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Abstract Supporting human decision making is a major goal of data mining.
The more decision making is critical, the more interpretability is required
in the predictive model. This paper proposes a new framework to build a
fully interpretable predictive model for questionnaire data, while maintaining
high prediction accuracy with regards to the final outcome. Such a model has
applications in project risk assessment, in health care, in social studies and
presumably in any real world application that relies on questionnaire data for
informative and accurate prediction.

Our framework is inspired by models in Item Response Theory (IRT),
which were originally developed in psychometrics with applications to stan-
dardized tests such as SAT. We extend these models, which are essentially
unsupervised, to the supervised setting. For model estimation, we introduce
a new iterative algorithm by combining Gauss-Hermite quadrature with an
expectation-maximization algorithm. The learned probabilistic model is linked
to the metric learning framework for informative and accurate prediction. The
model is validated by three real-world data sets: Two are from information
technology project failure prediction and the other is an international social
study about people’s happiness.

To the best of our knowledge, this is the first work that leverages the IRT
framework to provide informative and accurate prediction on ordinal question-
naire data.

Keywords psychometrics · questionnaire data · item response theory ·
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1 Introduction

Supporting human decision-making is one of the most important goals of
data mining. In recommender systems for example, certain actions are rec-
ommended. Depending on the domain these actions could vary from being
buying decisions [17] for shoppers to being important business decisions that
are recommended to executives or managers based on historical data. Irre-
spective of the domain the final recommended action presented by itself is
rarely sufficient to convince the decision maker of its “plausibility”. Ordinar-
ily, additional supporting evidence needs to be provided in support of the
recommendation. Hence, a lower likelihood recommendation from a learning
model may be a better choice if it can be clearly justified.

The plausibility, or more precisely interpretability, is in fact a critical suc-
cess factor in many business applications. For example, imagine that you are
a manager of a company and you are making decisions of lay-offs based on
a scorecard for individual employees, which includes a number of qualitative
questions such as “Has he/she made good enough contributions to teamwork?”
You have a database of the historical records of best practices, which contains
a collection of pairs (x, y), where x is a filled scorecard as represented by a
binary or graded vector (see Fig. 1) and y is the binary indicator to represent
termination (y = +1) or not (y = −1). Although the problem can be viewed
formally as simple binary classification to predict y given x, the nature of the
problem is glaringly different in at least two aspects.

First, the input data are typically ordinal. In general it is not valid to
naively use standard probabilistic assumptions such as the Gaussian-distributed
noise for ordinal variables. Second, the model must have a high degree of inter-
pretability. For the year-end assessment meeting, you as a manager will want
to be very clear on the rationale of the suggested outcome from at least three
perspectives:

1. Comparison to other employees: What is the difference between lay-off and
no lay-off groups?

2. Comparison between different questions in the scorecard: What kind of
weighting is used for individual questions? How can we justify the weight-
ing?

3. Comparison between different question choices: Some questions may be
easily achieved and others may not. How can we quantify the heterogeneity?

In other words, we need to ensure at least three different interpretabilities:
instance-wise, dimension-wise, and ordinal-grade-wise interpretabilities. As long
as a predictive model is used to support critical decision-making, the model
must be fully interpretable in this sense. This is especially true in applica-
tions such as healthcare, project audit, and company reputation analysis, as
illustrated in Fig. 1.

In our preliminary work [13], we introduced a new framework to build
a fully interpretable predictive model for questionnaire data. The method is
inspired by the item response theory (IRT) [30], which was originally developed
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Fig. 1 Questionnaire-based diagnosis is ubiquitous. In many real applications, black-box
predictive models are not practical. Full interpretability is often required at all instance-,
dimension-, and ordinal grade-levels (see the text).

in psychometrics with applications to standardized academic tests such as
SAT [25]. IRT provides a natural way to ensure dimension-wise (i.e. between
individual question items) and grade-wise (i.e. between individual question
choices of each question item) interpretabilities. However, the original IRT is
unsupervised and cannot incorporate the outcome variable y. Also, there is no
direct method to evaluate the informativeness of each question items in terms
of predictability of the outcome variable.

To address these limitations, in [13], we proposed a supervised version of
IRT combined with a framework of distance metric learning approach [32]. Al-
though it was a fully interpretable prediction model, one issue was that it has
to solve a high dimensional optimization problem that originates from a non-
conjugate Bayesian formulation. In this paper, we introduce an efficient itera-
tive algorithm which we call Gauss-Hermite EM (expectation-maximization)
algorithm to address this issue. The algorithm is applicable any models when-
ever the prior distribution is Gaussian and the observe model satisfies a con-
ditional independence.

We also expand the experimental study in [13] by adding analysis on pub-
licly available social study data, World Values Survey. To the best of our
knowledge, our framework is the first approach to fully interpretable informa-
tive prediction for questionnaire data.

2 Related Work

There are four categories of previous work that is relevant to the present study.
The first category is obviously standard classification methods. As men-

tioned in Introduction, our task in Fig. 1 mirrors the task of binary classi-
fication. However, standard binary classifiers are not very useful in terms of
analyzing the quality of the questions. For instance, support vector machines
(SVMs) [10] or regularized logistic regression (LR) [10] may be accurate in
predicting the outcome variable y, but the information they provide about the
questions is in the form of unbounded signed weights, which can be difficult
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to interpret. On the other hand, in decision trees [10] it can be challenging to
evaluate the importance of a variable as it might occur at different levels in
different parts of the tree. Ensemble methods [10] may help compute variable
importance, but they end up with losing instance-level information. We thus
want a systematic way of evaluating the quality of the questions that is more
informative and easier to digest, while maintaining predictability.

