. Different from the condition for M = A−1,
however, the condition here is with respect to the relative error of the approximant
p in the uniform norm. This condition is straightforwardly applicable when p is
a polynomial, such as in the approach proposed by Chen et al. [12], because the
approximation error can be monitored without the knowledge of y and p(A)y can
be evaluated accurately to machine precision. For rational or other approximations
(see, e.g., [17]), one must take into account the numerical error in evaluating p(A)y in
addition to the approximation error of p. As before, we show a numerical example with
Toeplitz matrices with structural decay to illustrate the use of the condition. These
matrices are model matrices for electronic structures and the attainable relative error
scales as Θ(n−

1
2N−

1
2 ) with high probability.

We show further computational experiences in Section 5, by using the PARSEC
collection1 of matrices arising from density functional theory [10, 9]. The function f
therein is defined based on the Fermi–Dirac function (1.1). In this case, the number
N of samples is chosen to be 1, 000 and the trace estimate is generally two to four
digits accurate (with sufficiently high probability). Interestingly, the general trend
of results suggests that the relative accuracy improves as the matrix size increases,
even though the same N is used throughout. This observation agrees with that of the
model matrices with structural decay in Section 4.

Related work, discussions, and concluding remarks are given in Section 6.

2. Hutchinson estimator with normal variables. In this section, we justify
the use of normal variables in the Hutchinson estimator and study the properties of
the estimator, the variance of the estimator, and the estimator of the variance.

2.1. Normal v.s. symmetric Bernoulli. A symmetric Bernoulli variable is
a discrete random variable that takes the values ±1 with equal probabilities. The
following result is straightforward.

Corollary 2.1 (Hutchinson [18]). Under the condition of Theorem 1.1,
1. If the entries of Y are independent symmetric Bernoulli variables, then

Var(yTMy) = 2 tr(M2)− 2

n∑
i=1

M2
ii.

This variance is the minimum among all possible distributions of Y .
2. If Y ∼ N (0, I), then

Var(yTMy) = 2 tr(M2).

Proof. The result immediately follows from the fact that the fourth moment of a
symmetric Bernoulli variable is 1 whereas that of a normal variable is 3. Moreover, for
any random variable X of zero-mean and unit-variance, the fourth moment is lower

1Available from the University of Florida Sparse Matrix Collection https://www.cise.ufl.edu/

research/sparse/matrices/
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bounded by 1 because 0 ≤ Var(X2) = E[X2 − 1]2 = E[X4] − 1. Thus, symmetric
Bernoulli variables yield the minimum variance.

A direct consequence of the corollary is that the variance may vanish (when M is
diagonal) for symmetric Bernoulli variables; but for normal variables, the standard-

deviation-to-mean ratio admits a lower bound Ω(n−
1
2 ).

Proposition 2.2. Let M ∈ Rn×n be symmetric and Y ∼ N (0, In). Then, for a
sample y of Y , √

Var(yTMy)

|E[yTMy]|
≥
√

2

n
.

Proof. Let λ be the vector of eigenvalues of M . One obtains the inequality by
noting that

Var(yTMy) = 2 tr(M2) = 2‖λ‖22, |E[yTMy]| = | tr(M)| ≤ ‖λ‖1,

and that ‖λ‖1 ≤
√
n‖λ‖2.

As such, it may appear that normal variables are inferior to symmetric Bernoulli
variables, because if the energy of the matrix (in the sense of Frobenius norm ‖M‖2F =
tr(M2)) is concentrated on the diagonal, then the latter will yield highly accurate
estimates. In many scenarios, however, this is an impractical assumption. In the
following, we show two examples, both of which entail a decaying structure, and
demonstrate that the standard-deviation-to-mean ratio attains the rate Θ(n−

1
2 ) in

both estimators. To maintain clarity, we use subscript “N” to mean normal and “B”
to mean symmetric Bernoulli.

Example: Toeplitz matrix with exponential decay. Consider Mij = θ|i−j|

where 0 < θ < 1. Then, tr(M) = n and

tr(M2) = n
1 + θ2

1− θ2
− 2

θ2(1− θ2n)

(1− θ2)2
,

n∑
i=1

M2
ii = n.

Thus, √
VarN(yTMy)

|E[yTMy]|
=

√
2

n

1 + θ2

1− θ2
+O

(
1

n

)
,

and √
VarB(yTMy)

|E[yTMy]|
=

√
2

n

2θ2

1− θ2
+O

(
1

n

)
.

Asymptotically, θ needs to be ≤ 1/
√

199 ≈ 0.07 in order that
√

VarB is a factor of 10
smaller than

√
VarN (i.e., one more digit accurate under the same probability).

Example: Toeplitz matrix with algebraic decay. Consider Mij = |i − j +
1|−1. Then, tr(M) = n and

tr(M2) = −n+ 2(n+ 1)

n∑
i=1

1

i2
− 2

n∑
i=1

1

i
,

n∑
i=1

M2
ii = n.
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By applying the inequalities

π2

6
− 1

n
<

n∑
i=1

1

i2
<
π2

6
− 1

n+ 1
and ln(n+ 1) <

n∑
i=1

1

i
≤ lnn+ 1,

we obtain(
π2

3
− 1

)
n− 2

n
− 2 lnn+

π2

3
− 4 < tr(M2) <

(
π2

3
− 1

)
n− 2 ln(n+ 1) +

π2

3
− 2.

