
RC25584 (WAT1512-042) December 23, 2015
Computer Science

Research Division
Almaden – Austin – Beijing – Brazil – Cambridge – Dublin – Haifa – India – Kenya – Melbourne – T.J. Watson – Tokyo – Zurich

IBM Research Report

Enhanced Storage Clients

Arun Iyengar
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598 USA

Enhanced Storage Clients

ARUN IYENGAR, IBM Research, aruni@us.ibm.com

This paper describes work that we have done in developing enhanced clients for storage systems. Our work is particularly

applicable to cloud storage. Our work extends existing clients by adding integrated caching support, encryption, compression,

and delta encoding. We have built enhanced clients for multiple storage systems including Cloudant and OpenStack Object

Storage. We have also written a Java library for allowing our enhanced client features to be integrated with other storage clients

and a wide range of applications.

1. INTRODUCTION

Storage systems typically consist of clients accessing data on one or more storage servers. The clients

and servers communicate via a protocol such as HTTP. Widely used storage systems such as Cloudant

(built on top of CouchDB), OpenStack Object Storage, and Cassandra have clients which are written for

specific programming languages (e.g. Java, Python, JavaScript, etc). These clients handle low level

details such as communications with the server using an underlying protocol such as HTTP. That way,

client applications can communicate with the storage server via method (or other type of subroutine)

calls in the language in which the client is written. Examples of such clients include the Cloudant Java

client [Cloudant], the Java library for OpenStackStorage (JOSS) [Javaswift], and the Java Driver for

Apache Cassandra[DataStax] (Figure 1).

 This paper describes work that we have done in enhancing storage clients to support integrated

caching, data compression, encryption, and delta encoding. These features considerably enhance the

functionality and performance of storage systems and provide key features that are needed by

application programs.

Fig. 1. Storage clients are essential for communicating with storage servers.

1:2 • A. Iyengar

2. OVERALL ARCHITECTURE

Our enhanced storage clients are built on top of a storage client library which handles features

such as caching, encryption, compression, and delta encoding. For each of these features, there is

an interface and multiple possible implementations. For example, there are multiple caching

implementations and multiple encryption implementations which a storage client can choose from.

The storage client library (SCL) is available as a standalone entity. Storage clients for a specific

storage system such as Cloudant, OpenStack Object, Cassandra, etc. can be integrated with the

storage client library (SCL) by adding SCL API calls at critical points in the client code. For

example, when a storage client queries the server for an object, an SCL API call could be inserted

to first look for the object in the cache. When a storage client updates an object at the server, an

SCL API call could be inserted to update (or invalidate) the object in the cache.

 If these SCL API calls are integrated with the storage client, this results in an enhanced

storage client with considerable performance enhancements and added functionality over a vanilla

client. An alternative approach which does not require changes to storage clients is to import the

client library directly into an application. This allows applications to directly use SCL features

such as caching, encryption, and compression in the most appropriate way.

3. CACHING

Caching support is critically important for improving performance [Iyengar 97]. The latency for

communicating between clients and servers can be high. Caching can dramatically reduce this

latency. If the cache is properly managed, it can also allow a client program to continue executing

in the presence of poor or limited connectivity. Caching is most effective for data which does not

change, or which is only updated rarely. Our caches have an API which controls which data are

cached and allows caches to be updated. Applications can add and delete data from caches.

Furthermore, cached data can have expiration times.

A key feature of our architecture is that it is modular. Our SCL includes a Cache interface

which defines how an application interacts with the cache. There are multiple implementations of

the Cache interface which applications can choose from (Figure 2).

There are two types of caches. In-process caches store data within the process corresponding

to the application (Figure 3) [Iyengar 99]. That way, there is no interprocess communication

required for storing the data. For our Java implementations of in-process caches, Java objects can

directly be cached. Data serialization is not required. In order to reduce overhead when the object

is cached, the object (or a reference to it) can be stored directly in the cache. This means that

changes to the object from the application could affect changes to the cached object itself. In

order to prevent the value of a cached object from being modified by changes to the object being

made in the application, a copy of the object can be made before the object is cached. This results

in overhead for copying the object.

Another approach is to use a remote process cache [Iyengar 97]. In this approach, the cache

runs in one or more separate processes from the application. A remote process cache can run on a

separate node from the application as well. There is some overhead for communication with a

remote process cache. In addition, data often has to be serialized before being cached. However,

remote process caches also have some advantages over in-process caches. A remote process

 Enhanced Storage Clients• 1:3

cache can be shared by multiple clients, and this feature is often desirable. Remote process caches

can often be scaled across multiple processes and nodes to handle high request rates and increase

availability.

Fig. 2. Our SCL supports multiple cache implementations.

1:4 • A. Iyengar

Fig. 3. In-process caches store data within the application process.