The second category is about modeling of human cognition. As Fig. 1 illus-
trates, we are interested in modeling the generative process of questionnaire
answers. It amounts to modeling the decision-making process of humans, which
is one of the typical examples of dynamics of complex systems. To model com-
plex systems, deep learning has become a more and more practical tool in
recent years, and dramatic successes in image and speech recognition [20, 12]
are well-known. Also, if a fair amount of text data is given, sentiment anal-
ysis [24] for text documents provides a powerful method to understand the
human cognition. Although we share a part of research motivation of mod-
eling complex dynamics of human decision making, we pursue a completely
opposite direction from those approaches that are mostly black-box: we re-
quest that our model should achieve interpretability at all different levels of
instance, question item, and answer choices within each question. While some
recent work addresses personal cognitive process in decision making [4, 23],
which may be relevant to questionnaire analysis, our work differs in that we
are interested in handling questionnaire data as the primary data source.

In psychometrics, on the other hand, quantitatively modeling human cog-
nition bias has been an important topic for years. For a useful review, the
reader may refer to Baker and Kim [1]. In the machine learning community,
Lan et al. [19] recently extended the original IRT to incorporate factor analysis
in an unsupervised setting. As explained in a later section, the original moti-
vation of IRT was to quantitatively estimate the ability of examinees and the
difficulty of individual question items in academic tests. If we are allowed to
rephrase the ability as, e.g., the medical risk in the case of diagnosis question-
naire, this is exactly what we want. Unlike the traditional setting of academic
tests, however, we assume additional data of the final outcome such as oc-
currence of serious side effects, project failure, or termination of employment.
In the context of the SAT test, in addition to the SAT scores themselves, we
were as if given information that the individual examinees had succeeded in
their life later on. Using the information on the final outcome, we should be
able to evaluate the true informativeness of the test items. To the best of the
authors’ knowledge, little attention has been paid to such a problem setting
in psychometrics and data mining.

The third category is the study on ordinal data. Modeling ordinal data
has been one of the major research topics in statistics and statistical data
mining. Well-known examples include ordinal regression [21] and learning to
rank [5]. Rank-constrained nonlinear discriminant analysis [27] is another re-
cent instance. These assume that the response variable is ordinal. In our case,
however, we are interested in handling ordinal predictor variables instead.
From this perspective, the most relevant work will be Koren and Sill [16, 15],
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which addresses the ordinal nature of human rating in collaborative filtering,
although their problem clearly differs from ours.

The fourth category is metric learning. Since the advent of the seminal
paper of Xing [32], metric learning has been one of the most active areas in
the data mining communities [29, 9, 18, 8]. For a recent review, the reader
may refer to Bellet et al. [2]. By definition of the task, metric learning (often
implicitly) assumes that the samples distribute in a metric space, just like dots
placed on a piece of paper, whose coordinates and the distance are well-defined
and ready to be calculated using e.g. the Euclidean distance. However, it is
clear that a special attention is required when handling ordinal variables since
the ordinal scale distinguishes only relative goodness or badness. For example,
an ordinal variable may ask about the goodness of personal relationship with
your boss, and another ordinal variable may be the level of satisfaction to your
family life. It is clear that relative comparison between two different ordinal
variables is not trivial at all [26]. In spite of the popularity of metric learning
research, only limited attention has been paid to metric learning for ordinal
variables.

Recently, Ouyang and Gray proposed a rank-constrained approach to ker-
nel learning. Also, Terada and Luxburg [28] proposed a method for order-
preserving embedding. These works are somewhat relevant to ours, but their
setting differs from ours in that they assume that the ordinal relationship be-
tween the instances is given; in our case, what is given is the final rating of
projects, which is by no means sufficient to define the total order. Another
relevant piece of work is ground metric learning [6], which handles the ordi-
nal nature of the variables by considering histograms. However, their problem
setting differs from us since we need to make a prediction for a single project,
rather than for a histogram as a collection of projects.

Our framework for informative prediction attempts to achieve practical
interpretability and predictability by combining a psychometric model with
metric learning. Instead of solving semi-definite programming as large-margin
nearest neighbors [29], we take the path of Kostinger et al. [18], which first
proposed an “optimization-free” method to metric learning and achieved a
state-of-the art performance in the image classification task. As explained in
a later section, we introduce an information-theoretic view to their approach.

3 Problem Definition and Motivation

We first formally describe our problem setting. We then provide real world
examples of where we encounter this setting thus showcasing its wide presence.

3.1 Problem Statement

Imagine we have a questionnaire containing M question items and N sub-
jects (patients, projects, employees, etc.) take the questionnaire to answer the
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questions. Our training data set can be formally represented as

D = {(x(n), y(n)) | n = 1, 2, . . . , N}, (1)

where x(n) is an M -dimensional vector representing the questionnaire answers
of the n-th subject, and y(n) is the class label for the n-th subject. Our goal
is to build a fully interpretable model to predict y given a new x, and to
evaluate the informativeness of the individual question items, through which
a qualitative feel to the user in terms of the predictability of the final outcome
is provided.

Here we say that a model is fully interpretable if a predictive model allows

– quantitative comparison between subjects in terms of their importance,
– quantitative comparison between question items in terms of their impor-

tance,
– quantitative comparison between answer choices in terms of probability of

choosing each option,

while maintaining a comparable accuracy to other less interpretable methods.

3.2 Application Domains

We now instantiate the above problem definition to different domains.

Project Risk Assessment: In our motivating example, x(n) is anM -dimensional
vector representing the questionnaire answers, and y(n) is the health rating in-
dicating the troubled or healthy status. Each of the dimensions of x(n) takes
an integer value in the predefined risk levels, while y(n) takes either of +1 or
−1 (troubled or non-troubled). It is known that {x(n)} has human bias which
modulates the true risk levels of projects in some nonlinear fashion.

Health Care: Before administering any treatment doctors require patients
to fill up (yes/no) questionnaires indicative of their condition. An example,
flu shot questionnaire from last year is depicted in figure 2. Here the x(n) are
binary yes/no questions and y(n) indicates if the treatment was successful or
not, i.e., in our example if the person got flu or not.