Therefore, √
VarN(yTMy)

|E[yTMy]|
=

√
2

n

(
π2

3
− 1

)
+O

(
lnn

n

)
,

and √
VarB(yTMy)

|E[yTMy]|
=

√
2

n

(
π2

3
− 2

)
+O

(
lnn

n

)
.

Asymptotically, the ratio between
√

VarB and
√

VarN is approximately 0.75, which
means that the relative error resulting from the use of symmetric Bernoulli variables
is only slightly better than that of normal variables. Improvement on the number of
accurate digits is impossible.

2.2. Estimator, variance, and estimator of variance. Structural decay is
an important property in electronic structures [6]. As demonstrated above, for model
matrices with such a property, normal variables are generally as effective as symmetric
Bernoulli variables. An advantage of the former is that it allows for a simultaneous
estimation of the variance with negligible costs. Thus, in this subsection, we define
the variance estimator, which itself has a variance that in turn admits an estimator.
The recurrence of estimator and variance interestingly repeats endlessly. From now
on, we use the sample average in place of a single sample in the estimator.

Proposition 2.3. Let M ∈ Rn×n be symmetric and yi, i = 1, . . . , N , be random
iid vectors from N (0, In). Then, for all j = 0, 1, . . .

Var

(
22

j−1

N2j

N∑
i=1

yTi M
2jyi

)
= E

[
22

j+1−1

N2j+1

N∑
i=1

yTi M
2j+1

yi

]
.

Proof. With basic properties of the variance,

Var

(
22

j−1

N2j

N∑
i=1

yTi M
2jyi

)
=

(
22

j−1

N2j−1

)2

Var

(
1

N

N∑
i=1

yTi M
2jyi

)

=
1

N

(
22

j−1

N2j−1

)2

Var
(
yT1 M

2jy1

)
.

Invoking Corollary 2.1 followed by Theorem 1.1, we obtain

Var
(
yT1 M

2jy1

)
= 2 tr

(
M2j+1

)
= 2 E

[
yT1 M

2j+1

y1

]
.
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Then, together with

E
[
yT1 M

2j+1

y1

]
= E

[
1

N

N∑
i=1

yTi M
2j+1

yi

]
,

we conclude the proposition.
Based on the proposition, we define

hj :=
22

j−1

N2j

N∑
i=1

yTi M
2jyi, j = 0, 1, . . . (2.1)

This definition is consistent with the notation h0 and h1 introduced earlier in the
introduction. Then, Equation (1.2) together with Proposition 2.3 state that h0 is an
estimator of tr(M), h1 is an estimator of the variance of h0, and generally, hj+1 is
an estimator of the variance of hj . Clearly, all estimators are unbiased. We have the
following result.

Theorem 2.4. Denote by λ|min | and λ|max | the smallest the largest singular
value of a symmetric nonzero matrix M , respectively. For all j > 0,(

2λ|min |

N

)2j

≤ hj+1

|hj |
≤
(

2λ|max |

N

)2j

. (2.2)

Additionally,
1. (2.2) holds when j = 0 and M is definite.
2. The left half of (2.2) holds when j = 0 and M is indefinite.

Proof. When j > 0, hj > 0. Write zi = M2j−1

yi. Then,

hj =
22

j−1

N2j

N∑
i=1

‖zi‖2 and hj+1 =
22

j+1−1

N2j+1

N∑
i=1

zTi M
2jzi.

Because for each i,

λ2
j

|min |‖zi‖
2 ≤ zTi M2jzi ≤ λ2

j

|max |‖zi‖
2,

summing over i we conclude (2.2).
When j = 0 and M is positive semidefinite, the same argument can be used to

establish (2.2), by noting that zi is well defined. When j = 0 and M is negative
semidefinite, |h0| = −h0. Then, replacing M by −M will prove (2.2).

We now proceed to the remaining case: j = 0 and M is indefinite. We concatenate
all the vectors yi to form a vector z, and duplicate M diagonally to form a matrix M̃
(i.e., M̃ is block diagonal and the diagonal blocks are M). Then,

|h0| =
1

N
|zT M̃z| and h1 =

2

N2
zT M̃2z.

Because M̃ can be diagonalized and the unitary factor can be absorbed to z, we treat
M̃ a diagonal matrix where the diagonal elements are the eigenvalues of M . Then,(

2λ|min |

N

)
|h0| =

(
2λ|min |

N2

) ∣∣∣∑
k

λkz
2
k

∣∣∣ ≤ 2

N2

∑
k

λ|min ||λkz2k| ≤
2

N2

∑
k

λ2kz
2
k = h1,
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where zk are the elements of z and λk are the eigenvalues of M . This shows the left
half of (2.2).

Remark. The right half of (2.2) may not hold when j = 0 and M is indefinite,
because h0 may attain 0.

An immediate consequence of Theorem 2.4 is that(
2λ|min |

N

)2j−2

h1 ≤ hj ≤
(

2λ|max |

N

)2j−2

h1 and

(
2λ|min |

N

)
|h0| ≤ h1.