Fig. 4. Remote process caches store data outside of the application process.

There are several caches available that are available as open source solutions. Redis [Redis]

and memcached [Memcached] are widely used remote process caches. They can be used for

storing serialized data across a wide range of languages. Clients for redis and memcached are

available across a wide range of languages (e.g. Java, C, C++, Python, Javascript, PHP, several

others).

Examples of caches targeted at Java environments include the Guava cache [Decker], Ehcache

[Ehcache], and OSCache [OSCache]. A common approach is to use a data structure such as a

HashMap or a ConcurrentHashMap with features for thread safety and cache replacement. Since

there are several good open source alternatives available, it is probably better to use an existing

cache implementation instead of writing another cache implementation unless the user has

specialized requirements not handled by existing caches.

Our SCL allows any of these caches to be plugged into its modular architecture. In order to

use one of these caches, an implementation of the SCL Cache interface needs to be written for the

cache. We have already implemented SCL Cache interfaces for redis and the Guava cache and are

working on interfaces for other caches such as memcached.

The SCL allows applications to assign (optional) expiration times to cached objects. After the

expiration time for an object has elapsed, the cached object is obsolete and should not be returned

to an application until the server has been contacted to either provide an updated version or verify

that the expired object is still valid. Cache expiration times are managed by the SCL and not by

the underlying cache. There are a couple of reasons for this. Not all caches support expiration

 Enhanced Storage Clients• 1:5

times. A cache which does not handle expiration times can still implement the SCL Cache

interface. In addition, for caches which support expiration times, objects whose expiration times

have elapsed might be purged from the cache. We do not always want this to happen. After the

expiration time for a cached object has elapsed, it does not necessarily mean that the object is

obsolete. Therefore, the SCL has the ability to keep around a cached object o1 whose expiration

time has elapsed. If o1 is requested after its expiration time has passed, then the client might have

the ability to revalidate o1 in a manner similar to an HTTP GET request with an If-Modified-

Since header. The basic idea is that the client sends a request to fetch o1 only if its version of o1

has changed. In order to determine if its version of o1 is obsolete, the client could send a

timestamp, entity tag, or other information identifying the version of o1 stored at the client. If the

server determines that the client has an obsolete version of o1, then the server will send a new

version of o1 to the client. If the server determines that the client has a current version of o1, then

the server will indicate that the version of o1 is current (Figure 5).

Fig. 5. Revalidation with the server after expiration times have expired can avoid fetching cached

objects which have not changed, even if their expiration times have passed.

Using this approach, the client does not have to receive identical copies of objects whose

expiration times have elapsed even though they are still current. This can save considerable

bandwidth and improve performance. There is still latency for revalidating o1 with the server,

however.

If caches become full, a cache replacement algorithm such as least recently used (LRU) or

greedy-dual-size [Cao] can be used to determine which objects to retain in the cache.

1:6 • A. Iyengar

Caching can be used for situations in which there is poor connectivity between the client and

server. In some cases, an application can be written so that it can execute for considerable periods

of time using locally cached data with sporadic batch updates with the server.

Some caches such as redis have the ability to back up data in persistent storage (e.g. to a hard

disk or solid-state disk). This allows data to be preserved in the event that a cache fails. It is also

often desirable to store some data from a cache persistently before shutting down a cache process.

That way, when the cache is restarted, it can quickly be brought to a warm state by reading in the

data previously stored persistently.

Data can be replicated across multiple caches as another alternative to preserving cached data

in the event of a cache failure. This approach can slow be used to scale caches to handle high

request rates. Multiple data copies introduce the problem of data inconsistencies. Caching

generally works best for data which does not change very frequently.

4. ENCRYPTION AND DATA CONFIDENTIALITY

Data confidentiality is critically important. Many storage systems encrypt data within the server.

However, this may not be sufficient. Users of a storage system might prefer to encrypt data

before it reaches the server since the server might not be completely trustworthy. It may also be

undesirable to store confidential information in a cache as the contents of the cache could be read

by a malicious third party. Both the data in a cached object as well as the key used to index the

object in a cache could contain confidential information.

 Our SCL can encrypt data both before sending data to the server as well as before caching

the data. The architecture supports different encryption algorithms. We currently are using an

implementation of the Advanced Encryption Standard (AES) [NIST].

 There are situations in which data anonymization is needed but not strong encryption. In

this case, a data anonymization implementation of the encryption module can be used. The data

anonymizer might preserve anonymity while still allowing some types of computations over the

anonymized data. Since decryption would not be needed for analyzing the data, performance

might be improved. In addition, privacy would be better preserved since the actual data would not

be fully exposed, even during data analysis.