Employee Evaluations: Many companies during yearly appraisals fill out
questionnaires based on various criteria for each employee. For instance the
x(n) would be, did the person have at least an δ amount of business impact,
how many projects did he see to completion, did he lead any projects, etc.
Based on the response they would decide the y(n) which would be to either
layoff or keep the employee.
Social Surveys: Policy makers often use social surveys to better understand
the motivations behind social events and to improve governmental policies.
World Values Survey (WVS) [31] is such a social survey. The main topic of it
is the level of satisfaction with the society and the communities. It is evident
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Fig. 2 Above is a brief snapshot of a flu shot vaccination questionnaire.

that interpretability and accountability are extremely important in this case.
For more details, see Sec. 7.

4 Supervised Item Response Model

This section introduces a probabilistic framework towards informative predic-
tion to meet the requirements explained in Sec. 3.1.

4.1 Probabilistic Model for Answer Choice

Imagine that we are given a questionnaire having M questions. To be specific,
let us use project failure prediction as a running example, and assume that each
question has only two options of 1 (at-risk) or 0 (no risk) about a particular
aspect of project risks, such as the tightness of development schedule (see
Sec. 7 for details).

One natural tendency of human reviewers is that they are cautious about
choosing the at-risk option until they observe evident indications of future
project failures, possibly worrying about making a mistake. Once they find
something convincing enough from their perspective, they start being critical
about the project. If we denote the true project failure tendency by θ ∈ R,
human reviewers would have the following biases:

– They underestimate risks when θ is lower.
– They overestimate risks when θ is higher.
– They may even use random guess when they are not familiar with details

of the project.

To capture these natural psychological traits, we use the following model
for choosing 1 of the l-th question:

P (θ, al, bl, cl) ≡ cl +
1− cl

1 + e−al(θ−bl)
. (2)
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Fig. 3 Item Characteristic Curve for the example of project risk management.

In psychometrics, this model is called three-parameter item response model [1],
and Fig. 3 is called the item characteristic curve (ICC). The parameters al, bl, cl
are called the discrimination, difficulty, and guessing parameters, respectively.

The discrimination parameter controls the slope of the ICC. Since we are
interested in rating projects using θ, we should design the question so al ∼ 1
so the ICC looks like a linear function w.r.t. θ as much as possible. If |al|
is large and the ICC looks like a step-function, an infinitesimal change in θ
may end up with an infinite change in P , which is unintuitive. The difficulty
parameter plays the role of threshold. Roughly speaking, when θ exceeds bl,
the reviewer becomes pessimistic about the future of projects, while he/she
remains optimistic below bl. Finally, the guessing parameter literally represents
the probability of choosing the at-risk option even when θ → −∞, and thus
corresponds to selection just by guess.

By stacking M ICCs, we have the probability of an answer pattern x, given
θ and model parameters as

p(x|θ,a, b, c) =

M∏
l=1

P (θ, al, bl, cl)
δ(xl,1)[1− P (θ, al, bl, cl)]

δ(xl,0) (3)

where δ represents Kronecker’s delta and a ≡ (a1, . . . , aM )>. The other pa-
rameter vectors b, c are also defined similarly.

4.2 Prior Distribution to Latent State Variable θ

Although the original IRT is fully unsupervised, we extend the model to in-
clude the outcome variable y. In the case of project risk analysis for example,
we assume that troubled projects (y = +1) have generally higher failure risk
tendencies. Thus it is quite natural to assume a prior distribution conditioned
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Fig. 4 Graphical model of supervised IRT model.

on y:

f(θ|y) =

{
γ√
2π

exp
(
−γ2 θ

2
)

for y = −1,
γ√
2π

exp
(
−γ2 (θ − ω)2

)
for y = +1,

(4)

where γ and ω are hyper-parameters to be learned from the training data.
By marginalizing out the latent variable θ, the log marginalized likelihood

function of the model is written as follows:

L(a, b, c|D) =

N∑
n=1

ln
[
π(y(n))p(x(n)|a, b, c, y(n))

]
(5)

p(x(n)|a, b, c, y(n)) ≡
∫ ∞
−∞

dθ(n) p(x(n)|θ(n),a, b, c) f(θ(n)|y(n)) (6)

where D symbolically represents the dependency on the training data, and y(n)

is the variable representing the n-th project health indicator. The distribution
π(y(n)) is the prior distribution for y(n), which is assumed to be the same as
the ratio of each of the labels to N . In Fig. 4, we summarize the probabilistic
model using the plate notation of probabilistic graphical models. We call this
model the supervised IRT (sIRT) model.

4.3 Maximum likelihood equation and issues in optimization

The model parameters a, b, c can be found by maximizing the likelihood:

(a∗, b∗, c∗) = arg max
a,b,c

L(a, b, c|D) (7)

subject to 0 ≤ cl ≤ 1 (l = 1, . . . ,M).

The box constraints on the guessing parameter {cl} can be handled by the
method of barrier function [22].
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Although Eq. (7) is a formally well-defined optimization problem, direct
numerical maximization of L̃ w.r.t. {a, b, c} is not straightforward. For a real
example, in World Values Survey (see Sec. 7.4), the total number of questions
is 430, and the problem (7) is 1 290-dimensional non-convex optimization prob-
lem, which is hard to solve with general purpose numerical solvers.

For maximum likelihood (ML) problems with latent variables, one popular
approach is to derive an EM (expectation-maximization) algorithm. If the
model belongs to the exponential family, it is well-known that ML estimation
based on the EM approach is reduced to an iterative estimation of moments, as
is in the Gaussian mixture case [3]. Unfortunately, the IRT model P (θ, al, bl, cl)
does not have a conjugate prior, and the standard EM approach does not lead
to a simple iterative algorithm. In particular, it is evident that

lnP (θ, al, bl, cl) = ln

{
cl +

1− cl
1 + e−al(θ−bl)

}
is not represented by elementary polynomials, and simple application of Jensen’s
inequality to Eq. (6) does not lead to tractable iterative formula.

To address this issue, in the next section, we derive a new efficient iterative
algorithm that reduces the intractable high-dimensional optimization problem
to a collection of simple 3-dimensional optimization problems.