The significance of this result is three fold. First, when N is considered fixed and
sufficiently large, hj decreases doubly exponentially with respect to j; such a decrease

is faster than the exponential. Second, when N varies, hj decreases as Θ(N−2
j+1) if

h1 = Θ(N−1). Such a decrease is a very-high-order algebraic decrease. Third, for all

j > 0, the standard-deviation-to-mean ratio
√
hj+1/hj = Θ(N−

1
2 ) if h1 is Θ(N−1).

Moreover,
√
h1/|h0| is at least Ω(N−

1
2 ). Since the ratio quantifies the relative error

of using hj as an estimator of Var(hj−1) when j > 0, and of tr(M) when j = 0, the
j-independent decrease rate implies that the quality of estimators hj is similar across
j, in the relative term. Then, in the absolute term, hj is more and more accurate as
j becomes large.

We illustrate an example for the last point. Suppose tr(M) = 316.22 and the
estimate h0 = 314.70 is two-digit accurate. The true standard deviation

√
Var(h0) =

1.99. In practice, when we use h1 to estimate Var(h0), we may obtain
√
h1 = 1.90,

again two-digit accurate. In such a case, we may safely treat h1 the “same” as
Var(h0) when establishing the confidence interval for h0, because the absolute differ-
ence 1.99-1.90 is very small compared with the true trace 316.22.

On closing this section, we note that later we will frequently refer to the quantity√
tr(M2)

tr(M)
=

√
h1
h0

√
N

2
, (2.3)

which is
√
N/2 times the standard-deviation-to-mean ratio. If this quantity scales

as Θ(n−
1
2 ) (cf. the lower bound in Proposition 2.2), then the standard-deviation-to-

mean ratio
√
h1/h0 scales as Θ(n−

1
2N−

1
2 ). This means that the relative error of the

estimate of the trace decreases not only with the sample size N but also with the
matrix size n.

3. Estimating tr(A−1). In this section, we consider the case M = A−1, where
the Myi’s are computed through solving linear systems Axi = yi. The following is
the main result.

Theorem 3.1. Let A ∈ Rn×n be symmetric nonsingular and yi, i = 1, 2, . . . , N ,
be independent vectors from N (0, In). For each i, denote by ri = yi−Axi the residual
of the linear system with matrix A and right-hand side yi, where xi is an approximate
solution. Decompose the trace estimator h0 = h̃0 + ∆h0, where

h0 =
1

N

N∑
i=1

yTi A
−1yi and h̃0 =

1

N

N∑
i=1

yTi xi,

and let h1 be the estimator of the variance of h0 defined in (2.1). For any α > 0, if

‖ri‖ ≤ α
√

2

N
for all i, (3.1)
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then |∆h0| ≤ α
√
h1.

Proof. We express ∆h0 in terms of ri:

∆h0 =
1

N

N∑
i=1

yTi A
−1ri.

Let z be the column concatenation of the vectors A−1yi and similarly let r be the
concatenation of the ri’s. Then,

∆h0 =
1

N
zT r and h1 =

2

N2
zT z.

By Cauchy–Schwarz, |zT r| ≤ ‖z‖‖r‖. Therefore, if all vectors ri satisfy (3.1), then
‖r‖ ≤ α

√
2. Thus,

|∆h0| =
1

N
|zT r| ≤ 1

N
‖z‖‖r‖ ≤ α

√
2

N
‖z‖ = α

√
h1,

which concludes the theorem.
We note that the condition (3.1) concerns the absolute residual, but in software

implementations, the tolerance of a Krylov solver is typically or the relative residual.
Hence, care is called for when one uses a software. Nevertheless, the following result
indicates that the absolute residual is approximately

√
n times the relative one.

Proposition 3.2. If y ∼ N (0, In), then

E[‖y‖] =
nΓ
(
n+1
2

)
√

2Γ
(
n
2 + 1

) and lim
n→∞

E[‖y‖]√
n

= 1.

Proof. The first equality is a straightforward calculation:

E[‖y‖] =

∫
Rn

‖y‖
(2π)n/2

exp

(
−‖y‖

2

2

)
dy by definition

=
nπn/2

Γ
(
n
2 + 1

) ∫ ∞
0

r

(2π)n/2
exp

(
−r

2

2

)
rn−1 dr spherical coordinate r = ‖y‖

=
n
√

2

Γ
(
n
2 + 1

) ∫ ∞
0

exp
(
−r2

)
rn dr change of variable r/

√
2→ r

=
n
√

2

Γ
(
n
2 + 1

) · 1

2
Γ

(
n+ 1

2

)
.

The second equality follows from

lim
m→∞

Γ
(
m− 1

2

)√
m

Γ(m)
= 1.

Remark. Clearly, because ‖y‖2 ∼ χ2
n, we have E[‖y‖2] = n.

3.1. Example: Symmetric tridiagonal matrix. Consider the following tridi-
agonal matrix

A =



a −1

−1 a
. . .

. . .
. . .

. . .