5. COMPRESSION AND DELTA ENCODING

Compression can considerably reduce the space consumed by data objects. Even if the storage

server provides compression, compressing data at the client may be desirable to reduce data

transfer sizes between the client and server. Furthermore, it may be desirable to compress objects

before caching them in order to conserve cache space. The SCL has the capability to compress

data using gzip [Gzip]. Other compression algorithms can also be used.

 Data transfer sizes between the client and server can further be reduced by delta encoding.

The key idea is that when the client updates an object o1, it may not have to send the entire

updated copy of o1 to the server. Instead, it sends a delta between o1 and the previous version of

o1 stored at the server. This delta might only be a fraction of the size of o1 [Douglis].

 Enhanced Storage Clients• 1:7

 A simple example of delta encoding is shown in Figure 6. Only two elements of the array

in the figure change. Instead of sending a copy of the entire updated array, only the delta shown

at the bottom is sent. The first element of the delta indicates that the 5 array elements beginning

with index 0 are unchanged. The next element of the delta contains updated values for the next

two consecutive elements of the array. The last element of the delta indicates that the 6 array

elements beginning with index 7 are unchanged.

Fig. 6. Example of delta encoding.

 Our delta encoding algorithm uses key ideas from the Rabin-Karp string matching

algorithm [Karp]. Data objects are serialized to byte arrays. Byte arrays can be compressed by

finding substrings previously encountered. If the server has a previous substring, the client can

send bytes corresponding to the substring by sending an index corresponding to the position of the

substring and the length of the substring as illustrated in Figure 6. Matching substrings should

have a minimum length, WINDOW_SIZE (e.g. 5). If the algorithm tries to encode differences by

locating very short substrings (e.g. of length 2), the space overhead for encoding the delta may be

higher than simply sending the bytes unencoded. When a matching substring of length at least

WINDOW_SIZE is found, it is expanded to the maximum possible size before being encoded as a

delta.

As we mentioned, a cached object o can be serialized to a byte array, b. We find matching

substrings of o by hashing all subarrays of b of length WINDOW_SIZE in a hash table. In order

to hash substrings of o efficiently, we use a rolling hash function which can be efficiently

computed using a sliding window moving along b. That way, the hash value for the substring

1:8 • A. Iyengar

beginning at b[i + 1] is efficiently calculated from the hash value for the substring beginning at

b[i].

6. IMPLEMENTATION

We have implemented enhanced storage clients for multiple storage systems including Cloudant

and OpenStack Object Storage. A library (SCL) implementing several of the features discussed

previously is available as open source software on github [Storage-client-library]. The github

repository supports caching, encryption, and data compression. We have not yet added delta

encoding to the public repository but may do so in the future. This library (SCL) can be used for

enhancing storage clients as well as for a wide variety of other applications when caching,

encryption, and/or compression are needed.

We now give some examples of how our SCL can be used. One can create an in-process

cache of integers indexed by strings using the Guava cache with a maximum cache size of

“numObjects” and a default lifetime of “defaultLifetime” in milliseconds via:
 InProcessCache<String, Integer> cache = new InProcessCache<String, Integer>(
 numObjects, defaultLifetime);

One can connect to a redis cache of byte arrays indexed by strings running on the same node from

a Java program via:
 RedisCache<String, byte[]> cache = new RedisCache<String, byte[]>
 ("localhost", 6379, 60, defaultExpiration);

Here, 6379 is the port number, and 60 indicates that idle connections should be closed after 60

seconds.

 The following method call adds 42 to the cache indexed by “key1”. “lifetime” is the

lifetime of the cached value in milliseconds:
 cache.put(key1, 42, lifetime);

The following method call adds all key-value pairs corresponding to “map” to the cache and

assigns each key-value pair a lifetime of “lifetime” milliseconds:
 cache.putAll(map, lifetime);

The following method call returns the value corresponding to “key2”. It returns null if “key2” is

not found in the cache, or if the value is expired.
 val = cache.get(key2);

In the following method call, “list” is a list of keys. getAll looks up all key-value pairs

corresponding to keys in “list” and returns a map containing them. In this example, cache keys

are strings, and values are integers.
 Map<String, Integer> map = cache.getAll(list);

The following method call deletes the key-value pair corresponding to “key2” from the cache if

present:

 Enhanced Storage Clients• 1:9

 cache.delete(key2);

In the following method call, “list” is a list of keys. deleteAll deletes all key-value pairs

corresponding to a key in “list”:
 cache.deleteAll(list);

The following method call deletes all objects in the cache:
 cache.clear();

The following method call outputs information about a cache entry:
 cache.printCacheEntry(key1);

The size method returns the number of cached objects:
 System.out.println("Cache size: " + cache.size());

The following displays the contents of the entire cache. It should not be invoked if the cache

contains a large amount of data as the data outputted would be prohibitively large:
 System.out.println(cache.toString());