5 Gauss-Hermite EM algorithm for efficient optimization

This section derives an efficient algorithm to solve the high-dimensional opti-
mization problem Eq. (7). Although we will focus on the particular model of
IRT, our framework is applicable whenever (1) the prior is Gaussian and (2)
the parameters are conditionally independent given the latent parameter.

5.1 Reducing integral to summation via Gauss-Hermite quadrature

As mentioned in the previous section, the sIRT model does not allow to derive
a simple moment matching solution as is the case of exponential family. The
first step towards a tractable EM algorithm is to represent the integration
w.r.t. the latent variable θ in Eq. (6) as

∫ ∞
−∞

dθ f(θ|y(n)) p(x(n)|θ,a, b, c) ≈
W∑
i=1

wi p
(
x(n)

∣∣∣φ(n)i a, b, c
)
, (8)

where W is an input parameter typically chosen as ∼ 20. Since f(θ|y(n)) is

Gaussian in our case, the weights {wi} and the nodes {φ(n)i } can be optimally
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determined via Gauss-Hermite quadrature independently of D:

φ
(n)
i =

√
2

γ
ϕi + ωδ(y(n), 1) (9)

wi =
2W−1W !

[WHW−1(ϕi)]2
, (10)

where {ϕi} is the zeros of the W -th order Hermite polynomial HW (ϕ). These
are determined so that the expansion is exact for polynomials up to the order
of 2W − 1. For derivation, see Chap. 8 of [11]. We treat W and thus {wi, φi}
as given constants hereafter.

5.2 Lower bound of log marginalized likelihood

Using Eq. (8), the log marginalized likelihood is written as

L(a, b, c|D) =

N∑
n=1

lnπ(y(n)) + L1(a, b, c|D) (11)

L1(a, b, c|D) ≡
N∑
n=1

ln

{
W∑
i=1

wip(x
(n)|φ(n)i ,a, b, c)

}
(12)

Notice that L1 looks like a mixture model. Encouraged by this observation,
we derive the lower bound (LB) by applying Jensen’s inequality [3]

L1 ≥ LLB
1 ≡

N∑
n=1

W∑
i=1

Qi,n ln

{
wi
Qi,n

p(x(n)|φ(n)i ,a, b, c)

}
, (13)

where {Qi,n} is determined so LLB
1 is maximized under the constraint of∑W

i=1Qi,n = 1. By solving

0 =
∂

∂Qi,n

{
LLB
1 +

N∑
n=1

λn

W∑
i=1

Qi,n

}
, (14)

we easily get the solution for Qi,n as

Qi,n =
wi exp

(∑M
l=1 J

l
i,n

)
∑M
j=1 wj exp

(∑M
l=1 J

l
j,n

) , (15)

where J lj,n is defined as

J li,n ≡

{
lnP (φ

(n)
i , al, bl, cl) if x

(n)
l = 1,

ln[1− P (φ
(n)
i , al, bl, cl)] if x

(n)
l = 0.

(16)
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Using this notation, the lower bound LLB
1 is written as

LLB
1 =

M∑
l=1

Tr
(
Q>Jl

)
+

N∑
n=1

W∑
i=1

Qi,n ln
wi
Qi,n

, (17)

where Q and Jl are W ×N matrices whose (i, n) elements are Qi,n and J li,n,
respectively.

5.3 Gauss-Hermite EM algorithm

Given Q, LLB
1 in Eq. (17) separates the parameters into individual l’s. To

optimize w.r.t. (al, bl, cl), we care only about the Jl part:

(a∗l , b
∗
l , c
∗
l ) = arg max

al,bl,cl
Tr
(
Q>Jl

)
subject to 0 ≤ cl ≤ 1. (18)

This is just a 3-parameters constrained optimization problem. Although we
cannot obtain an analytic solution for this, we can use any numerical solver
such as constrOptim in R.

To get the final solution, Eqs. (15) and (18) are solved alternatingly until
convergence. Algorithm 1 summarizes the procedure to fit the sIRT model,
which we call the Gauss-Hermite EM (GHEM) algorithm.

Algorithm 1 Gauss-Hermite EM algorithm for the supervised IRT model.

Input: Training data D. Hyper-parameters ω, γ. Initial values of the model
parameters a0, b0, c0.
Output: The maximizer a∗, b∗, c∗.
repeat

Given the current a, b, c, compute the Q matrix using Eq. (15).
Given the current Q, solve Eq. (18) independently for l = 1, . . . ,M .

until Convergence
Return a, b, c.

In addition to the IRT parameters a, b, c, we may output the Q matrix
for descriptive analysis. The n-th column of this matrix gives the posterior
distribution of the latent parameter θ:

p(θ = φ
(n)
i | x(n), y(n),D) = Qi,n. (19)

In problem project failure prediction, this tells what the latent failure tendency
looks like for the n-th project.

In Algorithm 1, the hyper-parameters γ, ω are determined so the cross-
validated performance is maximized. For details, see Sec. 6.4.
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6 Making prediction

We have discussed how to estimate the model parameters so far. We now
consider how to make a prediction of y given a new questionnaire answer x.
We first derive a classifier based only on the probabilistic model. We then
discuss a metric learning method for k-NN classification to further enhance
the interpretability. One practically important outcome of the metric learning
algorithm is the informativeness score for each of the questions, which gives
valuable insights for questionnaire design.

6.1 Neyman-Pearson decision rule

Once we obtain the optimized parameters a, b, c that maximizes the marginal
likelihood, the predictive distribution of x is given by

p(x|a∗, b∗, c∗, y) =

∫ ∞
−∞

dθ p(x|θ,a∗, b∗, c∗) f(θ|y). (20)

This is a conditional distribution given y. To make a prediction for y, we define
a classification score by

s(x) = ln
p(x|a∗, b∗, c∗, y = +1)

p(x|a∗, b∗, c∗, y = −1)
= ln

∑W
i=1 wip(x|φ

+1
i ,a∗, b∗, c∗)∑W

i=1 wip(x|φ
−1
i ,a∗, b∗, c∗)

, (21)

where

φ+1
i ≡

√
2

γ
ϕi + ω, φ−1i ≡

√
2

γ
ϕi. (22)

If s(x) is greater than a threshold, sth, a newly observed x is classified into
the class of y = +1.