. . .
. . . −1
−1 a


. (3.2)
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An interesting fact of this example is that the standard-deviation-to-mean ratio be-
haves differently depending on the value of a. When |a| = 2, in a later proposition we

show that the ratio (2.3) is Θ(1), and hence
√
h1/h0 is Θ(N−

1
2 ). This means that the

relative error decreases only with the sample size but not with the matrix size. For
a moderate N , one expects that the approximation is, say, one-digit accurate. When
|a| < 2, even though the ratio (2.3) admits a closed-form expression, its asymptotics
with respect to n is unclear. If one arbitrarily pick a in this interval, one expects
that the relative error is as bad as that in the case |a| = 2. However, when |a| > 2,

the ratio (2.3) is Θ(n−
1
2 ), and thus

√
h1/h0 = Θ(n−

1
2N−

1
2 ). This encouraging result

indicates that the relative error generally decreases when the matrix becomes larger,
in addition to when N increases. Hence, one expects that the relative error is a few
digits accurate. In all cases, we demonstrate that the computed result of the trace
estimate, h̃0, is close to the theoretical value h0, if the linear systems are solved to an
accuracy dictated by the condition (3.1).

We first present some analytical results. When A is invertible, one may show
through a direct verification that the inverse takes the form

A−1 =


uiun+1−j

un+1

un+1−iuj
un+1

 ,

where the ui’s satisfy the recurrence relation

u1 = 1, u2 = a, ui+1 = aui − ui−1, i = 2, 3, . . .

For different cases of a, we give the expressions of ui.
1. When a = 2, ui = i for all i. Hence,

(A−1)ij = min(i, j)− ij

n+ 1
, i, j = 1, . . . , n.

2. When a = −2, ui = (−1)i+1i for all i. Hence,

(A−1)ij = (−1)i−j+1

[
min(i, j)− ij

n+ 1

]
, i, j = 1, . . . , n.

3. When |a| < 2, let θ be the unique value in the interval (0, π) such that
tan θ =

√
4− a2/a. If (n+ 1)θ is a multiple of π, then A is singular; otherwise,

ui =
2 sin(iθ)√

4− a2
for all i.

Hence, the elements of the lower triangular part of A−1 are

(A−1)ij =
2 sin[(n+ 1− i)θ] sin(jθ)√

4− a2 sin[(n+ 1)θ]
, i = 1, . . . , n, j = 1, . . . , i.

4. When |a| > 2,

ui =
1√

a2 − 4

(a+
√
a2 − 4

2

)i
−

(
a−
√
a2 − 4

2

)i for all i.
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Based on these results, we obtain tr(A−1) and tr(A−2), which lead to the ra-
tio (2.3).

Proposition 3.3. For A defined in (3.2),
1. When a = ±2, respectively,

tr(A−1) = ±n
2 + 2n

6
and tr(A−2) =

2n4 + 8n3 + 17n2 + 18n

180
.

2. When |a| < 2, let θ be the unique value in the interval (0, π) such that tan θ =√
4− a2/a. If (n+ 1)θ is not a multiple of π,

tr(A−1) =
−(n+ 1) cot[(n+ 1)θ] + cot θ√

4− a2

and

tr(A−2) =
(n+ 1)2 csc2[(n+ 1)θ] + (n+ 1) cot[(n+ 1)θ] cot θ + 1− 2 csc2 θ

4− a2
.

3. When |a| > 2, let

ζ =
|a|+

√
a2 − 4

2
and δ =

|a| −
√
a2 − 4

|a|+
√
a2 − 4

.

Then,

(1− δ)2n√
a2 − 4

≤ | tr(A−1)| ≤ n√
a2 − 4

and

(1− δ)4

a2 − 4

[
n
ζ2 + 1

ζ2 − 1
− 2

ζ2(ζ2n − 1)

(ζ2 − 1)2ζ2n

]
≤ tr(A−2) ≤ 1

a2 − 4

[
n
ζ2 + 1

ζ2 − 1
− 2

ζ2(ζ2n − 1)

(ζ2 − 1)2ζ2n

]
.

Proof. The first two parts of the proposition can be straightforwardly verified
through tedious algebraic calculations. For the third part, we prove only the case
a > 2. The proof of the other case a < −2 is analogous.

Based on the definition of ζ and δ, we note that ζ > 1, 0 < δ < 1 and ui =
(1− δi)ζi/

√
a2 − 4. Then, when i ≥ j,

un+1−iuj
√
a2 − 4

un+1
=

(1− δn+1−i)(1− δj)
1− δn+1

ζj−i,

which is bounded on both sides by (1− δ)2ζj−i and ζj−i. Therefore,

(1− δ)2ζ−|i−j| ≤ (A−1)ij
√
a2 − 4 ≤ ζ−|i−j|.

Summing over i = j, we obtain the inequality for tr(A−1); and summing over i and
j, we obtain the inequality for tr(A−2) = ‖A−1‖2F .

Remark. In the inequalities of the third part, the right half is generally tight but
not the left half. This is because when δ < 1 is away from 1,

(1− δn+1−i)(1− δj)
1− δn+1
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is close to 1, unless when i ≈ n and j ≈ 1, which makes it close to (1− δ)2. However,
the number of cases when i ≈ n and j ≈ 1 is limited and thus when summing over
i (and j), these cases contribute little to the overall sum. Therefore, the trace terms
leaned toward the upper bounds. As a result,√

tr(A−2)

tr(A−1)
≈

√
1

n

ζ2 + 1

ζ2 − 1
.

With the analytic understanding of tr(A−1) and tr(A−2), we now show numerical
results for the following six quantities:

(a) tr(A−1) (b) h0 (c) h0, iterative solve (tol)

(d)

√
2

N
tr(A−2) (e)

√
h1 (f)

√
h1, iterative solve (tol).