The following displays cache statistics, such as hit rates:
 System.out.println(cache.getStatistics().getStats());

The following method call generates an encryption key for encrypting data:
 Encryption.Key secretKey = Encryption.generateKey();

The following method call encrypts “hm” using encryption key “secretKey”:
 SealedObject so = Encryption.encrypt(hm, secretKey);

The following method call decrypts “so” using encryption key “secretKey”:
 HashMap<String, Integer> hm2 = Encryption.decrypt(so, secretKey);

The following method call compresses “hm”:
 byte[] compressed = Util.compress(hm);

The following method call decompresses “compressed”:
 HashMap<String, Integer> hm2 = Util.decompress(compressed);

Enhanced storage clients are written by adding SCL API calls at critical points in the

source code. That way, users of the enhanced storage clients can get the benefits of caching

without having to explicitly add and delete objects from the cache. Our enhanced storage clients

handle caching transparently to users.

 In some cases, users may want explicit control over the cache contents. This may be

important in situations in which cached objects are changing and there is no way for the storage

client to make the correct caching decisions to achieve both optimal performance and cache

consistency. In these situations, the user can directly use SCL API calls to explicitly control the

contents of caches.

1:10 • A. Iyengar

 The decision to compress or encrypt data often needs to be made at the application level.

Therefore, users will often directly use SCL API calls to encrypt or compress specific objects

without relying on storage clients to do so. It is also possible for storage clients to define

encryption and compression policies wherein certain objects by default will be encrypted and/or

compressed before they are sent to the client. Similar policies can be defined to automatically

encrypt and/or compress certain objects by default before caching them.

 The performance improvements we have achieved with caching can be significant. For

data stored remotely in the cloud, we have seen latency improvements of multiple orders of

magnitude when caching is used.

ACKNOWLEDGMENTS

The author would like to thank Mike Rhodes and Rich Ellis for their assistance and support in

developing caching support for Cloudant.

REFERENCES

Dulcardo Arteaga, Ming Zhao, “Client-side Flash Caching for Cloud Systems”, Client-side Flash Caching for Cloud Systems”,

Proceedings of ACM SYSTOR 2014.

Pei Cao, Sandy Irani, “Cost-Aware WWW Proxy Caching Algorithms”, Proceedings of USITS ’97.

Feng Chen, Michael Mesnier, Scott Hahn, “Client-aware Cloud Storage”. Proceedings of the 30th International Conference on

Massive Storage Systems and Technology (MSST 2014).

Cloudant, Cloudant Java Client, https://github.com/cloudant/java-cloudant

DataStax. Java Driver for Apache Cassandra, http://docs.datastax.com/en/developer/java-driver/2.0/java-driver/whatsNew2.html

Colin Decker, “CachesExplained”, https://github.com/google/guava/wiki/CachesExplained

Fred Douglis, Arun Iyengar, “Application-specific Delta-encoding via Resemblance Detection”, Proceedings of the USENIX 2003

Annual Technical Conference.

Ehcache, http://www.ehcache.org/

Gzip, “The gzip home page”, http://www.gzip.org/"

David A. Holland, Elaine Angelino, Gideon Wald, Margo I. Seltzer, “Flash Caching on the Storage Client”, Proceedings of the

2013 USENIX Annual Technical Conference.

Arun Iyengar and Jim Challenger, “Improving Web Server Performance by Caching Dynamic Data", In Proceedings of the

USENIX 1997 Symposium on Internet Technologies and Systems (USITS '97), Monterey, CA, December 1997.

Arun Iyengar, "Design and Performance of a General-Purpose Software Cache". In Proceedings of the 18th IEEE International

Performance, Computing, and Communications Conference (IPCCC'99), Phoenix/Scottsdale, Arizona, February 1999.

Javaswift, JOSS: Java library for OpenStack Storage, aka Swift, http://joss.javaswift.org/

Richard M. Karp, Michael O. Rabin, “Efficient randomized pattern-matching algorithms”, IBM Journal of Research and

Development, Vol. 31 no. 2, March 1987, pp. 249-260.

Memcached, http://memcached.org/

NIST, “Announcing the Advanced Encryption Standard (AES)”, Federal Information Processing Standards Publication 197,

November 26, 2001, http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

OSCache, https://java.net/projects/oscache

Redis, http://redis.io/

Storage-client-library, https://github.com/aruniyengar/storage-client-library

https://github.com/cloudant/java-cloudant
http://docs.datastax.com/en/developer/java-driver/2.0/java-driver/whatsNew2.html
https://github.com/google/guava/wiki/CachesExplained
http://www.ehcache.org/
http://www.gzip.org/
http://joss.javaswift.org/
http://memcached.org/
https://java.net/projects/oscache
http://redis.io/
https://github.com/aruniyengar/storage-client-library