The score s(x) is based on the distribution of x, not y, unlike the standard
Bayes’ decision rule [10]. Proposition 1 tells the optimality of this rule, which
we call the Neyman-Pearson (NP) decision rule.

Proposition 1 (Neyman-Pearson decision rule) Consider a decision rule of
classification for an instance x

y = +1, if s(x) ≥ sth
y = −1, if s(x) < sth.

This is optimal in the sense that it maximizes the positive sample accuracy
while keeping the negative sample accuracy constant.

Proof By the definition of the major and positive sample accuracy, the optimal
decision criterion s∗ can be formally written as

s∗ = arg max
s

∫
dx I [s(x) ≥ sth] p(x|η, y = +1), (23)
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where η represents the set of model parameter, which is a∗, b∗, c∗ in our case.
Also, I[·] is the indicator function, which is 1 if the condition [·] holds, and 0
otherwise. The threshold sth is related with the negative sample accuracy α
by the equation ∫

dx I [s(x) ≥ sth] p(x|η, y = −1) = 1− α (24)

Using a Lagrange multiplier λ, this problem can be rephrased as the maxi-
mization of Ψ [s|λ] w.r.t. s:

Ψ [s|λ] =

∫
dx I [s(x) ≥ sth] {p(x|η, y = 1)− λp(x|η, y = −1)} (25)

To maximize the integral, the indicator function I[·] must be 1 wherever {·} >
0. The condition is readily given as

s(x) =
p(x|η, y = +1)

p(x|η, y = −1)
, λ = sth (26)

If we re-define a new criterion by transforming it using the logarithm function
as s(x), this coincides with Eq. (21). ut

The NP decision rule is reduced to the Bayes decision rule when the data
is balanced. For imbalanced data, however, they give different criteria.

The score function s(x) uses the parameters a∗, b∗, c∗ computed via the

GHEM algorithm. In the same spirit, noting that
∑W
i=1 wi = 1 holds, we

approximate s(x) as

s(x) ≈
W∑
i=1

wi ln
p(x|φ+1

i ,a∗, b∗, c∗)

p(x|φ−1i ,a∗, b∗, c∗)
(27)

= z1
>
d1 + z0

>
d0, (28)

where z1 and z0 are M -dimensional vectors whose l-th components are δ(xl, 1)
and δ(xl, 0), respectively. Also, d1 and d0 are M -dimensional vectors whose
l-th components are defined by

d1l ≡
W∑
i=1

wih
1
i,l, h1i,l ≡ ln

P+1
i,l

P−1i,l

, d0l ≡
W∑
i=1

wih
0
i,l, h0i,l ≡ ln

1− P+1
i,l

1− P−1i,l

, (29)

with P+1
i,l and P−1i,l being a shorthand notation of P (φ+1

i , a∗l , b
∗
l , c
∗
l ) and P (φ−1i , a∗l , b

∗
l , c
∗
l ),

respectively.
The expression Eq. (28) suggests that the NP decision rule is essentially a

linear classifier w.r.t. the 1-of-K coded version of x. The linearity comes from
the conditional independence expressed in Eq. (3), where the distribution of
x is represented as the product over individual dimensions. Although Propo-
sition 1 guarantees the optimality, the resulting classifier can be suboptimal
if the model class is too limited. In the next subsection, we introduce one
approach to overcome the limitation.
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6.2 Deriving Distance Metric from sIRT

To overcome the limitation due to the conditional independence, we combine
the sIRT model with the k-NN classification framework, which naturally han-
dles nonlinear decision boundaries. This is indeed preferable in terms of inter-
pretability since k-NN naturally achieves the comparability between different
instances. For example, in healthcare questionnaire analysis, finding similar
subjects or patients is a part of doctors’ daily routines. In project risk man-
agement, lessons and learned from historical records is also an important part
of the quality assurance process.

The k-NN algorithm first finds k nearest neighbors from the training data.
To capture complex heterogeneity in the space defined by the ordinal variables,
we use the Riemannian distance parametrized by a Riemannian metric A:

d2A(x,x′) ≡ (x− x′)>A(x− x′). (30)

For a newly observed x, we compute the classification score

skNN(x) ≡ ln
π(−1)N+1

π(+1)N−1
, (31)

where N+1 and N−1 are the number of positive and negative instances in the
neighborhood. The symbols π(−1) and π(−1) are defined in Eq. (5). If this
score is greater than a certain threshold, sth, we classify x into the positive
class. The threshold as well as the number of nearest neighbors k is determined
by leave-one-out (LOO) cross validation (CV).

To learn A, we use the following criterion:

If p(· | η, y = +1) differs from p(· | η, y = −1), the difference should be
explained by the difference between N (· | x′, νIM ) and N (· | x′,A).

Here η = (a∗, b∗, c∗), and N (· | x′, νIM ) denote the Gaussian distribution of
the mean x′ and the covariance matrix νIM with IM being the M -dimensional
identity matrix and ν being a scale parameter. Also, x′ is an arbitrary location
to learn A, which will be averaged out in the final result.