See Table 3.1.

Table 3.1
Computational results for the tridiagonal matrix A defined in (3.2). Parameters: n = 1000,

N = 100, α = 1. Residual tolerance computed from (3.1): tol = 1.41e-01, E[rtol] = 4.47e-03.

Case a = 2, average residual = 1.23e-01,
average relative residual = 3.90e-03

Truth Estim. (full solve) Estim. (tol)
tr(A−1) 167000 175960 175708

stddev(estim) 14937 15507 15470

Case a = 1.7, average residual = 9.75e-02,
average relative residual = 3.08e-03

Truth Estim. (full solve) Estim. (tol)
tr(A−1) 1138.61 1030.96 1029.46

stddev(estim) 209.47 201.93 201.72

Case a = 2.6, average residual = 9.19e-02,
average relative residual = 2.91e-03

Truth Estim. (full solve) Estim. (tol)
tr(A−1) 601.589 600.135 600.088

stddev(estim) 3.365 3.358 3.358

Let us recall the meaning of these quantities. Term (a) is the truth. Term
(b) is the estimate, with variance in Term (d). In the context of this paper, we
approximate Term (b) by using Term (c), which is computed approximately based on
the condition (3.1) in Theorem 3.1; and Term (e) is the estimator of Term (d). We
approximate Term (e) by using Term (f), a byproduct of the calculation of Term (c).

We pick three values of a for demonstrating the numerical results, each corre-
sponding to one part of Proposition 3.3. Because the case a = 2 corresponds to the
standard 1D Laplacian, whose eigenvalues lie in the interval (0, 4), we easily see that
A is positive definite when a = 2 and 2.6, but is indefinite when a = 1.7. In light
of the indefiniteness, we use GMRES as the linear solver and block Jacobi as the
preconditioner.
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When the sample size N is 100, the condition (3.1) indicates that we need only
an absolute residual tolerance 1.41e-01, which corresponds to an average relative
residual tolerance 4.47e-03 for a matrix of size n = 1, 000. In such a setting, the
results in Table 3.1 indicate that the estimates/approximations are one- (close to two-
) digit accurate for a = 2 and a = 1.7, but are two- (close to three-) digit accurate for
a = 2.6. The absolute errors are all within the standard deviation.

4. Estimating tr(f(A)). In this section, we consider the case M = f(A), where
the function f is approximated by p. The following is the main result.

Theorem 4.1. Let A ∈ Rn×n be symmetric, f and p be functions well defined
on the spectrum of A, and yi, i = 1, 2, . . . , N , be independent vectors from N (0, In).
Decompose the trace estimator h0 = h̃0 + ∆h0, where

h0 =
1

N

N∑
i=1

yTi f(A)yi and h̃0 =
1

N

N∑
i=1

yTi p(A)yi,

and let h1 be the estimator of the variance of h0 defined in (2.1). For any α > 0 and
δ ∈ (0, 1/2), if

|1− p(λ)/f(λ)| ≤ α

√
2

(1 + δ)nN
(4.1)

for all eigenvalues λ of A, then |∆h0| ≤ α
√
h1 with probability at least 1− e−δ2nN/6.

The proof of the theorem relies on the following lemma, whose result appears in
various slightly different forms; see, e.g., [14, 20].

Lemma 4.2. Let z ∼ N (0, Id). Then, for any δ ∈ (0, 1/2),

Pr
(
‖z‖2 ≤ (1 + δ)d

)
≥ 1− e−δ

2d/6.

Proof. For any λ > 0, we apply the monotone transformation followed by the
Markov inequality:

Pr
(
‖z‖2 > (1 + δ)d

)
= Pr

(
exp(λ‖z‖2) > exp(λ(1 + δ)d)

)
≤ E[exp(λ‖z‖2)]

exp(λ(1 + δ)d)
.

One easily calculates that the above expectation evaluates to E[exp(λ‖z‖2)] = (1 −
2λ)−d/2 when λ < 1/2. Therefore,

Pr
(
‖z‖2 > (1 + δ)d

)
≤ (1− 2λ)−d/2

exp(λ(1 + δ)d)

when 0 < λ < 1/2. In this interval, the right-hand side of the above inequality attains
minimum when 1− 2λ = (1 + δ)−1. Hence,

Pr
(
‖z‖2 > (1 + δ)d

)
≤ (1 + δ)d/2

exp(δd/2)
.

By using the inequality ln(1 + δ) ≤ δ − δ2/3 for δ ∈ (0, 1/2), we conclude the lemma.
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Proof of Theorem 4.1. When f(A) is nonsingular, write

∆h0 =
1

N

N∑
i=1

yTi f(A)(I − f(A)−1p(A))yi =
1

N

N∑
i=1

yTi f(A)ri,

where ri = (I − f(A)−1p(A))yi. Let z be the column concatenation of the vectors
f(A)yi and similarly let r be the concatenation of ri. Then,

∆h0 =
1

N
zT r and h1 =

2

N2
zT z.