Let us use the Kullback-Leibler (KL) divergence to quantify the difference
between the probability distributions. First, for the Gaussian part, we have∫

dx N (x | x′, νIM ) ln
N (x | x′, νIM )

N (x | x′,A)
=

1

2
Tr ((A− νIM )Σ(x′)) , (32)

where we put a constraint of |A| = 1 and defined

Σ(x′) ≡
∫

dx N (x | x′, IM )(x− x′)(x− x′)>. (33)

Second, for the sIRT model part, based on Eq. (27), we have∑
x

p(x|η, y = −1) ln
p(x|η, y = −1)

p(x|η, y = +1)

= −
M∑
l=1

W∑
i=1

wi

{
P−1i,l h

1
i,l + (1− P−1i,l )h0i,l

}
(34)
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By equating Eqs. (32) with (34), we have a solution to A as

Al,m = −δ(l,m)

σ2
l

W∑
i=1

wi

{
P−1i,l h

1
i,l + (1− P−1i,l )h0i,l

}
, (35)

where we have adjusted the proportionality factor between the two KL diver-
gences to absorb the unimportant 1/2 factor and replaced the diagonal element
of the local scatter matrix Σ(x′) with the variance σ2

l over all of the samples.
We also dropped the ν parameter by regarding as a small constant. This is
the equation that bridges the sIRT and the Riemanian metric. Note that the
r.h.s. of Eq. (35) is positive in spite of the minus sign because it is originally
defined as the KL divergence.

6.3 Informativeness Scores

Equation (35) essentially says that the KL divergence between the positive
and negative distributions is proportional to the diagonal elements of the dis-
tance metric. Since the diagonal elements work as a weighting factor in the
distance (see Eq. (30)), in the context of k-NN classification, they also can be
thought of as the informativeness in the classification. We explicitly define the
informativeness of the l-th variable Vl as

V KL
l = − 1

σ2
l

W∑
i=1

wi

{
P−1i,l h

1
i,l + (1− P−1i,l )h0i,l

}
, (36)

where the superscript represents the KL divergence.

Along the same line, we may define another informativeness score by re-
placing the KL divergence with another divergence measure. One practically
useful measure is the Kolmogorov-Smirnov (KS) goodness-of-fit statistic:

KSl = |p(xl = 1 | η, y = +1)− p(xl = 1 | η, y = −1)| , (37)

where p(xl | η, y) is the marginal distribution w.r.t. the l-th variable. One
major practical advantage of the KS statistic is that it is bounded within
[0,1]. If it is 0, the positive and negative distributions have no difference and
thus not important when making prediction. If it is 1, the variable should play
a major role in prediction.

Let us consider how to find an expression of the marginal distribution p(xl |
η, y). For this, we exploit the approximation made in Eq. (27). Specifically, we
start from an approximated relationship as

ln p(x|η, y) ≈
W∑
i=1

wi ln p(x|φyi ,η) =

M∑
l=1

W∑
i=1

wiJ
l
i,y, (38)
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where J li,y is defined by replacing φ
(n)
i with φyi of Eq. (22). Using this, we get

p(xl | η, y) =
1

Zl,y
exp

(
W∑
i=1

wiJ
l
i,y

)
, (39)

where Zl,y is the normalization constant. By inserting this into Eqs. (37)
and (35), we have another definition of the informativeness as

V KS
l =

∣∣∣∣∣ 1

Zl,+1
exp

(
W∑
i=1

wiJ
l
i,+1

)
− 1

Zl,−1
exp

(
W∑
i=1

wiJ
l
i,−1

)∣∣∣∣∣ . (40)

6.4 Algorithm Summary

Before summarizing our informative prediction framework, consider the pre-
dictive distribution of the latent variable θ. In the GHEM framework, the
distribution of x is written as a mixture model (see Eq. (12)). This allows us
to readily get the posterior distribution for θ as a discrete distribution, given
newly observed data (x, y), as

p(θ = φyi | x, y,D) =
wip(x|φyi ,a∗, b∗, c∗)∑W
j=1 wjp(x|φ

y
j ,a
∗, b∗, c∗)

. (41)

If y is not available, the posterior predictive distribution for θ is given by

p(θ | x,D) =

∑
y=−1,+1 π(y)f(θ|y) p(x|θ,a∗, b∗, c∗)∑

y′=−1,+1 π(y′)
∫

dθ′f(θ′|y′) p(x|θ′,a∗, b∗, c∗)
. (42)

To compute the denominator, we use the GH quadrature in Eqs. (8)-(10).
We have described the questionnaire-based informative prediction frame-

work. In terms of interpretability stated in Sec 3.1, first, the k-NN frame-
work readily allows comparison to the existing instances to explain how simi-
lar/different a newly observed instance is. Second, the informativeness scores
as well as the IRT parameters allow us to understand which questions are more
informative and how. Finally, the slope (discrimination), the threshold (diffi-
culty), and the guessing parameters of each of the ICCs allow quantitatively
comparing different answer choices from a probabilistic perspective.

The major steps of the training phase in our questionnaire-based informa-
tive prediction approach are given in Algorithm 2. For the performance metric
to tune the hyper-parameters, we use the F-score,

F ≡ 2αβ

α+ β
, (43)

where α is the negative sample accuracy and β is the positive sample accuracy.
To compute α, we first create a subset of the data by collecting samples having
the true label of y = −1, then count the number of correctly/incorrectly
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Algorithm 2 Training supervised IRT model.

Input: Training data D. Candidate values of hyper-parameters {γ, ω, k}.
Initial values of the model parameters a0, b0, c0.
Output: Optimal model parameters a∗, b∗, c∗ and hyper-parameters
{γ∗, ω∗, s∗th, k∗}. Distance metric A and the informativeness score
{V1, . . . , VM}.
for Each set of the candidate values of {γ, ω, k} do

for Each partition D = Dr ∪ De do
Use Algorithm 1 to determine a∗, b∗, c∗ on Dr.
Use Eqs. (36) and (40) to compute A and {V1, . . . , VM} on Dr.
Compute skNN(x) of Eq. (31) on De.

end for
Find sth that gives the highest F-score for the current choice of the hyper
parameters.

end for
Find {γ, ω, k} and {sth} that give the best F-score.
Return {γ∗, ω∗, s∗th, k∗}, a∗, b∗, c∗, and A.

predicted samples. The positive sample accuracy is defined on the subset of
truly y = +1 samples. The use of α and β for performance evaluation is
theoretically supposed by Proposition 1 so the F-score is.

Once training is done, we are ready to make a prediction for newly observed
samples. Algorithms 3 summarizes the procedure.

Algorithm 3 Questionnaire-based informative prediction.

Input: Training data D. Optimal hyper-parameters {s∗th, k∗}. Distance met-
ric A.
Output: Predicted label y for a new entity x.
Identify k∗-NNs from D using Eq. (30).
Compute skNN(x) using Eq. (31).
Predict y = +1 if skNN(x) ≥ s∗th. Otherwise predict y = −1.
Return y.

7 Experiment

This section presents results of experimental evaluation of our metric learning
framework based on sIRT. We first use a synthetic data set for illustration.
Then we show results based on three real data sets.
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7.1 Design of Experiment

In this subsection, we briefly describe data sets we use and alternative methods
compared to our approach.

7.1.1 Data sets

1. Synthetic. Randomly generated bi-level data of (N,M) = (100, 2) as sum-
marized in Table 1.

2. CRA. Real information technology (IT) project assessment data called Con-
tractual Risk Assessment [14] of (N,M) = (262, 22). The questionnaire
is designed to record reviewers’ impression rather qualitatively about ma-
jor risk factors of project failures. Major items include service providers
relationship with the customer, experience in the planned solution, com-
pleteness of the cost case, and feasibility of the schedule. The questionnaire
is used in the final project management review to internally approve con-
tract signing. Original data was standardized for each question to take 1
(at-risk) or 0 (no-risk). Each of filled questionnaires are associated with
the label of project success (y = −1) or non-success (y = +1). This data is
highly imbalanced. Majority of the samples belong to the negative class.

3. PBA. Another real IT project assessment data called Project Baseline As-
sessment of (N,M) = (1056, 56). The questionnaire is designed to collect
detailed facts of the status of solution design by asking rather objectively
about the approach used to estimate labor costs. Similarly to CRA, the data
is standardized to be bi-level on both question answers and the outcome.
This data is highly imbalanced.

4. WVS. Publicly available survey data called World Values Survey [31]. The
original survey consists of 430 questions in total, including many rather
formal questions on demographics such as gender and language spoken.
From the version of “Wave 6” data, we chose 17 questions that would be
relevant to the level of happiness in life, as listed in Table 2. We standard-
ized the answers to bi-level using certain threshold values, and made “V10”
the target variable. We focus only on instances having a country code of
840, which corresponds to the USA. We removed all of instances having
any missing entries, resulting in (N,M) = (934, 16). This is also highly
imbalanced data because majority of people tell that they are happy.

Table 1 Summary of Synthetic data.

x (y = +1) (y = −1)
(0,0) 8 9
(0,1) 6 16
(1,0) 20 20
(1,1) 16 16
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7.1.2 Methods compared

We call the approach summarized in Algorithms 1-3 sIRT-KL (supervised IRT
based on the KL divergence metric). As a variant, we also use sIRT-KS (super-
vised IRT based on the KS statistics) by replacing the r.h.s. of Eq. (35) with
Eq. (40) (except for Kronecker’s delta). To compare the performance between
the NP decision rule and the k-NN approach, we also consider sIRT-LR (super-
vised IRT based on the likelihood ratio), which does not use k-NN (Eq. (31))
but the classification rule of Eq. (21).

As we stated in Sec. 3.1, our goal is to develop a classifier that has full
interpretability. For further comparison, we use the following existing classi-
fiers. Since our goal is not to achieve the highest ever accuracy but to make
informative prediction, we focus only on methods that are thought of as inter-
pretable in practice. Some of the ensemble methods and advanced nonlinear
classifiers such as deep learning methods may achieve better accuracies, but
they are not comparable to our approach because they do not care about the
notion of full interpretability.

1. k-NN. The k-NN approach based on the Eucleadian distance, i.e. A = IM .
For the score, Eq. 31 is used. The threshold and k are determined via LOO
CV.

2. LMNN. Large-margin nearest neighbors (LMNN) [29], which is the standard
baseline method in metric-learning-based k-NN classifier. In LMNN, the
full Riemannian metric A is determined by minimizing the objective func-

Table 2 Variables in World Values Survey data.

question ID variable question summary
V10 y Overall happiness
V49 x1 Goal in life is to make parents proud
V50 x2 When mother works, children suffer
V55 x3 Have a great deal of choice in life
V56 x4 Other people are fair
V58 x5 Have children
V59 x6 Satisfied with household financial situation
V70 x7 Liked by those who value creativity
V71 x8 Liked by those who want to be rich
V77 x9 Liked by those who aways behave properly
V78 x10 Liked by those who care about natural environment
V79 x11 Liked by those who value tradition
V102 x12 Trust family
V103 x13 Trust neighborhood
V105 x14 Trust people met for the first time
V107 x15 Trust people from another nationality
V170 x16 Neighborhood is secure



Supervised Item Response Models 21

tion

E(A) =
1− µ
N

N∑
n=1

∑
j∈Nn

d2A(n, j) (44)

+
µ

N

N∑
n=1

∑
j∈Nn

∑
l: y(l) 6=y(n)

[
1 + d2A(n, j)− d2A(n, l)

]
+
, (45)

where d2A(n, j) is a shorthand notation of d2A(x(n),x(j)), Nn represents the
set of the nearest-neighbors of x(n) chosen from the same label samples,
i.e., y(j) = y(n), and [h]+ = max{0, h} for ∀h ∈ R. LMNN is believed to
be one of the best off-the-shelf metric learning methods [2], thanks mainly
to the hinge loss function and its convex formulation [29].

3. RegLgst. L1-regularized logistic regression [7], whose central model is given
by

ln
p(y = +1 | x)

p(y = −1 | x)
= d>x+ d0.

The parameters d ≡ (d1, d2)> and d0 are learned via maximum likelihood
under the L1 constraint on d. The regularization constant was optimized
using LOO CV.

7.2 Illustration using Synthetic data

To explain why informativeness matters, we compare sIRT-KL and RegLgst

based on the Synthetic data. In this 2-dimensional setting, we have only four
choices in x as shown in Table 1.