If (4.1) is satisfied, we have

‖r‖ ≤ α

√
2

(1 + δ)nN
‖w‖,

where w is the column concatenation of the vectors yi. By Lemma 4.2, with probability
at least 1 − e−δ

2nN/6, we have ‖w‖ ≤
√

(1 + δ)nN . Therefore, with at least this

probability, ‖r‖ ≤ α
√

2. Then, by Cauchy–Schwarz |zT r| ≤ ‖z‖‖r‖, we immediately
conclude the theorem.

Remark. The Theorem suffers no loss of generality when f(λ) = 0 for some
eigenvalue λ. In such a case, because f is bounded within the spectrum interval, one
may define f̃ = f + c for some constant c so that f̃(λ) 6= 0 for all eigenvalues. Then,
the theorem applies to the new function f̃ .

Different from the condition in the preceding section, the condition (4.1) here
ensures |∆h0| ≤ α

√
h1 only in the probabilistic sense. Hence, the establishment of

the confidence interval (1.5) for h̃0 needs a modification:

Pr
(
|h̃0 − µ| ≤ 3

√
Var(h0) + α

√
h1

)
≥ Pr

(
|h0 − µ| ≤ 3

√
Var(h0)

)
Pr
(
|∆h0| ≤ α

√
h1

)
≈ (1− e−δ

2nN/6)× 99.7%.

Such a modification, however, is minor because with three-digit precision,

(1− e−δ
2nN/6)× 99.7% ≈ 99.7%

as long as δ2nN/6 > 10.

4.1. Example: Toeplitz matrices with decay. To demonstrate the use of
Theorem 4.1, here we consider Toeplitz matrices with structural decay (exponential
or algebraic). Similar to the example in the preceding section, decaying Toeplitz
matrices enjoy interesting properties. As we will show later, the standard-deviation-
to-mean ratio decreases as Θ(n−

1
2N−

1
2 ) for any continuous function f . Hence, one

expects that the estimate can be more accurate when the matrix becomes larger. As
model matrices for electronic structures, they hint on the effective use of the trace
estimator in this application.

Let Aij = ti−j , where for symmetry tk = t−k. Assume that the infinite se-
quence . . . , t−2, t−1, t0, t1, t2, . . . consists of the coefficients of the Fourier series of a
2π-periodic function q(ω) in that

q(ω) =

∞∑
k=−∞

tke
i kω with tk =

1

2π

∫ 2π

0

q(ω)e−i kω dω. (4.2)
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Then, for any length-n vector x,

xTAx =
1

2π

∫ 2π

0

q(ω)

∣∣∣∣∣
n∑
j=1

xje
−i jω

∣∣∣∣∣
2

dω.

Because

1

2π

∫ 2π

0

∣∣∣∣∣
n∑
j=1

xje
−i jω

∣∣∣∣∣
2

dω = ‖x‖22,

if we choose an x with a unit norm, then

inf
ω∈[0,2π]

q(ω) ≤ xTAx ≤ sup
ω∈[0,2π]

q(ω),

which means that the eigenvalues of A are bounded within the range of q.
We will add a subscript n to A when asymptotics is in concern. A useful result

for Toeplitz matrices is that the eigenvalues of An, denoted as λ
(n)
j , j = 0, . . . , n− 1,

are close to equally-spaced samples of q. For this, we need the definition of equal
distribution.

Definition 4.3. Two sets of real numbers {a(n)j }j=0,...,n−1 and {b(n)j }j=0,...,n−1
are equally distributed in the interval [M1,M2] if for any continuous function F :
[M1,M2]→ R,

lim
n→∞

1

n

n−1∑
j=0

[F (a
(n)
j )− F (b

(n)
j )] = 0.

It is well known that the eigenvalues {λ(n)j } of An and the set {q(2πj/n)}j=0,...,n−1
are equally distributed (see, e.g, [16, 11]). An immediate consequence is that for a
matrix function f , if it is continuous on the range of q, then the trace of f(An) and
that of f2(An) can be characterized by

lim
n→∞

1

n
tr(f(An)) = lim

n→∞

1

n

n−1∑
j=0

f(λ
(n)
j ) = lim

n→∞

1

n

n−1∑
j=0

f(q(2πj/n)) =
1

2π

∫ 2π

0

f(q(ω)) dω

and

lim
n→∞

1

n
tr(f2(An)) =

1

2π

∫ 2π

0

f2(q(ω)) dω.

Therefore, we have the following result.
Theorem 4.4. Given an infinite sequence . . . , t−2, t−1, t0, t1, t2, . . . that satisfies

the symmetry tk = t−k and the assumption (4.2) for some 2π-periodic function q(ω),
define a sequence of matrices An, n = 1, 2, . . ., where (An)ij = ti−j. Then, for any f
continuous on the range of q,

lim
n→∞

n
1
2

√
tr(f2(An))

tr(f(An))
=

(∫ 2π

0

2πf2(q(ω)) dω

) 1
2

∫ 2π

0

f(q(ω)) dω

.

We now consider two examples.
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Exponential decay. Let

tk = θ|k|, 0 < θ < 1. (4.3)

We have

q(ω) =

∞∑
k=−∞

tke
i kω = −1 + 2<

( ∞∑
k=0

ek ln θei kω

)

= −1 + 2<
(

1

1− eln θ+iω

)
=

1− θ2

1− 2θ cosω + θ2
.

Therefore,

qmax = q(0) =
1 + θ

1− θ
and qmin = q(π) =

1− θ
1 + θ

.

Algebraic decay. Let

tk = (k2 + 1)−1. (4.4)

Note that this decay has a different order from that in Section 2. We make use of the
well known Fourier transform

2a

a2 + ω2
=

∫ +∞

−∞
e−a|t|e−iωt dt, a > 0

to write

q(ω) =

+∞∑
k=−∞

ei kω

1 + k2
=

1

2

+∞∑
k=−∞

∫ +∞

−∞
e−|t|e−i kt dt ei kω

=
1

2

∫ +∞

−∞
e−|t|

[
+∞∑

k=−∞

e−i ktei kω

]
dt

= π

∫ +∞

−∞
e−|t| III(t− ω) dt = π

+∞∑
j=−∞

e−|ω+2πj|,

where III denotes the Dirac comb. Then, in the interval [0, 2π],

q(ω) =
πe2π

e2π − 1
e−ω +

π

e2π − 1
eω.

Therefore,

qmax = q(0) = π
e2π + 1

e2π − 1
and qmin = q(π) =

2πeπ

e2π − 1
.

In both examples, q is positive and hence A is positive definite. We use the
square root function f(x) =

√
x to demonstrate numerical results of the following

eight quantities:

(a) tr(f(A)) (b)
n

2π

∫
f(q(ω)) (c) h0, exact f (d) h0, using p

(e)

√
2

N
tr(f2(A)) (f)

√
n

Nπ

∫
f2(q(ω)) (g)

√
h1, exact f (h)

√
h1, using p.
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Table 4.1
Computational results for Toeplitz matrices defined in (4.3) and (4.4). Parameters: n = 1000,

N = 100, α = 1, δ = 0.1. Tolerance on relative approximation error computed from (4.1): rtol =

4.26e-03.

Case: exponential decay, θ = 0.7, interpolation interval [0.176, 5.667],
polynomial degree k = 10, relative approximation error = 3.40e-03

Truth Approx. Truth Estim. (exact f) Estim. (rtol)

tr(A1/2) 839.299 839.122 837.889 837.944

stddev(estim) 4.472 4.472 4.464 4.464

Case: algebraic decay, interpolation interval [0.272, 3.154],
polynomial degree k = 6, relative approximation error = 2.35e-03

Truth Approx. Truth Estim. (exact f) Estim. (rtol)

tr(A1/2) 930.241 930.169 929.038 929.046

stddev(estim) 4.472 4.472 4.465 4.465

See Table 4.1.
Let us recall the meaning of these quantities. Term (a) is the truth. Term (c)

is the estimate, with variance in Term (e). Terms (b) and (f) are approximations of
Terms (a) and (e), respectively, based on equal distributions at large n. In the context
of this paper, we approximate Term (c) by using Term (d), where the approximation
p ≈ f achieves a relative error dictated by (4.1) of Theorem 4.1; and Term (g) is
the estimator of Term (e). Moreover, we approximate Term (g) by using Term (h), a
byproduct of the calculation of Term (d).

Because the matrix A is well conditioned (see the values of qmin and qmax previ-
ously analyzed), the square root function f can be well approximated by using the
simple Chebyshev interpolation. Let k be the degree of the interpolating polynomial
p that interpolates f at the (shifted) Chebyshev nodes in the interval [qmin, qmax].
These nodes are the roots of the (shifted) Chebyshev polynomial Tk+1 of degree k+1.
Then, the relative approximation error max |1− p/f |, which is required in (4.1), can
be well approximated by the maximum of |1− p/f | evaluated at the extrema of Tk+1,
because these nodes interleave with the Chebyshev nodes.

When the sample size N is 100, the condition (4.1) indicates that we need only a
relative error 4.26e-03. In such a setting, the results in Table 4.1 indicate that the
estimates/approximations yield a relative error between 10−2 and 10−3. The absolute
errors are all within the standard deviation.

5. Further numerical examples in electronic structures. In this section,
we show further computational results by using the PARSEC collection of matrices
arising from density functional theory. The function f is a simple scaling and shift of
the Fermi–Dirac function fFD in (1.1):

f(x) = 2fFD(x)− 1 =
1− exp[β(x− µ)]

1 + exp[β(x− µ)]
, β = (kT )−1 > 0. (5.1)

The reason of performing this transformation is that fFD approaches 0 as x → ∞.
Then, the relative approximation error is hard to control were fFD used as the func-
tion. According to the remark of Theorem 4.1, we perform the transformation to
resolve this challenge. Clearly, the function f is nothing but the negative hyperbolic
tangent: f(x) = − tanh[β(x− µ)/2].
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We set β to be a large number 100 so that f appears close to the negative sign
function. We set the chemical potential µ to lie at 1/3 of the spectrum interval, and
scale the shifted matrix A − µI such that its spectral radius is 1. Hence, function
approximation is carried out in the unit interval [−1, 1]. The extreme eigenvalues
of A are computed by using the Lanczos method. Numerical results are shown in
Table 5.1.

Table 5.1
Computational results for the PARSEC collection of matrices. The function f is defined

in (5.1). Parameters: N = 1000, α = 1, δ = 0.1.