Figure 5 shows learned coefficients of RegLgst. In the figure, we see that
both dimensions have significant weights, and it is not clear how each of them
affects classification. Almost the only conclusion we can draw would be some-
thing like “you cannot ignore either one”.

Figure 6 shows results of sIRT-KL. The informativeness score calculated
by Eq.(40) clearly shows that x1 is more important than x2. This is confirmed
by the ICC, where x2 is less sensitive and even negatively depends on θ. If
this is a diagnostic inquiry and a doctor is trying to infer the level of medical
risk, the doctor may decide to use only the inquiry x1 based on the ICCs to
distinguish between low risk (small θ) and high risk (large θ) subjects. We see
that decision-making becomes much easier with the aid of ICCs. Note that
putting a stronger regularizer and thus getting a sparser solution does not
improve the situation because the logistic regression coefficients still look like
black-box metric that may take negative values.

7.3 Project Risk Assessment: CRA and PBA data

Following the procedure summarized in Sec. 6.4, we calculated {a∗, b∗, c∗, }
based on the CRA and PBA data. For the hyper-parameters (ω, γ, k), we had
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Fig. 5 Learned coefficients of RegLgst for Synthetic.
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Fig. 6 Item characteristic curves and informativeness score for Synthetic.

(0.1, 0.5, 7) for CRA, and (4.0, 5.0, 86) for PBA. For the initial values, we used
a0l = 1.0, b0l = 0.5, c0l = 10−5 for all l = 1, . . . ,M . To handle the imbalanced
nature between troubled and healthy samples, in the training phase, we did
bootstrap resampling for the non-success instances to obtain the same sample
size in either class, although the prediction was made for the original data.

Figure 7 shows the sIRT parameters and the informativeness for CRA. We
see that the 7th and 9th questions have major informativeness. Interestingly,
these ones have negative discrimination parameters. This is due to the nature
of risk management process. Since this risk assessment is done after completing
all of risk mitigation actions previously suggested by human auditors, readily
visible risks cannot exist. The situation is similar to accounting audits of busi-
nesses to find out creative accounting. The negative {al}’s suggest that some
of the trouble project had questionnaire answers that were “too good to be
true” or “unnaturally good.”

Figure 8 shows some examples ICCs. We drew P (θ, al, bl, cl) with the solid
lines as well as [1−P (θ, al, bl, cl)] with the dashed lines. We clearly see that the
10th question is hardly informative, being consistent to the negligible infor-
mativeness score in Fig. 7. Interestingly, this question is about future project
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Fig. 7 IRT parameters and informativeness scores learned from the CRA data.

plan after contract signing, which will be conducted by a different team from
the one being reviewed. Thus negligible informativeness makes a lot of sense.
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Fig. 8 Examples of ICCs from the CRA data.

Next, we compare prediction performance of our approach with alterna-
tives. The results are shown in Fig. 9. We see that sIRT-KL and sIRT-KL are
consistently better or comparable to the alternative methods. As already dis-
cussed in Sec. 6.1, sIRT-LR, which is naively based on the Neyman-Pearson de-
cision rule, gives systematically worse results than sIRT-KL. Although RegLgst

and k-NN give good performance for WVS, they perform poorly for CRA and
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PBA. The fact that our method achieved comparable or even better prediction
performance guarantees that the descriptive analysis with the ICCs and the
informativeness scores capture the major features of the data.

It is interesting to see that the LMNN approach, which optimizes the full
Riemannian metric via Eq. (44), does not help improve the performance very
much. This clearly suggests the importance of the nonlinear transformation by
the logistic curve of IRT, and the risk of naively applying metric learning in
non-metric spaces. This also suggests that explicitly taking account of human
cognition bias is critical in questionnaire data analysis. Our approach success-
fully captured the latent failure tendency with the aid of the psychoanalytical
approach.
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Fig. 9 Comparison of F-values in prediction.

7.4 World Values Survey: Informative Prediction of Happiness

As we summarized in Table 2, our target variable (“V10”) is overall happiness,
and we are interested in understanding what makes them feel happy with their
life. We trained sIRT model using the WVS data. Figure 10 shows the sIRT
parameters and the informativeness.

Unlike CRA data, we see that all of the discrimination parameters (a) are
positive. This means that all of the questions in Table 2 affect the overall
happiness positively. We also see that V49, V71, and V102 have very high
guessing values, which are almost 1, and their informativeness scores are quite
low. These questions are not about respondents themselves but about their
parents, other people who seem to want to be rich, and the level of their trust
for their family. The result shows that the overall happiness is not significantly
affected by these factors.

On the other hand, we also see that V55 and V59 have very high infor-
mativeness scores. This is very interesting because V55 asks about how much
controllable their life is and V59 asks about the level of financial satisfaction of
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their household. This result looks consistent to the general beliefs in the USA:
anyone can succeed by properly exercising their own capabilities. It would be
interesting to compare this analysis for the USA to other countries. However,
we leave it to future work.
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Fig. 10 IRT parameters and informativeness scores learned from the WVS data.

8 Concluding remarks

We have addressed the task of informative prediction for questionnaire data.
Our primary goal was to establish a method to quantitatively evaluate the in-
formativeness of question items based on the predictability of the final outcome
of individual samples.

To tackle the task, we introduced a new framework of supervised item re-
sponse theory (sIRT) by extending an existing theory in psychometrics. We
introduced a prior distribution for the latent variable conditioned on the out-
come variable, and developed an efficient iterative algorithm named the Gauss-
Hermite EM (GHEM) algorithm for parameter estimation. By combining the
sIRT model with metric learning, we successfully developed an informative
prediction approach that achieves full interpretability (as defined in Sec. 3.1).
Using real-world data sets, we confirmed that our approach gives valuable in-
sights in practice. In particular, in an analysis on World Values Survey, we
successfully characterized factors making people feel happy.

For future work, it would be possible to extend the present framework to
multi-level questions. One simple approach is to leverage the 1-of-K notation
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and reduce each of the K-level questions to K bi-level questions. Other ex-
tensions such as introduction of multi-variate latent variable would also be
possible.
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