Matrix n rtol Degree h0
√
h1

Si2 769 1.54e-03 241 -269.096 1.210

SiH4 5,041 6.01e-04 273 -2049.98 3.09

SiNa 5,743 5.63e-04 275 -2324.90 3.30

Na5 5,832 5.58e-04 275 -2006.35 3.32

benzene 8,219 4.70e-04 281 -2817.46 3.94

Si10H16 17,077 3.26e-04 291 -6694.64 5.70

Si5H12 19,896 3.02e-04 295 -7290.60 6.14

SiO 33,401 2.33e-04 303 -12601.3 7.9

Ga3As3H12 61,349 1.72e-04 313 61321.1 11.0

GaAsH6 61,349 1.72e-04 313 61334.8 11.0

H2O 67,024 1.65e-04 315 -22269.1 11.2

Si34H36 97,569 1.37e-04 321 -36723.1 13.6

Ge87H76 112,985 1.27e-04 323 -43704.8 14.6

Ge99H100 112,985 1.27e-04 323 -43371.0 14.6

Ga10As10H30 113,081 1.27e-04 323 113020. 15.

Ga19As19H42 133,123 1.17e-04 327 133034. 16.

SiO2 155,331 1.08e-04 329 -52984.2 17.1

Si41Ge41H72 185,639 9.90e-05 333 -67395.9 18.7

CO 221,119 9.07e-05 335 -81894.4 20.4

Si87H76 240,369 8.70e-05 337 -89993.4 21.3

Ga41As41H72 268,096 8.24e-05 339 267859. 23.

Because of the steep slope of f at the origin, Chebyshev interpolation is no longer
the best choice. We use the approach proposed by Chen et al. [12] to perform the
spline/polynomial approximation. In this approach, f is first approximated by a cubic
spline, where the knots are at geometrically progressing locations ±θk together with
the origin (for Table 5.1 we set θ = 9/10 and k = 0, 1, . . . , 99). Then, the spline is in
turn approximated by a least squares polynomial, where the inner product is defined
as the sum of the (1−x2)−

1
2 -weighted inner products in each subinterval. The relative

approximation error is approximated by the maximum of |1 − p/f | evaluated at the
mid-points of the spline knots. Under such a scheme, the degree of the polynomial p
which satisfies the relative error tolerance dictated by (4.1) is on the order of several
hundreds, as listed in Table 5.1.

Unlike the examples in the preceding sections, where a number of quantities can
be computed because of the known expressions and the small size of the matrix, here
we compute only the (approximate) h0 and h1. We increase the sample size N to
1, 000 for a more accurate estimation. One observes from the table that overall, the
estimates are two to four digits accurate and the accuracy improves when the matrix
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size becomes larger.

6. Concluding remarks. Computing the trace of a large, implicit matrix M
has diverse interesting applications in scientific computing. The Hutchinson trace es-
timator is a matrix-free approach that makes use of efficient M -vector multiplications
to remedy the expensive cost of the explicit construction of M . We have studied the
effect of the numerical error in the evaluation of M -vector products. In particular, we
derive conditions (3.1) and (4.1) that ensure that the numerical error is comparable to
the uncertainty of the stochastic estimation. These conditions are readily applicable
as a computational guidance for the approximate evaluation of M -vector products.
Several examples with special matrices and matrices from an application demonstrate
the effective use of the conditions. Particularly, in the experiments with the PARSEC
collection of matrices from density functional theory, we observe that the relative er-
ror of the estimation decreases as the matrix size n increases, a qualitative agreement
with the theoretical order Θ(n−

1
2N−

1
2 ) for model matrices with structural decay.

Many additional methods and variants exist for the trace computation. Avron and
Toledo [2] proposed and analyzed several distributions where the random vectors are
drawn. The effectiveness of the resulting estimators, as long as they are unbiased, may
be measured by the estimator variance, because the central limit theorem ensures that
confidence intervals can be established by treating the sample average approximately
Gaussian for large N . In that vein, variance reduction is a valuable resort. For
example, Stein et al. [27] proposed using dependent random vectors in groups so that
the variance of any diagonal block of M corresponding to the group is eliminated.
The grouping of the rows and columns of M , in this case, respects the closeness of
spatial data in order that the eliminated variance majorizes the remained covariance
in the off-diagonal blocks. Interestingly, an opposite approach for grouping, coined
“probing,” was proposed as well. In this approach, rows and columns far apart are
grouped together. The rationale is simple. Consider, for the moment, that M is
tridiagonal. It suffices to use three deterministic vectors

y1 =

b(n−1)/3c∑
i=0

e3i+1, y2 =

b(n−2)/3c∑
i=0

e3i+2, y3 =

b(n−3)/3c∑
i=0

e3i+3

to exactly recover the trace:

tr(M) = yT1 My1 + yT2 My2 + yT3 My3,

because eTi Mej vanishes whenever |i − j| ≥ 3. In other words, every other three
columns (and rows) of M are grouped together. Then, the diagonal blocks of the
permuted matrix is diagonal. Hence, each deterministic vector is used to compute
the trace of one block. Such a technique can be generalized for a sparse matrix by
coloring the graph representation of the matrix, so that no two same-colored nodes
share neighbors [5]. In practice, however, the sparsity pattern of an implicit matrix M
is unknown; but if M is the inverse of A whose sparsity is given, it is often a reasonable
assumption that the magnitude of Mij decreases as the distance between nodes i and
j in the graph of A increases. Hence, the heuristic is to group graph nodes that are
a certain distance apart [26]. In all these methods, if the variance of the resulting
estimator is formulated, the technique for deriving computational conditions similar
to those in this paper is possibly transferable.
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